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Abstract: Biometrics are an important and widely used
class of methods for identity verification and access control.
Biometrics are attractive because they are inherent Properties of
an individual. They need not be remembered like passwords and
are not easily lost or forged like identifying documents. At the
same time, biometrics are fundamentally noisy and irreplaceable.
The two types of biometric modals are : (1) Unimodal Biometrics,
(2) Multimodal Biometrics. The example discussed in this report
is for Unimodal and multimodal biometrics are (a) Iris
recognition is a popular technique for recognizing humans (b)
Multimodal sparse representation method. When this two
methods fails to identify and verify the biometric feature. A new
technique finger-vein recognition system is being proposed to
identify and verify a human being.
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l. INTRODUCTION

Biometrics are an important and widely used class of
methods for identity verification and access control. They
need not be remembered like passwords and are not easily lost
or forged like identifying documents. At the same time,
biometrics are fundamentally noisy and irreplaceable. There
are always slight variations among the measurements of a
given biometric,and, unlike passwords or identification
numbers, biometrics are derived from physical characteristics
that cannot easily be changed. The proliferation of biometric
usage raises critical privacy and security concerns that, due to
the noisy nature of biometrics, cannot be addressed using
standard cryptographic methods. In this article, we present an
overview of secure biometrics, also referred to as biometric
template protection, an emerging class of methods that
address these concerns.

The traditional method of accommodating
measurement variation among biometric samples is to store
the enrollment sample on the device and to match it against a
probe provided by the individual being authenticated.
Consequently, much effort has been invested in the
development of pattern recognition algorithms for biometric
matching that can accommodate these variations.
Unfortunately, this approach has a serious flaw: an attacker
who steals or hacks into the device gains access to the
enrollment biometric. In conventional password-based
systems, this type of problem can be mitigated by storing a
noninvertible cryptographic hash of the password rather than
the password itself. However, cryptographic hashes are
extremely sensitive to noise and thus incompatible with the
inherent variability of biometric measurements. Therefore, the
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above approach used for securing passwords is ill suited to
biometric security.

The loss of an enrollment biometric to an attacker is
a security hazard because it may allow the attacker to gain
unauthorized access to facilities, sensitive documents, or the
finances of the victim. Further, since a biometric signal is tied
to the unique physical characteristics and identity of an
individual, a leaked biometric can result in a significant loss
of privacy. The article, refers to a security breach as an event
wherein an attacker successfully accesses a device. It refers to
a privacy breach as an event wherein an attacker partially, or
completely, determines the victim’s biometric. Security and
privacy breaches represent distinct kinds of attacks.

Addressing these challenges demands new
approaches to the design and deployment of biometric
systems. Research into secure biometrics has drawn on
advances in the fields of signal processing, error correction
coding, information theory, and cryptography. Four main
architectures dominate: fuzzy commitment, secure sketch,
secure multiparty computation, and cancelable biometrics.
The first two architectures, fuzzy commitment and secure
sketch, provide information-theoretic guarantees for security
and privacy, using error correcting codes (ECCs) or signal
embedding’s. The third architecture attempts to determine the
distance between enrollment and probe biometrics using
computationally secure cryptographic tools such as garbled
circuits and homomaorphic encryption.
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Fig 1: Secure biometrics framework.
The final architecture, cancelable biometrics,
involves distorting the biometric signal at enrollment with a

secret user-specific transformation, and storing the distorted
biometric on the access control device.
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Unimodal biometric systems rely on a single source
of information such as a single iris or fingerprint or face for
authentication. Unfortunately these systems have to deal with
some of the following inevitable problems: (a) Noisy data. (b)
Non-universality. (c) Intra-class variations. (d) Spoof attack.

Classification in multibiometric systems is done by
fusing information from different biometric modalities.
Information fusion can be done at different levels, broadly
divided into feature-level, score-level and rank/decision-level
fusion. Due to preservation of raw information, feature-level
fusion can be more discriminative than score or decision-level
fusion. But, feature-level fusion methods are being explored in
the biometric community only recently. This is because of the
differences in features extracted from different sensors in
terms of type and dimensions. Often features have large
dimensions, and fusion becomes difficult at the feature level.
The prevalent method is feature concatenation, which has
been used for different multibiometric settings.

