

Search Techniques To Contain Combinatorial Explosion in Artificial Intelligence

Ajay Kumar Gaur

Research Scholar Singhania University Rajsthan

Abstract

This paper reviews the current literature regarding

the artificial intelligence techniques to contain

combinatorial explosion as well as some methods

used to optimize the final solution. Through the

analysis of the specific problem and the previous

work in the literature, this paper will establish the

scholarly base for the research methodology used

in this thesis. Evaluation of various search

algorithms will assist in the development of a

algorithm to determine the best technique to solve

the problem of combinatorial Explosion.

1 Introduction
Research in Artificial Intelligence (AI) has a long

tradition. The first paper attributed to the field was

published by Warren McCulloch and Walter Pitts

in 1943 [1], and the term “artificial intelligence”

was proposed and agreed at the famous Dartmouth

Workshop held in 1956.

What is Intelligence?

The notion of human Intelligence is very complex;

it comprises the following (and possibly many

other) capabilities:

 Understanding meaning of symbols, words, text,

data, images, utterances

 Learning (acquiring knowledge) from data, text,

images as well as from own behaviour and

behaviour of others and learning by discovery

 Analysing (deconstructing) complicated

situations

 Making choices (decisions) under conditions of

variety and uncertainty and therefore solving

incompletely specified problems and achieving

goals under conditions of the occurrence of

frequent unpredictable events

 Interacting (communicating) with other actors in

the environment, which include intelligent

creatures and machines

 Autonomously adapting to changes in the

environment

 Creating (constructing) new concepts, principles,

theories, methods, artefacts, models, literature,

art

 Setting and achieving goals by competing

and/or cooperating with others

An important part of human intelligence is to strive

to create Artificial Intelligence.

 “Artificial” means man-made rather than natural.

Artificial Intelligence is supposed to be man-made

intelligence, designed and implemented in

computer software and built into art effects such as

robots or intelligent machines [3]. Historically

artificial intelligence programs appeared in various

disguises such as universal problem solvers , expert

systems , and neural networks .

3.SEARCH METHODS IN ARTIFICIAL

INTELLIGENCE :
Search is inherent to the problems and methods of

artificial intelligence (AI) [4]. That is because AI

problems are intrinsically complex. Efforts to solve

problems with computers which humans can

routinely solve by employing innate cognitive

abilities, pattern recognition, perception and

experience, invariably must turn to considerations

of search. All search methods essentially fall into

one of two categories:

 (a) Exhaustive (blind) or uninformed methods

and (b) Heuristic or informed methods.

3.1 Uninformed Search Methods

3.1.1 Search Strategies

All search methods in computer science share in

common three necessities:

 1) a world model or database of facts based on a

choice of representation providing the current state,

as well as other possible states and a goal state.

2) a set of operators which defines possible

transformations of states and

3) a control strategy which determines how

transformations amongst states are to take place by

applying operators.

 Reasoning from a current state in search of a state

which is closer to a goal state is known as forward

reasoning. Reasoning backwards to a current state

from a goal state is known as backward reasoning.

As such it is possible to make distinctions between

bottom up and top down approaches to problem

solving. Bottom up is often "goal directed" -- that is

reasoning backwards from a goal state to solve

intermediary sub-goal states. Top down or data-

driven reasoning is based on simply being able to

get to a state which is defined as closed to a goal

state than the current state. Often application of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

operators to a problem state may not lead directly

to a goal state and some backtracking may be

necessary before a goal state can be found (Barr &

Feigenbaum, 1981).

3.1.2 State Space Search

Exhaustive search of a problem space (or search

space) is often not feasible or practical due to the

size of the problem space. In some instances it is

however, necessary. More often, we are able to

define a set of legal transformations of a state space

(moves in the world of games) from which those

that are more likely to bring us closer to a goal state

are selected while others are never explored further.

This technique in problem solving is known as split

and prune. In AI the technique that emulates split

and prune is called generate and test [4]. The basic

method is:

Repeat

 Generate a candidate solution

 Test the candidate solution

Until a satisfactory solution is found, or

 no more candidate solutions can be

generated:

If an acceptable solution is found, announce it;

 Otherwise, announce failure.

Good generators are complete, will eventually

produce all possible solutions, and will not suggest

redundant solutions. They are also informed; that

is, they will employ additional information to limit

the solutions they propose.

Means-ends analysis is another state space

technique whose purpose is, given an initial state to

reduce the difference (distance) between a current

state and a goal state. Determining "distance"

between any state and a goal state can be facilitated

difference-procedure tables which can effectively

prescribe what the next state might be. To perform

means-ends analysis:

Repeat

Describe the current state, the goal state, and

the difference between the two.

