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Abstract: Biometrics are an important and widely used 

class of methods for identity verification and access control. 

Biometrics are attractive because they are inherent Properties of 

an individual. They need not be remembered like passwords and 

are not easily lost or forged like identifying documents. At the 

same time, biometrics are fundamentally noisy and irreplaceable. 

The two types of biometric modals are : (1) Unimodal Biometrics, 

(2) Multimodal Biometrics. The example discussed in this report 

is for Unimodal and multimodal biometrics are (a) Iris 

recognition is a popular technique for recognizing humans (b) 

Multimodal sparse representation method. When this two 

methods fails to identify and verify the biometric feature. A new 

technique finger-vein recognition system is being proposed to 

identify and verify a human being. 

 

Keywords: Secure biometrics, Types of biometrics, 

Unimodal biometrics, Multimodal biometrics, Finger-vein 

recognition system. 

 

I. INTRODUCTION 

Biometrics are an important and widely used class of 

methods for identity verification and access control. They 

need not be remembered like passwords and are not easily lost 

or forged like identifying documents. At the same time, 

biometrics are fundamentally noisy and irreplaceable. There 

are always slight variations among the measurements of a 

given biometric,and, unlike passwords or identification 

numbers, biometrics are derived from physical characteristics 

that cannot easily be changed. The proliferation of biometric 

usage raises critical privacy and security concerns that, due to 

the noisy nature of biometrics, cannot be addressed using 

standard cryptographic methods. In this article, we present an 

overview of secure biometrics, also referred to as biometric 

template protection, an emerging class of methods that 

address these concerns.   

The traditional method of accommodating 

measurement variation among biometric samples is to store 

the enrollment sample on the device and to match it against a 

probe provided by the individual being authenticated. 

Consequently, much effort has been invested in the 

development of pattern recognition algorithms for biometric 

matching that can accommodate these variations. 

Unfortunately, this approach has a serious flaw: an attacker 

who steals or hacks into the device gains access to the 

enrollment biometric. In conventional password-based 

systems, this type of problem can be mitigated by storing a 

noninvertible cryptographic hash of the password rather than 

the password itself. However, cryptographic hashes are 

extremely sensitive to noise and thus incompatible with the 

inherent variability of biometric measurements. Therefore, the 

above approach used for securing passwords is ill suited to 

biometric security. 

The loss of an enrollment biometric to an attacker is 

a security hazard because it may allow the attacker to gain 

unauthorized access to facilities, sensitive documents, or the 

finances of the victim. Further, since a biometric signal is tied 

to the unique physical characteristics and identity of an 

individual, a leaked biometric can result in a significant loss 

of privacy. The article, refers to a security breach as an event 

wherein an attacker successfully accesses a device. It refers to 

a privacy breach as an event wherein an attacker partially, or 

completely,   determines the victim‟s biometric. Security and 

privacy breaches represent distinct kinds of attacks.  

Addressing these challenges demands new 

approaches to the design and deployment of biometric 

systems. Research into secure biometrics has drawn on 

advances in the fields of signal processing, error correction 

coding, information theory, and cryptography. Four main 

architectures dominate: fuzzy commitment, secure sketch, 

secure multiparty computation, and cancelable biometrics. 

The first two architectures, fuzzy commitment and secure 

sketch, provide information-theoretic guarantees for security 

and privacy, using error correcting codes (ECCs) or signal 

embedding‟s. The third architecture attempts to determine the 

distance between enrollment and probe biometrics using 

computationally secure cryptographic tools  such as garbled 

circuits and homomorphic encryption. 

 

 
Fig 1: Secure biometrics framework. 
 

The final architecture, cancelable biometrics, 

involves distorting the biometric signal at enrollment with a 

secret user-specific transformation, and storing the distorted 

biometric on the access control device. 
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Unimodal biometric systems rely on a single source 

of information such as a single iris or fingerprint or face for 

authentication. Unfortunately these systems have to deal with 

some of the following inevitable problems: (a) Noisy data. (b) 

Non-universality. (c) Intra-class variations. (d) Spoof attack.  

Classification in multibiometric systems is done by 

fusing information from different biometric modalities. 

