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Abstract  
 

This paper reviews the current literature regarding 

the artificial intelligence techniques to contain 

combinatorial explosion  as well as some methods 

used to optimize the final solution.  Through the 

analysis of the specific problem and the previous 

work in the literature, this paper will establish the 

scholarly base for the research methodology used 

in this thesis.   Evaluation of various search 

algorithms will assist in the development of a 

algorithm to determine the best technique to solve 

the problem of combinatorial Explosion.  

 

1 Introduction 
Research in Artificial Intelligence (AI) has a long 

tradition. The first paper attributed to the field was 

published by Warren McCulloch and Walter Pitts 

in 1943 [1], and the term “artificial intelligence” 

was proposed and agreed at the famous Dartmouth 

Workshop held in 1956. 

What is Intelligence?  

The notion of human Intelligence is very complex; 

it comprises the following (and possibly many 

other) capabilities:  

 Understanding meaning of symbols, words, text, 

data, images, utterances  

 Learning (acquiring knowledge) from data, text, 

images as well as from own behaviour and 

behaviour of others and learning by discovery  

 Analysing  (deconstructing)  complicated 

situations  

 Making  choices (decisions) under conditions of 

variety and uncertainty and therefore solving 

incompletely specified problems and achieving 

goals under conditions of the occurrence of 

frequent unpredictable events  

 Interacting (communicating) with other actors in 

the environment, which include intelligent 

creatures and machines  

 Autonomously  adapting  to changes in the 

environment  

 Creating (constructing) new concepts, principles,  

theories, methods, artefacts, models, literature, 

art  

 Setting  and  achieving  goals  by competing 

and/or cooperating with others  

 

 

 

 

An important part of human intelligence is to strive 

to create Artificial  Intelligence.  

 “Artificial” means man-made rather than natural. 

Artificial Intelligence is supposed to be man-made 

intelligence, designed and implemented in 

computer software and built into art effects such as 

robots or intelligent machines [3]. Historically 

artificial intelligence programs appeared in various 

disguises such as universal problem solvers , expert 

systems ,  and neural networks .  

 

3.SEARCH METHODS IN ARTIFICIAL 

INTELLIGENCE : 
Search is inherent to the problems and methods of 

artificial intelligence (AI) [4]. That is because AI 

problems are intrinsically complex. Efforts to solve 

problems with computers which humans can 

routinely solve by employing innate cognitive 

abilities, pattern recognition, perception and 

experience, invariably must turn to considerations 

of search. All search methods essentially fall into 

one of two categories: 

 (a) Exhaustive (blind) or uninformed methods 

and  (b) Heuristic or informed methods.  

3.1 Uninformed Search Methods 

3.1.1 Search Strategies  

All search methods in computer science share in 

common three necessities: 

 1) a world model or database of facts based on a 

choice of representation providing the current state, 

as well as other possible states and a goal state.  

2) a set of operators which defines possible 

transformations of states and  

3) a control strategy which determines how 

transformations amongst states are to take place by 

applying operators.  

 Reasoning from a current state in search of a state 

which is closer to a goal state is known as forward 

reasoning. Reasoning backwards to a current state 

from a goal state is known as backward reasoning. 

As such it is possible to make distinctions between 

bottom up and top down approaches to problem 

solving. Bottom up is often "goal directed" -- that is 

reasoning backwards from a goal state to solve 

intermediary sub-goal states. Top down or data-

driven reasoning is based on simply being able to 

get to a state which is defined as closed to a goal 

state than the current state. Often application of 
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operators to a problem state may not lead directly 

to a goal state and some backtracking may be 

necessary before a goal state can be found (Barr & 

Feigenbaum, 1981).  

3.1.2 State Space Search 

Exhaustive search of a problem space (or search 

space) is often not feasible or practical due to the 

size of the problem space. In some instances it is 

however, necessary. More often, we are able to 

define a set of legal transformations of a state space 

(moves in the world of games) from which those 

that are more likely to bring us closer to a goal state 

are selected while others are never explored further. 

This technique in problem solving is known as split 

and prune. In AI the technique that emulates split 

and prune is called generate and test [4]. The basic 

method is:  

Repeat 

            Generate a candidate solution  

            Test the candidate solution  

Until a satisfactory solution is found, or  

            no more candidate solutions can be 

generated:  

If an acceptable solution is found, announce it;  

             Otherwise, announce failure.  