SYSTEM ARCHITECTURE

Secure biometrics may be viewed as a problem of
designing a suitable encoding procedure for transforming an
enrollment biometric signal into data to be stored on the
authentication device, and of designing a matching decoding
procedure for combining the probe biometric signal with the
stored data to generate an authentication decision.
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The system is depicted in Figure 1. Any analysis of
the privacy and security tradeoffs in secure biometrics must
take into account not only authentication accuracy but also the
information leakage and the possibility of attacking the system
when the stored data and/or keys are compromised. At the
outset, note that in authentication, a probe biometric is
matched against a particular enrollment of one claimed user.
This differs from identification, in which a probe biometric is
matched against each enrollment in the database to discover
the identity associated with the probe. These are distinct but
closely related tasks. For clarity, our development focuses
only on authentication.

SECUREBIOMETRICS ARCHITECTURE

The following are methods for converting biometrics
features into “secure” signals that can be stored in the
biometrics database, to be used for authentication.
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A. Secure Sketches

A secure sketch-based system derives information—
called a sketch or helper data S—from Alice’s enrollment
biometric A and stores it in the access control database, as
shown in Figure 2. The decision function tests whether the
probe biometric D is consistent with the sketch and grants
access when it is. The sketch S should be constructed so that it
reveals little or no information about A.

Secure sketches can be generated in several ways, for
example, by computing a small number of quantized random
projections of a biometric feature vector. A particularly
instructive method—one that shows the connections between
secure sketches and the fuzzy commitment architecture—
employs ECCs. The secure sketch is constructed as a
syndrome of an ECC with parity check matrix H, given by S
=HA. The idea is that a legitimate probe biometric D =B
would be a slightly error-prone version of A. Therefore,
authentication can be accomplished by attempting to decode A
given D and S. Secure sketches constructed in this way
provide information theoretic security and privacy guarantees
that are functions of the dimension of the ECC.

Encoding
Compute Sketch
A—> ofAmﬁlyask —l | |
Optional K 1—T ) § ) ggr;tfégg
D Unmask S with
Optional L \I;i?#glfe?é?lpgfr% — ,/Orx
Decision

Fig 2. Secure sketch system.

B. Fuzzy Commitment

Fuzzy commitment involves binding a secret
message to the enrollment biometric which can later be
recovered with a legitimate probe biometric to perform
authentication. As depicted in Figure 3, Alice binds her
biometric feature vector A to a randomly generated vector Z,
producing the data S that is stored in a database as the secure
biometric. Again, the encoding function should ensure that S
leaks little or no information about A or Z. To perform
authentication, a user claiming to be Alice provides a probe
biometric feature vector D and the device attempts to recover
Z. Access is granted only when there is exact recovery of the
message Z, which would happen only if D is sufficiently
similar to A.

There are several ways to bind a secret message to
the enrollment biometric. One such method uses quantization
index modulation (QIM), in which the biometric features are
quantized in such a way that the choice of the quantizer is
driven by the secret message.

C. Secure multiparty computation
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This architecture involves finding the distance
between enrollment and probe biometric features in the
encrypted domain. There has been intense research activity
recently on accomplishing this using public-key homomorphic
cryptosystems. These allow an operation on the underlying
plaintexts such as addition or multiplication to be carried out
by performing a suitable operation on the ciphertexts. To fix
ideas, consider the following simple example.
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Fig 3. Fuzzy Commitment system.

Suppose the length-n enroliment feature vector A is
encrypted elementwise using an additively homomorphic
cryptosystem and the resulting ciphertext S is stored in the
database of the access control system, as shown in Figure 4.
An additively homomorphic cryptosystem, e.g., the Paillier
cryptosystem, satisfies E(a)E(b) =E(a +b) for integers a, b and

encryption function E($).
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Fig 4. Secure multiparty computation

A realistic assumption in our simple example is that
the encryption key is public, while the decryption key L is
available only to the individual attempting to authenticate.
Thus, by construction, this secure biometrics architecture
results in two-factor systems, in which the first factor is a
biometric token and the second factor is a privately held
decryption key for a homomorphic cryptosystem.