Information fusion can be done at different levels, broadly 

divided into feature-level, score-level and rank/decision-level 

fusion. Due to preservation of raw information, feature-level 

fusion can be more discriminative than score or decision-level 

fusion. But, feature-level fusion methods are being explored in 

the biometric community only recently. This is because of the 

differences in features extracted from different sensors in 

terms of type and dimensions. Often features have large 

dimensions, and fusion becomes difficult at the feature level. 

The prevalent method is feature concatenation, which has 

been used for different multibiometric settings. 

 

II. SYSTEM ARCHITECTURE 

Secure biometrics may be viewed as a problem of 

designing a suitable encoding procedure for transforming an 

enrollment biometric signal into data to be stored on the 

authentication device, and of designing a matching decoding 

procedure for combining the probe biometric signal with the 

stored data to generate an authentication decision. 

 

 

 
 

The system is depicted in Figure 1. Any analysis of 

the privacy and security tradeoffs in secure biometrics must 

take into account not only authentication accuracy but also the 

information leakage and the possibility of attacking the system 

when the stored data and/or keys are compromised. At the 

outset, note that in authentication, a probe biometric is 

matched against a particular enrollment of one claimed user. 

This differs from identification, in which a probe biometric is 

matched against each enrollment in the database to discover 

the identity associated with the probe. These are distinct but 

closely related tasks. For clarity, our development focuses 

only on authentication. 

 

III. SECUREBIOMETRICS ARCHITECTURE 

The following are methods for converting biometrics 

features into “secure” signals that can be stored in the 

biometrics database, to be used for authentication. 

A. Secure Sketches 

A secure sketch-based system derives information—

called a sketch or helper data S—from Alice‟s enrollment 

biometric A and stores it in the access control database, as 

shown in Figure 2. The decision function tests whether the 

probe biometric D is consistent with the sketch and grants 

access when it is. The sketch S should be constructed so that it 

reveals little or no information about A.  

Secure sketches can be generated in several ways, for 

example, by computing a small number of quantized random 

projections of a biometric feature vector. A particularly 

instructive method—one that shows the connections between 

secure sketches and the fuzzy commitment architecture—

employs ECCs. The secure sketch is constructed as a 

syndrome of an ECC with parity check matrix H, given by S 

=HA. The idea is that a legitimate probe biometric D =B 

would be a slightly error-prone version of A. Therefore, 

authentication can be accomplished by attempting to decode A 

given D and S. Secure sketches constructed in this  way 

provide information theoretic security and privacy guarantees 

that are functions of the dimension of the ECC. 

 

 
Fig 2. Secure sketch system. 

                                        

B. Fuzzy Commitment 

Fuzzy commitment involves binding a secret 

message to the enrollment biometric which can later be 

recovered with a legitimate probe biometric to perform 

authentication. As depicted in Figure 3, Alice binds her 

biometric feature vector A to a randomly generated vector Z, 

producing the data S that is stored in a database as the secure 

biometric. Again, the encoding function should ensure that S 

leaks little or no information about A or Z. To perform 

authentication, a user claiming to be Alice provides a probe 

biometric feature vector D and the device attempts to recover 

Z. Access is granted only when there is exact recovery of the 

message Z, which would happen only if D is sufficiently 

similar to A.  

There are several ways to bind a secret message to 

the enrollment biometric. One such method uses quantization 

index modulation (QIM), in which the biometric features are 

quantized in such a way that the choice of the quantizer is 

driven by the secret message. 

C. Secure multiparty computation 
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This architecture involves finding the distance 

between enrollment and probe biometric features in the 

encrypted domain. There has been intense research activity 

recently on accomplishing this using public-key homomorphic 

cryptosystems. These allow an operation on the underlying 

plaintexts such as addition or multiplication to be carried out 

by performing a suitable operation on the ciphertexts. To fix 

ideas, consider the following simple example. 

  
Fig 3. Fuzzy Commitment system. 

 

Suppose the length-n enrollment feature vector A is 

encrypted elementwise using an additively homomorphic 

cryptosystem and the resulting ciphertext S is stored in the 

database of the access control system, as shown in Figure 4. 

An additively homomorphic cryptosystem, e.g., the Paillier 

cryptosystem, satisfies E(a)E(b) =E(a +b) for integers a, b and 

encryption function E($). 

 
Fig 4. Secure multiparty computation 
 

A realistic assumption in our simple example is that 

the encryption key is public, while the decryption key L is 

available only to the individual attempting to authenticate. 