Good generators are complete, will eventually 

produce all possible solutions, and will not suggest 

redundant solutions. They are also informed; that 

is, they will employ additional information to limit 

the solutions they propose.  

Means-ends analysis is another state space 

technique whose purpose is, given an initial state to 

reduce the difference (distance) between a current 

state and a goal state. Determining "distance" 

between any state and a goal state can be facilitated 

difference-procedure tables which can effectively 

prescribe what the next state might be. To perform 

means-ends analysis:  

Repeat  

Describe the current state, the goal state, and 

the difference between the two.  

Use the difference between the current state and 

goal state, possibly with the description of the 

current state or goal state, to select    a 

promising procedure.  

Use the promising procedure and update the current 

state.  

Until the GOAL is reached or no more procedures 

are available  

If the GOAL is reached, announce success; 

otherwise, announce failure.  

The technique of problem reduction is another 

important approach to AI problems. That is, to 

solve a complex or larger problem, identify smaller 

manageable problems (or subgoals) that you know 

can be solved in fewer steps. steps.         

                                              

                    
                          Figure 1 : Problem Reduction and 

The Sliding Block Puzzle Donkey  

This sliding block puzzle has been known for over 

100 years[4]. The object is to be able to bypass the 

Vertical bar with the Blob and place the Blob on 

the other side of the Vertical bar . The Blob 

occupies four spaces and needs two adjacent 

vertical or horizontal spaces in order to be able to 

move while the Vertical bar needs two adjacent 

empty vertical spaces to move left or right, or one 

empty space above or below it to move up or down. 

The Horizontal bars can move to any empty square 

to the left or right of them, or up or down if there 

are two empty spaces above or below them. 

Likewise, the circles can move to any empty space 

around them in a horizontal or vertical line. A 

relatively uninformed state space search can result 

in over 800 moves for this problem to be solved, 

with plenty of backtracking necessary. By problem 

reduction, resulting in the subgoal of trying the get 

the Blob on the two rows above or below the 

vertical bar, it is possible to solve this puzzle in just 

82 moves!  

Another example of a technique for problem 

reduction is called And/Or Trees. Here the goal is 

to find a solution path to a given tree by applying 

the following rules:  

A node is solvable if --  

1. it is a terminal node (a primitive problem),  

2. it is a nonterminal node whose successors are 

AND nodes that are all solvable, OR  

3. it is a nonterminal node whose successors are 

OR nodes and least one of them is solvable.  

Similarly, a node is unsolvable if –  

1. it is a nonterminal node that has no successors )a 

nonprimitive problem to which no  operator 

applies),  

2. it is a nonterminal node whose successors are 

AND nodes and at least one of them is 

unsolvable, or  

3. it is a nonterminal node whose successors are OR 

nodes and all of them are unsolvable.  
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Figure 2: And/Or Tree 

 

In this figure nodes B and C serve as exclusive 

parents to subproblems EF and GH respectively. 

One of viewing the tree is with nodes B, C, and D 

serving as individual, alternative subproblems . 

Solution paths would therefore be: {A-B-E}, {A-B-

F}, {A-C-G}, {A-C-H}, and {A,D}.  

In the special case where no AND nodes occur, we 

have the ordinary graph occurring in a state space 

search. However the presence of AND nodes 

distinguishes AND/OR Trees (or graphs) from 

ordinary state structures which call for their own 

specialized search techniques (Nilsson, 1971).  

 

3.1.2 .1 Depth First Search : 

The Depth First Search (DFS) is one of the most 

basic and fundamental Blind Search Algorithms. It 

is for those who want to probe deeply down a 

potential solution path in the hope that solutions do 

not lie too deeply down the tree. That is "DFS is a 

good idea when you are confident that all partial 

paths either reach dead emds or become complete 

paths after a reasonable number of steps. In 

contrast, "DFS is a bad idea if there are long paths, 

even infinitely long paths, that neither reacj dead 

emds nor become complete paths (Winston, 1992). 

To conduct a DFS:  

(1) Put the Start Node on the list called OPEN.  

(2) If OPEN is empty, exit with failure; otherwise 

continue. 

(3) Remove the first node from OPEN and put it on 

a list called CLOSED. Call this node n.  

(4) If the depth of n equals the depth bound, go to 

(2); Otherwise continue.  

(5) Expand node n, generating all successors of n. 

Put these (in arbitrary order) at the beginning of 

OPEN and provide pointers back to n. 