Use the difference between the current state and

goal state, possibly with the description of the

current state or goal state, to select a

promising procedure.

Use the promising procedure and update the current

state.

Until the GOAL is reached or no more procedures

are available

If the GOAL is reached, announce success;

otherwise, announce failure.

The technique of problem reduction is another

important approach to AI problems. That is, to

solve a complex or larger problem, identify smaller

manageable problems (or subgoals) that you know

can be solved in fewer steps. steps.

 Figure 1 : Problem Reduction and

The Sliding Block Puzzle Donkey

This sliding block puzzle has been known for over

100 years[4]. The object is to be able to bypass the

Vertical bar with the Blob and place the Blob on

the other side of the Vertical bar . The Blob

occupies four spaces and needs two adjacent

vertical or horizontal spaces in order to be able to

move while the Vertical bar needs two adjacent

empty vertical spaces to move left or right, or one

empty space above or below it to move up or down.

The Horizontal bars can move to any empty square

to the left or right of them, or up or down if there

are two empty spaces above or below them.

Likewise, the circles can move to any empty space

around them in a horizontal or vertical line. A

relatively uninformed state space search can result

in over 800 moves for this problem to be solved,

with plenty of backtracking necessary. By problem

reduction, resulting in the subgoal of trying the get

the Blob on the two rows above or below the

vertical bar, it is possible to solve this puzzle in just

82 moves!

Another example of a technique for problem

reduction is called And/Or Trees. Here the goal is

to find a solution path to a given tree by applying

the following rules:

A node is solvable if --

1. it is a terminal node (a primitive problem),

2. it is a nonterminal node whose successors are

AND nodes that are all solvable, OR

3. it is a nonterminal node whose successors are

OR nodes and least one of them is solvable.

Similarly, a node is unsolvable if –

1. it is a nonterminal node that has no successors)a

nonprimitive problem to which no operator

applies),

2. it is a nonterminal node whose successors are

AND nodes and at least one of them is

unsolvable, or

3. it is a nonterminal node whose successors are OR

nodes and all of them are unsolvable.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

Figure 2: And/Or Tree

In this figure nodes B and C serve as exclusive

parents to subproblems EF and GH respectively.

One of viewing the tree is with nodes B, C, and D

serving as individual, alternative subproblems .

Solution paths would therefore be: {A-B-E}, {A-B-

F}, {A-C-G}, {A-C-H}, and {A,D}.

In the special case where no AND nodes occur, we

have the ordinary graph occurring in a state space

search. However the presence of AND nodes

distinguishes AND/OR Trees (or graphs) from

ordinary state structures which call for their own

specialized search techniques (Nilsson, 1971).

3.1.2 .1 Depth First Search :

The Depth First Search (DFS) is one of the most

basic and fundamental Blind Search Algorithms. It

is for those who want to probe deeply down a

potential solution path in the hope that solutions do

not lie too deeply down the tree. That is "DFS is a

good idea when you are confident that all partial

paths either reach dead emds or become complete

paths after a reasonable number of steps. In

contrast, "DFS is a bad idea if there are long paths,

even infinitely long paths, that neither reacj dead

emds nor become complete paths (Winston, 1992).

To conduct a DFS:

(1) Put the Start Node on the list called OPEN.

(2) If OPEN is empty, exit with failure; otherwise

continue.

(3) Remove the first node from OPEN and put it on

a list called CLOSED. Call this node n.

(4) If the depth of n equals the depth bound, go to

(2); Otherwise continue.

(5) Expand node n, generating all successors of n.

Put these (in arbitrary order) at the beginning of

OPEN and provide pointers back to n.

(6) If any of the successors are goal nodes, exit

with the solution obtained by tracing back

through the pointers; Otherwise go to (2).

Figure 3: Tree Searching Example of Depth First

Search and Breadth First Search

DFS always explores the deepest node first. That is,

the one which is farthest down from the root of the

tree. To prevent consideration of unacceptably long

paths, a depth bound is often employed to limit the

depth of search. DFS would explore the tree in

Figure 5 in the order: A-B-E-I-F-C-G-H-D.

DFS with Iterative Deepening remedies many of

the drawbacks of the DFS and the Breadth First

Search. The idea is to perform a level by level DFS.

It starts with a DFS with a depth bound of 1. If a

goal is not found, then it performs a DFS with

depth bound of 2. This continues, with the depth

bound increasing by one with each iteration,

although with each increase in depth the algorithm

must re-perform its DFS to the prescribed bound.