Thus, by construction, this secure biometrics architecture 

results in two-factor systems, in which the first factor is a 

biometric token and the second factor is a privately held 

decryption key for a homomorphic cryptosystem. 

D. Cancelable Biometrics 

Cancelable biometrics refers to a class of techniques 

in which the enrollment biometric signal is intentionally 

distorted before it is stored in the biometric database. This 

architecture is depicted in Figure 5. The distorting function is 

repeatable, so that it can be applied again to the probe 

biometric, facilitating comparison with the distorted 

enrollment biometric. Further, the distorting function is 

intended to be a noninvertible and “revocable” mapping. This 

means that, if Alice‟s stored distorted biometric is known to 

have been compromised, a system administrator can cancel 

her enrollment data, apply a fresh distorting function to 

Alice‟s biometric, and store the result as her new enrollment. 

 
Fig 5. Cancelable Biometrics system. 
 

Thus, by construction, these are two factor systems in 

which the second factor K is a secret value held by the user 

which indexes the user-specific deformation, or salting key, or 

the realization of a random matrix. The secret value can be in 

the form of a memorized personal identification number or a 

longer key held on a smart card. 

 

IV. TYPES OF BIOMETRICS MODALS 

The types can be classified based on the number of 

biometric features used for authentication. Basically there are 

two types of biometric modals they are: (a) Unimodal 

biometric system  (b) Multimodal biometric system. 

Traditional biometric recognition systems rely on a 

single biometric signature for authentication. Unimodal 

biometric systems rely on a single source of information such 

as a single iris or fingerprint or face for authentication. 

Iris recognition is a popular technique for 

recognizing humans. For years, bodily features such as the 

face, fingerprint, and iris have been used for the purpose of 

recognition. Since the mid-nineteenth century, when Alphonse 

Bertillon proposed using body    measurements to identify 

criminals, biometrics has been extensively used in law 

enforcement to identify criminals and to establish identity in a 

broad range of applications (e.g., refugee control and 

computer logins). Various traits have been considered to have 

potential for biometric recognition because they satisfy four 

requirements: (1) Universality: - Means that each person 

should possess the characteristic;  (2) Distinctiveness: - Means 

that any two persons should be sufficiently differentiable    by 

the selected characteristic;  (3) Permanence: - Means that the 

characteristic should be invariant over a period of time; (4) 

Collectability: - Means that the characteristic can be measured 

quantitatively.    

 

Disadvantages of Unimodal biometrics system are:- 

(a) Noisy data: poor lighting on a user‟s face or occlusion are 

examples of noisy data. (b) Non-universality: the biometric 

system based on a single source of evidence may not be able 
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to capture meaningful data from some users. For instance, an 

iris biometric system may extract incorrect texture patterns 

from the iris of certain users due to the presence of contact 

lenses. (c) Intra-class variations: in the case of fingerprint 

recognition, the presence of wrinkles due to wetness can cause 

these variations. These types of variations often occur when a 

user incorrectly interacts with the sensor.(d) Spoof attack: 

hand signature forgery is an example of this type of attack. 

The limitations of unimodal biometric systems can be 

addressed by deploying multimodal biometric systems that 

essentially integrate the evidence presented by multiple 

sources of information such as iris, fingerprints and face. Such 

systems are less vulnerable to spoof attacks as it would be 

difficult for an imposter to simultaneously spoof multiple 

biometric traits of a genuine user. Due to sufficient population 

coverage, these systems are able to address the problem of 

non-universality.   Joint Sparse Representation for 

Robust Multimodal Biometrics Recognition : In recent years, 

theories of Sparse Representation (SR) and Compressed 

Sensing (CS) have emerged as powerful tools for efficient 

processing of data in non-traditional ways .This has led to a 

resurgence in interest in the principles of SR and CS for 

biometrics recognition. Wrightetal. proposed the seminal 

sparse representation-based classification (SRC) algorithm for 

face recognition. 

 
 
Fig 6. Overview of Joint spare algorithm. 
 

It was shown that by exploiting the inherent sparsity 

of data, one can obtain improved recognition performance 

over traditional methods especially when data is contaminated 

by various artifacts such as illumination variations, disguise, 

occlusion and random pixel corruption. Pillai et al. extended 

this work for robust cancelable iris recognition in. Nagesh and 

Li presented an expression-invariant face recognition method 

using distributed CS and joint sparsity models. Patel et al. 

proposed a dictionary-based method for face recognition 

under varying pose and illumination. A discriminative 

dictionary learning method for face recognition was also 

proposed by Zhang and Li . For a survey of applications of SR 

and CS algorithms to biometric recognition.  