(6) If any of the successors are goal nodes, exit 

with the solution obtained by tracing back 

through the pointers; Otherwise go to (2).  

              

 
                              

Figure 3: Tree Searching Example of Depth First 

Search and Breadth First Search 

DFS always explores the deepest node first. That is, 

the one which is farthest down from the root of the 

tree. To prevent consideration of unacceptably long 

paths, a depth bound is often employed to limit the 

depth of search. DFS would explore the tree in 

Figure 5 in the order: A-B-E-I-F-C-G-H-D.  

DFS with Iterative Deepening remedies many of 

the drawbacks of the DFS and the Breadth First 

Search. The idea is to perform a level by level DFS. 

It starts with a DFS with a depth bound of 1. If a 

goal is not found, then it performs a DFS with 

depth bound of 2. This continues, with the depth 

bound increasing by one with each iteration, 

although with each increase in depth the algorithm 

must re-perform its DFS to the prescribed bound. 

The idea of Iterative Deepening is credited to Slate 

and Adkin (1977) with their work on the 

Northwestern University Chess Program. Studies of 

its efficiency have been carried out by Korf (1985).  

3.1.2 .2 Breadth First Search: 

Breadth First Search always explores nodes closest 

to the root node first, thereby visiting all nodes of a 

given length first before moving to any longer 

paths. It pushes uniformly into the search tree. 

Breadth first search is most effective when all paths 

to a goal node are of uniform depth. It is a bad idea 

when the branching factor (average number of 

offspring for each node) is large or infinite. Breadth 

First Search is also to be preferred over DFS if you 

are worried that there may be long paths (or even 

infinitely long paths) that neither reach dead ends 

or become complete paths (Winston, 1992). For the 

tree in Figure 5 Breadth First Search would proceed 

alphabetically.  

The algorithm for Breadth First Tree Search is: 
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(1) Put the start node on a list called OPEN.  

(2) If OPEN is empty, exit with failure; Otherwise 

continue.  

(3) Remove the first node on OPEN and put it on a 

list called CLOSED; Call this node n;  

(4) Expand node n, generating all of its successors. 

If there are no successors, go   immediately to 

(2). Put the successors at the end of OPEN and 

provdie pointers from these successors back to 

n.  

(5) If any of the successors are goal nodes, exit 

with the solution obtained by tracing back 

through the pointers; Otherwise go to (2)  

 

3.1.3 Bidirectional Search  

To this point all search algorithms discussed (with 

the exception of means-ends analysis and 

backtracking) have been based on forward 

reasoning. Searching backwards from goal nodes to 

predecessors is relatively easy. Pohl (1969, 1971) 

combined forward and backward reasoning into a 

technique called bidirectional search. The idea is to 

replace a single search graph, which is likely to 

grow exponentially, with two smaller graphs -- one 

starting from the initial state and one starting from 

the goal. The search is approximated to terminate 

when the two graphs intersect This algorithm is 

guaranteed to find the shortest solution path 

through a general state-space graph. Empirical data 

for randomly generated graphs showed the Pohl's 

algorithm expanded only about 1/4 as many nodes 

as unidirectional search (Barr and Feigenbaum, 

1981). Pohl also implemented heuristic versions of 

this algorithm.  

3.2 Heuristic or informed methods. 

The problem with all Uninformed Search Methods 

algorithms is that their time complexities grow 

exponentially with problem size. This problem is 

called combinatorial explosion.  

The combinatorial explosion results in limited size 

of problems that can be solved with with 

Uninformed Search Methods techniques. For 

example while eight-puzzle with 10
5
 states is easily 

solved by Uninformed Search Methods the fifteen-

puzzle contains over 10
13

 states, and hence cannot 

be solved with Uninformed Search Methods 

techniques on current machines. Even faster 

machines cannot have significant impact on this 

problem since the 5 * 5 twenty-four puzzle contains 

almost 10
25

 states. 

George Polya, via his wonderful book "How To 

Solve It" (1945) may be regarded as the "father of 

heuristics". In essence Polya's effort focused on 

problem-solving, thinking and learning. He 

developed a short "heuristic Dictionary" of 

heuristic primitives. Polya's approach was both 

practical and experimental. He sought to develop 

commonalities in the problem solving process 

through the formalization of observation and 

experience.  

Present-day researches notions of heuristics are 

somewhat distant from Polya's (Bolc and Cytowski, 

1992). Tendencies are to seek formal and rigid 

algorithmic solutions to specific problem domains 

rather than the development of general approaches 

which could be appropriately selected and applied 

for specific problems.  