The idea of Iterative Deepening is credited to Slate

and Adkin (1977) with their work on the

Northwestern University Chess Program. Studies of

its efficiency have been carried out by Korf (1985).

3.1.2 .2 Breadth First Search:

Breadth First Search always explores nodes closest

to the root node first, thereby visiting all nodes of a

given length first before moving to any longer

paths. It pushes uniformly into the search tree.

Breadth first search is most effective when all paths

to a goal node are of uniform depth. It is a bad idea

when the branching factor (average number of

offspring for each node) is large or infinite. Breadth

First Search is also to be preferred over DFS if you

are worried that there may be long paths (or even

infinitely long paths) that neither reach dead ends

or become complete paths (Winston, 1992). For the

tree in Figure 5 Breadth First Search would proceed

alphabetically.

The algorithm for Breadth First Tree Search is:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

(1) Put the start node on a list called OPEN.

(2) If OPEN is empty, exit with failure; Otherwise

continue.

(3) Remove the first node on OPEN and put it on a

list called CLOSED; Call this node n;

(4) Expand node n, generating all of its successors.

If there are no successors, go immediately to

(2). Put the successors at the end of OPEN and

provdie pointers from these successors back to

n.

(5) If any of the successors are goal nodes, exit

with the solution obtained by tracing back

through the pointers; Otherwise go to (2)

3.1.3 Bidirectional Search

To this point all search algorithms discussed (with

the exception of means-ends analysis and

backtracking) have been based on forward

reasoning. Searching backwards from goal nodes to

predecessors is relatively easy. Pohl (1969, 1971)

combined forward and backward reasoning into a

technique called bidirectional search. The idea is to

replace a single search graph, which is likely to

grow exponentially, with two smaller graphs -- one

starting from the initial state and one starting from

the goal. The search is approximated to terminate

when the two graphs intersect This algorithm is

guaranteed to find the shortest solution path

through a general state-space graph. Empirical data

for randomly generated graphs showed the Pohl's

algorithm expanded only about 1/4 as many nodes

as unidirectional search (Barr and Feigenbaum,

1981). Pohl also implemented heuristic versions of

this algorithm.

3.2 Heuristic or informed methods.

The problem with all Uninformed Search Methods

algorithms is that their time complexities grow

exponentially with problem size. This problem is

called combinatorial explosion.

The combinatorial explosion results in limited size

of problems that can be solved with with

Uninformed Search Methods techniques. For

example while eight-puzzle with 10
5
 states is easily

solved by Uninformed Search Methods the fifteen-

puzzle contains over 10
13

 states, and hence cannot

be solved with Uninformed Search Methods

techniques on current machines. Even faster

machines cannot have significant impact on this

problem since the 5 * 5 twenty-four puzzle contains

almost 10
25

 states.

George Polya, via his wonderful book "How To

Solve It" (1945) may be regarded as the "father of

heuristics". In essence Polya's effort focused on

problem-solving, thinking and learning. He

developed a short "heuristic Dictionary" of

heuristic primitives. Polya's approach was both

practical and experimental. He sought to develop

commonalities in the problem solving process

through the formalization of observation and

experience.

Present-day researches notions of heuristics are

somewhat distant from Polya's (Bolc and Cytowski,

1992). Tendencies are to seek formal and rigid

algorithmic solutions to specific problem domains

rather than the development of general approaches

which could be appropriately selected and applied

for specific problems.

The goal of a heuristic search is to reduce the

number of nodes searched in seeking a goal. In

other words, problems which grow combinatorially

large may be approached. Through knowledge,

information, rules, insights, analogies, and

simplification in addition to a host of other

techniques heuristic search aims to reduce the

number of objects examined. Heuristics do not

guarantee the achievement of a solution, although

good heuristics should facilitate this. Heuristic

search is defined by authors in many different

ways:

• it is a practical strategy increasing the

effectiveness of complex problem solving

(Feigenbaum, Feldman, 1963) [5]

• it leads to a solution along the most probable path,

omitting the least promising ones (Amarel, 1968)

[6]

• it should enable one to avoid the examination of

dead ends, and to use already gathered data (Lenat,

1983) . [7]

The points at which heuristic information can be

applied in a search include:

1. Deciding which node to expand next, instead of

doing the expansions in a strictly breadth-first or

depth-first order;

2. In the course of expanding a node, deciding

which successor or successors to generate -- instead

of blindly generating all possible successors at one

time, and

3. Deciding that certain nodes should be discarded,

or pruned, from the search tree.