Motivated by the success of SR in unimodal 

biometric recognition, we propose a joint sparsity-based 

algorithm for multimodal biometrics recognition. Figure 6 

presents an overview of our framework. It is based on the well 

known regularized regression method, multi-task multi-variate 

Lasso. The proposed method imposes common sparsities both 

within each biometric modality and across different 

modalities. The idea of joint sparsity has been explored 

recently for image classification and segmentaion. However 

our method is different from these previously proposed 

algorithms based on joint sparse representation for 

classification. For example, Yuan and Yan proposed a multi-

task sparse linear regression model for image classification. 

This method uses group sparsity to combine different features 

of an object for classification. Zhang et al. proposed a joint 

dynamic sparse representation model for object recognition. 

Their essential goal was to recognize the same object viewed 

from multiple observations i.e., different poses. Our method is 

more general in that it can deal with both multi-modal as well 

as multi-variate sparse representations. 

The proposed algorithm represents the test data by a 

sparse linear combination of training data, while constraining 

the observations from different modalities of the test subject 

to share their sparse representations. Finally, classification is 

done by assigning the test data to the class with the lowest 

reconstruction error. 

The finger-vein is a promising biometric pattern for 

personal identification in terms of  its security and 

convenience. Compared with other biometric traits, the finger-

vein has the following advantages:  (1) The vein is hidden 

inside the body and is mostly invisible to human eyes, so it is 

difficult to forge or steal.(2) The non-invasive and contactless 

capture of finger-veins ensures both convenience and hygiene 

for the user, and is thus more acceptable.(3) The finger-vein 

pattern can only be taken from a live body. Therefore, it is a 

natural and convincing proof that the subject whose finger-

vein is successfully captured is 

alive.

 
 

Fig 7. Hardware diagram of the proposed system 
 

The proposed system consists of three hardware 

modules: image acquisition module, DSP mainboard, and 

human machine communication module. The structure 

diagram of the system is shown in Fig.7. The image 

acquisition module is used to collect finger-vein images. The 

DSP mainboard including the DSP chip, memory (flash), and 

communication port is used to execute the finger-vein 

recognition algorithm and communicate with the peripheral  

device. The human machine communication module (LED or 

keyboard) is used to display recognition results and receive 

inputs from users.The proposed finger-vein recognition 

algorithm contains two stages: the enrollment stage and the 

verification stage. Both stages start with finger-vein image 

pre-processing, which includes detection of the region of 

interest (ROI), image segmentation, alignment, and 
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enhancement. For the enrollment stage, after the pre-

processing and the feature extraction step, the finger-vein 

template database is built. For the verification stage, the input 

finger-vein image is matched with the corresponding template 

after its features are extracted. Fig. 8 shows the flow chart of 

the proposed algorithm. Some different methods may have 

been proposed for finger-vein matching.  

  
Fig 8. The flowchart of the finger vein recognition algorithm. 
 

To obtain high quality near-infrared (NIR) images, a 

special device was developed for acquiring the images of the 

finger vein without being affected by ambient temperature. 

Generally, finger-vein patterns can be imaged based on the 

principles of light reflection or light transmission. The 

developer a finger-vein imaging device based on light 

transmission for more distinct imaging. Our device mainly 

includes the following modules: a monochromatic camera of 

resolution 580 × 600 pixels, daylight cut-off filters (lights with 

the wavelength less than 800 nm are cut off), transparent acryl 

(thickness is 10 mm), and the NIR light source. The structure 

of this device is illustrated in Fig. 9. The transparent acryl 

serves as the platform for locating the finger and removing 

uneven illumination. The NIR light irradiates the backside of 

the finger. In a light-emitting diode (LED) was used as the 

illumination source for NIR light. With the LED illumination 

source, however, the shadow of the finger-vein obviously 

appears in the captured images. To address this problem, an 

NIR laser diode (LD) was used in our system. Compared with 

LED, LD has stronger permeability and higher power. In our 

device, the wavelength of LD is 808nm. Fig. 10 shows an 

example raw finger-vein image captured by using our device. 