The goal of a heuristic search is to reduce the 

number of nodes searched in seeking a goal. In 

other words, problems which grow combinatorially 

large may be approached. Through knowledge, 

information, rules, insights, analogies, and 

simplification in addition to a host of other 

techniques heuristic search aims to reduce the 

number of objects examined. Heuristics do not 

guarantee the achievement of a solution, although 

good heuristics should facilitate this. Heuristic 

search is defined by authors in many different 

ways: 

• it is a practical strategy increasing the 

effectiveness of complex problem solving 

(Feigenbaum, Feldman, 1963) [5] 

• it leads to a solution along the most probable path, 

omitting the least promising ones (Amarel, 1968) 

[6] 

• it should enable one to avoid the examination of 

dead ends, and to use already gathered data (Lenat, 

1983) . [7] 

The points at which heuristic information can be 

applied in a search include:  

1. Deciding which node to expand next, instead of 

doing the expansions in a strictly breadth-first or 

depth-first order;  

2. In the course of expanding a node, deciding 

which successor or successors to generate -- instead 

of blindly generating all possible successors at one 

time, and  

3. Deciding that certain nodes should be discarded, 

or pruned, from the search tree.  

Bolc and Cytowski (1992) add:  

... use of heuristics in the solution construction 

process increases the uncertainty of arriving at a 

result ... due to the use of informal knowledge 

(rules, laws, intuition, etc.) whose usefulness have 

never been fully proven. Because of this, heuristic 

methods are employed in cases where algorithms 

give unsatisfactory results or do not guarantee to 

give any results. They are particularly important in 

solving very complex problems (where an accurate 

algorithm fails), especially in speech and image 

recognition, robotics and game strategy 

construction. ...  

Heuristic methods allow us to exploit uncertain and 

imprecise data in a natural way. ... The Main 

objective of heuristics is to aid and improve the 

effectiveness of an algorithm solving a problem. 
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Most important is the elimination from further 

consideration of some subsets of objects still not 

examined. ..."  

Most modern heuristic search methods are expected 

to bridge the gap between the completeness of 

algorithms and their optimal complexity 

(Romanycia and Pelletier, 1985)[8]. Strategies are 

being modified in order to arrive at a quasi-optimal 

-- instead of an optimal -- solution with a 

significant cost reduction (Pearl, 1984).  

Games, especially two-person, zero-sum games of 

perfect information like chess and checkers have 

proven to be a very promising domain for studying 

and testing heuristics.  

Following is a list of heuristic search techniques[9]. 

Pure Heuristic Search, 

A* Search Algorithm,  

Algorithm Iterative-Deepening A*, 

 Depth-First Branch-And-Bound 

Heuristic Path Algorithm, 

 Recursive Best-First Search 

3.2. 1  Pure Heuristic Search 

The simplest of heuristic search algorithms, the 

pure heuristic search, expands nodes in order of 

their heuristic values h(n). It maintains a closed list 

of those nodes that have already been expanded, 

and a open list of those nodes that have been 

generated but not yet been expanded. The 

algorithm begins with just the initial state on the 

open list. At each cycle, a node on the open list 

with the minimum h(n) value is expanded, 

generating all of its children and is placed on the 

closed list. The heuristic function is applied to the 

children, and they are placed on the open list in 

order of their heuristic values. The algorithm 

continues until a goal state is chosen for expansion. 

In a graph with cycles, multiple paths will be found 

to the same node, and the first path found may not 

be the shortest. When a shorter path is found to an 

open node, the shorter path is saved and the longer 

one is discarded. When a shorter path to a closed 

node is found, the node is inaved to open and the 

shorter path is associated with it. The main 

drawback of pure heuristic search is that since it 

ignores the cost of the path so far to node n, it does 

not find optimal solutions. 

Breadth-first search, uniform-cost search, and pure 

heuristic search are all special cases of a more 

general algorithm called best-first search. In each 

cycle of a best-first search, the node that is best 

according to some cost function is chosen for 

expansion. These best-first search algorithms differ 

only in their cost functions the depth of node n for 

breadth-first search, g(n) for uniform-cost search 

h(n) for pure heuristic search. 