D. Cancelable Biometrics

Cancelable biometrics refers to a class of techniques
in which the enrollment biometric signal is intentionally
distorted before it is stored in the biometric database. This
architecture is depicted in Figure 5. The distorting function is
repeatable, so that it can be applied again to the probe
biometric, facilitating comparison with the distorted
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enrollment biometric. Further, the distorting function is
intended to be a noninvertible and “revocable” mapping. This
means that, if Alice’s stored distorted biometric is known to
have been compromised, a system administrator can cancel
her enrollment data, apply a fresh distorting function to
Alice’s biometric, and store the result as her new enrollment.
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Fig 5. Cancelable Biometrics system.

Thus, by construction, these are two factor systems in
which the second factor K is a secret value held by the user
which indexes the user-specific deformation, or salting key, or
the realization of a random matrix. The secret value can be in
the form of a memorized personal identification number or a
longer key held on a smart card.

TYPES OF BIOMETRICS MODALS

The types can be classified based on the number of
biometric features used for authentication. Basically there are
two types of biometric modals they are: (a) Unimodal
biometric system (b) Multimodal biometric system.

Traditional biometric recognition systems rely on a
single biometric signature for authentication. Unimodal
biometric systems rely on a single source of information such
as a single iris or fingerprint or face for authentication.

Iris recognition is a popular technique for
recognizing humans. For years, bodily features such as the
face, fingerprint, and iris have been used for the purpose of
recognition. Since the mid-nineteenth century, when Alphonse
Bertillon proposed using body measurements to identify
criminals, biometrics has been extensively used in law
enforcement to identify criminals and to establish identity in a
broad range of applications (e.g., refugee control and
computer logins). Various traits have been considered to have
potential for biometric recognition because they satisfy four
requirements: (1) Universality: - Means that each person
should possess the characteristic; (2) Distinctiveness: - Means
that any two persons should be sufficiently differentiable by
the selected characteristic; (3) Permanence: - Means that the
characteristic should be invariant over a period of time; (4)
Collectability: - Means that the characteristic can be measured
quantitatively.

Disadvantages of Unimodal biometrics system are:-
(a) Noisy data: poor lighting on a user’s face or occlusion are
examples of noisy data. (b) Non-universality: the biometric
system based on a single source of evidence may not be able
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to capture meaningful data from some users. For instance, an
iris biometric system may extract incorrect texture patterns
from the iris of certain users due to the presence of contact
lenses. (c) Intra-class variations: in the case of fingerprint
recognition, the presence of wrinkles due to wetness can cause
these variations. These types of variations often occur when a
user incorrectly interacts with the sensor.(d) Spoof attack:
hand signature forgery is an example of this type of attack.
The limitations of unimodal biometric systems can be
addressed by deploying multimodal biometric systems that
essentially integrate the evidence presented by multiple
sources of information such as iris, fingerprints and face. Such
systems are less vulnerable to spoof attacks as it would be
difficult for an imposter to simultaneously spoof multiple
biometric traits of a genuine user. Due to sufficient population
coverage, these systems are able to address the problem of
non-universality. Joint Sparse Representation for
Robust Multimodal Biometrics Recognition : In recent years,
theories of Sparse Representation (SR) and Compressed
Sensing (CS) have emerged as powerful tools for efficient
processing of data in non-traditional ways .This has led to a
resurgence in interest in the principles of SR and CS for
biometrics recognition. Wrightetal. proposed the seminal
sparse representation-based classification (SRC) algorithm for
face recognition.
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Fig 6. Overview of Joint spare algorithm.

It was shown that by exploiting the inherent sparsity
of data, one can obtain improved recognition performance
over traditional methods especially when data is contaminated
by various artifacts such as illumination variations, disguise,
occlusion and random pixel corruption. Pillai et al. extended
this work for robust cancelable iris recognition in. Nagesh and
Li presented an expression-invariant face recognition method
using distributed CS and joint sparsity models. Patel et al.
proposed a dictionary-based method for face recognition
under varying pose and illumination. A discriminative
dictionary learning method for face recognition was also
proposed by Zhang and Li . For a survey of applications of SR
and CS algorithms to biometric recognition.