Algorithm: 

Image Segmentation and Alignment:- Because the 

position of fingers usually varies across different finger-vein 

images, it is necessary to normalize the images before feature 

extraction and matching. The bone in the finger joint is 

articular cartilage. 

  
Fig 9. Illustration of the imaging  

device.

 
 
Fig 10. example raw finger-vein captured by our system. 

 

Unlike other bones, it can be easily penetrated by 

NIR light. When a finger is irradiated by the uniform NIR 

light, the image of the joint is brighter than that of other parts. 

Therefore, in the horizontal projection of a finger-vein image, 

the peaks of the projection curve correspond to the 

approximate position of the joints. Since the second joint of 

the finger is thicker than    the first joint, the peak value at the 

second joint is less prominent. Hence, the position of the first 

joint is used for determining the position of the finger.  icon, a 

nurse can recognize the points in the environment that can be 

touched with the mobile terminal and actions that the system 

performs when those points are touched. 

Because the position of fingers usually varies across 

different finger-vein images, it is necessary to normalize the 

images before feature extraction and matching. The bone in 

the finger joint is articular cartilage. Unlike other bones, it can 

be easily penetrated by NIR light. When a finger is irradiated 

by the uniform NIR light, the image of the joint is brighter 

than that of other parts. Therefore, in the horizontal projection 

of a finger-vein image, the peaks of the projection curve 

correspond to the approximate position of the joints . Since 

the second joint of the finger is thicker than the first joint, the 
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peak value at the second joint is less prominent. 

 
 
Fig 11. Procedure of our method for image enhancement 
 

Hence, the position of the first joint is used for 

determining the position of the finger. (a) Image 

Enhancement:- The segmented finger-vein image is then 

enhanced to improve its contrast as shown in Fig. 11. The 

image is resized to 1/4 of the original size, and enlarged back 

to its original size. Next, the image is resized to 1/3 of the 

original size for recognition. Bicubic interpolation is used in 

this resizing procedure. Finally, histogram equalization is used 

for enhancing the gray level contrast of the image. (b) Feature 

Extraction:- The fractal model developed by Mandelbrot 

provides an excellent method for representing the ruggedness 

of natural surfaces and it has served as a successful image 

analysis tool for image compression and classification. Since 

different fractal sets with obviously different textures may 

share the same fractal dimension, the concept of lacunarity is 

used to discriminate among textures. The basic idea of 

lacunarity in many definitions is to quantify the “gaps or 

lacunae” presented in a given surface, which is used to 

quantify the denseness of a surface image. In this study, we 

focus on combining fractal and lacunarity measures for 

improving finger-vein recognition. (c) Lacunarity Based on 

Blanket Technique:- Lacunarity is another concept introduced 

by Mandelbrot to quantify the gaps in texture images. It is a 

measure for spatial heterogeneity. Visually different images 

sometimes may have similar values for their fractal 

dimensions. Lacunarity estimation can help distinguish such 

images.  Lacunarity can be defined quantitatively as the mean-

square deviation of the fluctuations of mass distribution 

function divided by its square mean. It is also defined as the 

width of the mass distribution function of a set of points, 

given the „„box size‟‟.  

Thus, a higher value of lacunarity implies more 

heterogeneity, as it means a wider mass distribution function, 

or a larger number of different mass values, of the set of 

points. A lacunarity value is assigned for the center pixel of 

the image window, and the lacunarity value of each pixel in an 

image can be obtained by moving the W*W window 

throughout the whole image.  

 

 

 

 

 

 

V. CONCLUSION 

 

Biometric technology adds a new layer of security by ensuring 

secure identification and authentication. But biometric 

authentication systems like any other technology are also 

vulnerable to attacks such as transmission, replay and 

spoofing. There are many proposed methodologies that are 

used to defeat them.   Multimodal biometric system is a major 

approach to defeat spoofing attacks..    

An end-to-end finger-vein recognition system based 

on the blanket dimension and lacunarity implemented on a 

DSP platform. The proposed system includes a device for 

capturing finger-vein images, a method for ROI segmentation, 

and a novel method combining blanket dimension features and 

lacunarity features for recognition. The images from 600 

fingers in the dataset were taken over long time interval (i.e., 

from summer to winter) by a prototype device we built. The 

experimental results showed that the EER of our method was 

0.07%, significantly lower than those of other existing 

methods. Our system is suitable for application in mobile 

devices because of its relatively low computational 

complexity and low power consumption. 
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