3.2. 2 A* Algorithm 

The A* algorithm combines features of uniform-

cost search and pure heuristic search to efficiently 

compute optimal solutions. A* algorithm is a best-

first search algorithm in which the cost associated 

with a node is f(n) = g(n) + h(n), where g(n) is the 

cost of the path from the initial state to node n and 

h(n) is the heuristic estimate or the cost or a path 

from node n to a goal. Thus, f(n) estimates the 

lowest total cost of any solution path going through 

node n. At each point a node with lowest f value is 

chosen for expansion. Ties among nodes of equal f 

value should be broken in favour of nodes with 

lower h values. The algorithm terminates when a 

goal is chosen for expansion. 

A* algorithm guides an optimal path to a goal if the 

heuristic function h(n) is admissible, meaning it 

never overestimates actual cost. For example, since 

airline distance never overestimates actual highway 

distance, and manhatten distance never 

overestimates actual moves in the gliding tile. 

For Puzzle, A* algorithm, using these evaluation 

functions, can find optimal solutions to these 

problems. In addition, A* makes the most efficient 

use of the given heuristic function in the following 

sense: among all shortest-path algorithms using the 

given heuristic function h(n). A* algorithm 

expands the fewest number of nodes. 

The main drawback of A* algorithm and indeed of 

any best-first search is its memory requirement. 

Since at least the entire open list must be saved, A* 

algorithm is severely space-limited in practice, and 

is no more practical than breadth-first search on 

current machines. For example, while it can be run 

successfully on the eight puzzle, it exhausts 

available memory in a matter of minutes on the 

fifteen puzzle. 

3.2. 3 Iterative Deepening A* (IDA*) Search 

Just as iterative deepening solved the space 

problem of breadth-first search, iterative deepening 

A* (IDA*) eliminates the memory constraints of 

A* search algorithm without sacrificing solution 

optimality. Each iteration of the algorithm is a 

depth-first search that keeps track of the cost, f(n) = 

g(n) + h(n), of each node generated. As soon as a 

node is generated whose cost exceeds a threshold 

for that iteration, its path is cut off, and the search 

backtracks before continuing. The cost threshold is 

initialized to the heuristic estimate of the initial 

state, and in each successive iteration is increased 

to the total cost of the lowest-cost node that was 

pruned during the previous iteration. The algorithm 

terminates when a goal state is reached whose total 

cost dees not exceed the current threshold. 

Since Iterative Deepening A* performs a series of 

depth-first searches, its memory requirement is 

linear with respect to the maximum search depth. 

In addition, if the heuristic function is admissible, 

IDA* finds an optimal solution. Finally, by an 

argument similar to that presented for DFID, IDA* 

expands the same number of nodes, asymptotically, 
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as A* on a tree, provided that the number of nodes, 

asymptotically, as A* on a tree, provided that the 

number of nodes grows exponentially with solution 

cost. These costs, together with the optimality of 

A*, impy that IDA* is asymptotically optimal in 

time and space over all heuristic search algorithms 

that find optimal solutions on a tree. Additional 

benefits of IDA* are that it is much easier to 

implement, and often runs faster than A*, since it 

does not incur the overhead of managing the open 

and closed lists. 

3.2.4 Depth-First Branch-And-Bound Search 

For many problems, the maximum search depth is 

known in advance or the search is finite. For 

example, consider the traveling salesman problem 

(TSP) of visiting each of the given set of cities and 

returning to the starting city in a tour of shortest 

total distance. The most natural problem space for 

this problem consists of a tree where the root node 

represents the starting city, the nodes at level one 

represent all the cities that could be visited first, the 

nodes at level two represent all the cities that could 

be visited second, etc. In this tree, the maximum 

depth is the number of cities, and all candidate 

solution occurs at this depth. In such a space, a 

simple depth-first search guarantees finding an 

optional solution using space that is only linear 

with repsect to the number of cities. 

The idea of depth-first branch-and-bound (DFBnB) 

Search is to make this search more efficient by 

keeping track of the lowest-cost solution found so 

far. Since the cost of a partial tour is the sum of the 

costs of the edges traveled so far, whenever a 

partial tour is found whose cost equals or exceeds 

the cost of the best complete tour found so far, the 

branch representing the partial tour can be pruned, 

since all its descendents must have equal or greater 

cost. Whenever a low-cost complete tour is found, 

the cost of the best tour is updated to this low cost. 

In addition, an admissible heuristic function such as 

the cost of the minimum spanning tree of the 

remaining unvisited cities, can be added to the cost 

so far of a partial tour to increase the amount of 

prunin. Finally, by carefully ordering the children 

of a given node from smallest to largest estimated 

total cost, a lower-cost solution can be 

found more quickly, further improving the pruning 

efficiency. 