Motivated by the success of SR in unimodal
biometric recognition, we propose a joint sparsity-based
algorithm for multimodal biometrics recognition. Figure 6
presents an overview of our framework. It is based on the well
known regularized regression method, multi-task multi-variate
Lasso. The proposed method imposes common sparsities both
within each biometric modality and across different
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modalities. The idea of joint sparsity has been explored
recently for image classification and segmentaion. However
our method is different from these previously proposed
algorithms based on joint sparse representation for
classification. For example, Yuan and Yan proposed a multi-
task sparse linear regression model for image classification.
This method uses group sparsity to combine different features
of an object for classification. Zhang et al. proposed a joint
dynamic sparse representation model for object recognition.
Their essential goal was to recognize the same object viewed
from multiple observations i.e., different poses. Our method is
more general in that it can deal with both multi-modal as well
as multi-variate sparse representations.

The proposed algorithm represents the test data by a
sparse linear combination of training data, while constraining
the observations from different modalities of the test subject
to share their sparse representations. Finally, classification is
done by assigning the test data to the class with the lowest
reconstruction error.

The finger-vein is a promising biometric pattern for
personal identification in terms of its security and
convenience. Compared with other biometric traits, the finger-
vein has the following advantages: (1) The vein is hidden
inside the body and is mostly invisible to human eyes, so it is
difficult to forge or steal.(2) The non-invasive and contactless
capture of finger-veins ensures both convenience and hygiene
for the user, and is thus more acceptable.(3) The finger-vein
pattern can only be taken from a live body. Therefore, it is a
natural and convincing proof that the subject whose finger-
vein is successfully captured is
alive.
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Fig 7. Hardware diagram of the proposed system

The proposed system consists of three hardware
modules: image acquisition module, DSP mainboard, and
human machine communication module. The structure
diagram of the system is shown in Fig.7. The image
acquisition module is used to collect finger-vein images. The
DSP mainboard including the DSP chip, memory (flash), and
communication port is used to execute the finger-vein
recognition algorithm and communicate with the peripheral
device. The human machine communication module (LED or
keyboard) is used to display recognition results and receive
inputs from users.The  proposed  finger-vein  recognition
algorithm contains two stages: the enrollment stage and the
verification stage. Both stages start with finger-vein image
pre-processing, which includes detection of the region of
interest (ROI), image segmentation, alignment, and
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enhancement. For the enrollment stage, after the pre-
processing and the feature extraction step, the finger-vein
template database is built. For the verification stage, the input
finger-vein image is matched with the corresponding template
after its features are extracted. Fig. 8 shows the flow chart of
the proposed algorithm. Some different methods may have
been proposed for finger-vein matching.
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Fig 8. The flowchart of the finger vein recognition algorithm.

To obtain high quality near-infrared (NIR) images, a
special device was developed for acquiring the images of the
finger vein without being affected by ambient temperature.
Generally, finger-vein patterns can be imaged based on the
principles of light reflection or light transmission. The
developer a finger-vein imaging device based on light
transmission for more distinct imaging. Our device mainly
includes the following modules: a monochromatic camera of
resolution 580 x 600 pixels, daylight cut-off filters (lights with
the wavelength less than 800 nm are cut off), transparent acryl
(thickness is 10 mm), and the NIR light source. The structure
of this device is illustrated in Fig. 9. The transparent acryl
serves as the platform for locating the finger and removing
uneven illumination. The NIR light irradiates the backside of
the finger. In a light-emitting diode (LED) was used as the
illumination source for NIR light. With the LED illumination
source, however, the shadow of the finger-vein obviously
appears in the captured images. To address this problem, an
NIR laser diode (LD) was used in our system. Compared with
LED, LD has stronger permeability and higher power. In our
device, the wavelength of LD is 808nm. Fig. 10 shows an
example raw finger-vein image captured by using our device.

Algorithm:

Image Segmentation and Alignment:- Because the
position of fingers usually varies across different finger-vein
images, it is necessary to normalize the images before feature
extraction and matching. The bone in the finger joint is
articular cartilage.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
NCRTS'14 Conference Proceedings
ISSN: 2278-0181

NIR Camera

m—— IR, Filtar

Y Ty White -l-tl’:,l'l
= =
NIR LD — —

= =

fo
ey
De

Fig 9. llustration of the imaging
device.