Bolc and Cytowski (1992) add:

... use of heuristics in the solution construction

process increases the uncertainty of arriving at a

result ... due to the use of informal knowledge

(rules, laws, intuition, etc.) whose usefulness have

never been fully proven. Because of this, heuristic

methods are employed in cases where algorithms

give unsatisfactory results or do not guarantee to

give any results. They are particularly important in

solving very complex problems (where an accurate

algorithm fails), especially in speech and image

recognition, robotics and game strategy

construction. ...

Heuristic methods allow us to exploit uncertain and

imprecise data in a natural way. ... The Main

objective of heuristics is to aid and improve the

effectiveness of an algorithm solving a problem.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

Most important is the elimination from further

consideration of some subsets of objects still not

examined. ..."

Most modern heuristic search methods are expected

to bridge the gap between the completeness of

algorithms and their optimal complexity

(Romanycia and Pelletier, 1985)[8]. Strategies are

being modified in order to arrive at a quasi-optimal

-- instead of an optimal -- solution with a

significant cost reduction (Pearl, 1984).

Games, especially two-person, zero-sum games of

perfect information like chess and checkers have

proven to be a very promising domain for studying

and testing heuristics.

Following is a list of heuristic search techniques[9].

Pure Heuristic Search,

A* Search Algorithm,

Algorithm Iterative-Deepening A*,

 Depth-First Branch-And-Bound

Heuristic Path Algorithm,

 Recursive Best-First Search

3.2. 1 Pure Heuristic Search

The simplest of heuristic search algorithms, the

pure heuristic search, expands nodes in order of

their heuristic values h(n). It maintains a closed list

of those nodes that have already been expanded,

and a open list of those nodes that have been

generated but not yet been expanded. The

algorithm begins with just the initial state on the

open list. At each cycle, a node on the open list

with the minimum h(n) value is expanded,

generating all of its children and is placed on the

closed list. The heuristic function is applied to the

children, and they are placed on the open list in

order of their heuristic values. The algorithm

continues until a goal state is chosen for expansion.

In a graph with cycles, multiple paths will be found

to the same node, and the first path found may not

be the shortest. When a shorter path is found to an

open node, the shorter path is saved and the longer

one is discarded. When a shorter path to a closed

node is found, the node is inaved to open and the

shorter path is associated with it. The main

drawback of pure heuristic search is that since it

ignores the cost of the path so far to node n, it does

not find optimal solutions.

Breadth-first search, uniform-cost search, and pure

heuristic search are all special cases of a more

general algorithm called best-first search. In each

cycle of a best-first search, the node that is best

according to some cost function is chosen for

expansion. These best-first search algorithms differ

only in their cost functions the depth of node n for

breadth-first search, g(n) for uniform-cost search

h(n) for pure heuristic search.

3.2. 2 A* Algorithm

The A* algorithm combines features of uniform-

cost search and pure heuristic search to efficiently

compute optimal solutions. A* algorithm is a best-

first search algorithm in which the cost associated

with a node is f(n) = g(n) + h(n), where g(n) is the

cost of the path from the initial state to node n and

h(n) is the heuristic estimate or the cost or a path

from node n to a goal. Thus, f(n) estimates the

lowest total cost of any solution path going through

node n. At each point a node with lowest f value is

chosen for expansion. Ties among nodes of equal f

value should be broken in favour of nodes with

lower h values. The algorithm terminates when a

goal is chosen for expansion.

A* algorithm guides an optimal path to a goal if the

heuristic function h(n) is admissible, meaning it

never overestimates actual cost. For example, since

airline distance never overestimates actual highway

distance, and manhatten distance never

overestimates actual moves in the gliding tile.

For Puzzle, A* algorithm, using these evaluation

functions, can find optimal solutions to these

problems. In addition, A* makes the most efficient

use of the given heuristic function in the following

sense: among all shortest-path algorithms using the

given heuristic function h(n). A* algorithm

expands the fewest number of nodes.

The main drawback of A* algorithm and indeed of

any best-first search is its memory requirement.

Since at least the entire open list must be saved, A*

algorithm is severely space-limited in practice, and

is no more practical than breadth-first search on

current machines. For example, while it can be run

successfully on the eight puzzle, it exhausts

available memory in a matter of minutes on the

fifteen puzzle.

3.2. 3 Iterative Deepening A* (IDA*) Search

Just as iterative deepening solved the space

problem of breadth-first search, iterative deepening

A* (IDA*) eliminates the memory constraints of

A* search algorithm without sacrificing solution

optimality. Each iteration of the algorithm is a

depth-first search that keeps track of the cost, f(n) =

g(n) + h(n), of each node generated. As soon as a

node is generated whose cost exceeds a threshold

for that iteration, its path is cut off, and the search

backtracks before continuing. The cost threshold is

initialized to the heuristic estimate of the initial

state, and in each successive iteration is increased

to the total cost of the lowest-cost node that was

pruned during the previous iteration. The algorithm

terminates when a goal state is reached whose total

cost dees not exceed the current threshold.