Interestingly,  IDA* and DFBnB exhibit 

complementary behavior. Both are guaranteed to 

return an optimal solution cost, and increase in 

each iteration until it reaches the optimal cost. In 

DFBnB, the cost of the best solution found so far is 

always an upper bound on the optimal solution cost 

and decreases until it reaches the optimal cost.  

While IDA* never expands any nodes whose cost 

exceeds the optimal cost, its overhead cosists of 

expanding some nodes more than once. While 

DFBnB never expands any node more than once its 

overhead consists of expanding some nodes whose 

cost exceed the optimal cost. For problems whose 

search trees are of bounded depth, or for which it is 

easy to construct a good solution such as the TSP, 

DFBnB is usually the algorithm of choice for 

finding an optimal solution. For problems with 

infinite search trees or for which it is difficult to 

construct a low-cost solution, such as the sliding-

tile puzzles or Rubik’s Cube, IDA* is usually the 

best choice.  

3.2.5 Heuristic Path Search Algorithm 

Since the complexity of finding optimal solutions 

to these problems is generally exponential in 

practice, in order to solve significantly larger 

problems, the optimality requirement must be 

released. An early approach to this problem was the 

heuristic path algorithm (HPA).  

Heuristic path algorithm is a best-first search 

algorithm, where the figure of merit of node n is 

f(n) = (1-w)*g(n)+w*h(n). Varying w produces a 

range of algorithms from uniform-cost search 

(w=0) through A* (w=1/2) to pure heuristic search 

(w=1). Increasing w beyond ½ generally decreases 

the amount of computation while increasing the 

cost of the solution generated. The trade off is often 

quite favorable, with small increases in solution 

cost yielding huge savings in computation. 

Moreover, it shows that the solutions found by this 

algorithm are guaranteed to be no more than a 

factor of w/(1-w) greater than optimal, but often are 

significantly better. 

3.2. 6   Hill Climbing  

Hill climbing is a depth first search with a heuristic 

measurement that orders choices as nodes are 

expanded. The heuristic measurement is the 

estimated remaining distance to the goal. The 

effectiveness of hill climbing is completely 

dependent upon the accuracy of the heuristic 

measurement.  

To conduct a hill climbing search: 

Form a one-element queue consisting of a 

zero-length path that contains only the 

root node.  

Repeat  

 Remove the first path from the queue; 

create new paths by extending the first 

path to all the neighbors of the terminal 

node.  

 Reject all new paths with loops.  

 Sort the new paths, if any, by the 

estimated distances between their terminal 

nodes and the goal. 

Until the first path in the queue terminates 

at the goal node or the queue is empty  

If the goal node is found, announce 

success, otherwise announce failure.  
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Winston (1992) lucidly explains the potential 

problems affecting hill climbing. They are all 

related to issue of local "vision" versus global 

vision of the search space. The foothills problem is 

particularly subject to local maxima where global 

ones are sought, while the plateau problem occurs 

when the heuristic measure does not hint towards 

any significant gradient of proximity to a goal. The 

ridge problem illustrates just what it's called: you 

may get the impression that the search is taking you 

closer to a goal state, when in fact you travelling 

along a ridge which prevents you from actually 

attaining your goal.  

 

3.3 Complexity Of Finding Optimal olutions[9]: 

The time complexity of a heuristic search algorithm 

depends on the accuracy of the heuristic function. 

For example, if the heuristic evaluation function is 

an exact estimator, then A* search algorithm runs 

in linear time, expanding only those nodes on an 

optimal solution path. Conversely, with a heuristic 

that returns zero everywhere, A* algorithm 

becomes uniform-cost search, which has 

exponential complexity.  

In general, the time complexity of A* search and 

IDA* search is an exponential function of the error 

in the heuristic function. For example, if the 

heuristic has constant absolute error, meaning that 

it never underestimates by more than a constant 

amount regardless of the magnitude of the estimate, 

then the running time of A* is linear with respect to 

the solution cost. A more realistic assumption is 

constant relative error, which means that the error 

is a fixed percentage of the quantity being 

estimated. The base of the exponent, however, is 

smaller than the brute-force branching factor, 

reducing the asymptotic complexity and allowing 

larger problems to be solved. For example, using 

appropriate heuristic functions, IDA* can optimally 

solve random instance of the twenty-four puzzle 

and Rubik’s Cube. 
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