Fig 10. example raw finger-vein captured by our system.

Unlike other bones, it can be easily penetrated by
NIR light. When a finger is irradiated by the uniform NIR
light, the image of the joint is brighter than that of other parts.
Therefore, in the horizontal projection of a finger-vein image,
the peaks of the projection curve correspond to the
approximate position of the joints. Since the second joint of
the finger is thicker than the first joint, the peak value at the
second joint is less prominent. Hence, the position of the first
joint is used for determining the position of the finger. icon, a
nurse can recognize the points in the environment that can be
touched with the mobile terminal and actions that the system
performs when those points are touched.

Because the position of fingers usually varies across
different finger-vein images, it is necessary to normalize the
images before feature extraction and matching. The bone in
the finger joint is articular cartilage. Unlike other bones, it can
be easily penetrated by NIR light. When a finger is irradiated
by the uniform NIR light, the image of the joint is brighter
than that of other parts. Therefore, in the horizontal projection
of a finger-vein image, the peaks of the projection curve
correspond to the approximate position of the joints . Since
the second joint of the finger is thicker than the first joint, the
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peak value at the second joint is less prominent.
Finger-vein Image

Resize to 1/4 of the Original Size

—
=

Resize to the
Original Size

Resize to 1/3 of the Original Size

e .

ﬂ Histogram

Exqualization

Fig 11. Procedure of our method for image enhancement

Hence, the position of the first joint is used for
determining the position of the finger. (a) Image
Enhancement:- The segmented finger-vein image is then
enhanced to improve its contrast as shown in Fig. 11. The
image is resized to 1/4 of the original size, and enlarged back
to its original size. Next, the image is resized to 1/3 of the
original size for recognition. Bicubic interpolation is used in
this resizing procedure. Finally, histogram equalization is used
for enhancing the gray level contrast of the image. (b) Feature
Extraction:- The fractal model developed by Mandelbrot
provides an excellent method for representing the ruggedness
of natural surfaces and it has served as a successful image
analysis tool for image compression and classification. Since
different fractal sets with obviously different textures may
share the same fractal dimension, the concept of lacunarity is
used to discriminate among textures. The basic idea of
lacunarity in many definitions is to quantify the “gaps or
lacunae” presented in a given surface, which is used to
quantify the denseness of a surface image. In this study, we
focus on combining fractal and lacunarity measures for
improving finger-vein recognition. (c) Lacunarity Based on
Blanket Technique:- Lacunarity is another concept introduced
by Mandelbrot to quantify the gaps in texture images. It is a
measure for spatial heterogeneity. Visually different images
sometimes may have similar values for their fractal
dimensions. Lacunarity estimation can help distinguish such
images. Lacunarity can be defined quantitatively as the mean-
square deviation of the fluctuations of mass distribution
function divided by its square mean. It is also defined as the
width of the mass distribution function of a set of points,
given the ‘‘box size’’.

Thus, a higher value of lacunarity implies more
heterogeneity, as it means a wider mass distribution function,
or a larger number of different mass values, of the set of
points. A lacunarity value is assigned for the center pixel of
the image window, and the lacunarity value of each pixel in an
image can be obtained by moving the W*W window
throughout the whole image.
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V. CONCLUSION

Biometric technology adds a new layer of security by ensuring
secure identification and authentication. But biometric
authentication systems like any other technology are also
vulnerable to attacks such as transmission, replay and
spoofing. There are many proposed methodologies that are
used to defeat them. Multimodal biometric system is a major
approach to defeat spoofing attacks..

An end-to-end finger-vein recognition system based
on the blanket dimension and lacunarity implemented on a
DSP platform. The proposed system includes a device for
capturing finger-vein images, a method for ROl segmentation,
and a novel method combining blanket dimension features and
lacunarity features for recognition. The images from 600
fingers in the dataset were taken over long time interval (i.e.,
from summer to winter) by a prototype device we built. The
experimental results showed that the EER of our method was
0.07%, significantly lower than those of other existing
methods. Our system is suitable for application in mobile
devices because of its relatively low computational
complexity and low power consumption.
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