Since Iterative Deepening A* performs a series of

depth-first searches, its memory requirement is

linear with respect to the maximum search depth.

In addition, if the heuristic function is admissible,

IDA* finds an optimal solution. Finally, by an

argument similar to that presented for DFID, IDA*

expands the same number of nodes, asymptotically,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

as A* on a tree, provided that the number of nodes,

asymptotically, as A* on a tree, provided that the

number of nodes grows exponentially with solution

cost. These costs, together with the optimality of

A*, impy that IDA* is asymptotically optimal in

time and space over all heuristic search algorithms

that find optimal solutions on a tree. Additional

benefits of IDA* are that it is much easier to

implement, and often runs faster than A*, since it

does not incur the overhead of managing the open

and closed lists.

3.2.4 Depth-First Branch-And-Bound Search

For many problems, the maximum search depth is

known in advance or the search is finite. For

example, consider the traveling salesman problem

(TSP) of visiting each of the given set of cities and

returning to the starting city in a tour of shortest

total distance. The most natural problem space for

this problem consists of a tree where the root node

represents the starting city, the nodes at level one

represent all the cities that could be visited first, the

nodes at level two represent all the cities that could

be visited second, etc. In this tree, the maximum

depth is the number of cities, and all candidate

solution occurs at this depth. In such a space, a

simple depth-first search guarantees finding an

optional solution using space that is only linear

with repsect to the number of cities.

The idea of depth-first branch-and-bound (DFBnB)

Search is to make this search more efficient by

keeping track of the lowest-cost solution found so

far. Since the cost of a partial tour is the sum of the

costs of the edges traveled so far, whenever a

partial tour is found whose cost equals or exceeds

the cost of the best complete tour found so far, the

branch representing the partial tour can be pruned,

since all its descendents must have equal or greater

cost. Whenever a low-cost complete tour is found,

the cost of the best tour is updated to this low cost.

In addition, an admissible heuristic function such as

the cost of the minimum spanning tree of the

remaining unvisited cities, can be added to the cost

so far of a partial tour to increase the amount of

prunin. Finally, by carefully ordering the children

of a given node from smallest to largest estimated

total cost, a lower-cost solution can be

found more quickly, further improving the pruning

efficiency.

Interestingly, IDA* and DFBnB exhibit

complementary behavior. Both are guaranteed to

return an optimal solution cost, and increase in

each iteration until it reaches the optimal cost. In

DFBnB, the cost of the best solution found so far is

always an upper bound on the optimal solution cost

and decreases until it reaches the optimal cost.

While IDA* never expands any nodes whose cost

exceeds the optimal cost, its overhead cosists of

expanding some nodes more than once. While

DFBnB never expands any node more than once its

overhead consists of expanding some nodes whose

cost exceed the optimal cost. For problems whose

search trees are of bounded depth, or for which it is

easy to construct a good solution such as the TSP,

DFBnB is usually the algorithm of choice for

finding an optimal solution. For problems with

infinite search trees or for which it is difficult to

construct a low-cost solution, such as the sliding-

tile puzzles or Rubik’s Cube, IDA* is usually the

best choice.

3.2.5 Heuristic Path Search Algorithm

Since the complexity of finding optimal solutions

to these problems is generally exponential in

practice, in order to solve significantly larger

problems, the optimality requirement must be

released. An early approach to this problem was the

heuristic path algorithm (HPA).

Heuristic path algorithm is a best-first search

algorithm, where the figure of merit of node n is

f(n) = (1-w)*g(n)+w*h(n). Varying w produces a

range of algorithms from uniform-cost search

(w=0) through A* (w=1/2) to pure heuristic search

(w=1). Increasing w beyond ½ generally decreases

the amount of computation while increasing the

cost of the solution generated. The trade off is often

quite favorable, with small increases in solution

cost yielding huge savings in computation.

Moreover, it shows that the solutions found by this

algorithm are guaranteed to be no more than a

factor of w/(1-w) greater than optimal, but often are

significantly better.

3.2. 6 Hill Climbing

Hill climbing is a depth first search with a heuristic

measurement that orders choices as nodes are

expanded. The heuristic measurement is the

estimated remaining distance to the goal. The

effectiveness of hill climbing is completely

dependent upon the accuracy of the heuristic

measurement.

To conduct a hill climbing search:

Form a one-element queue consisting of a

zero-length path that contains only the

root node.

Repeat

 Remove the first path from the queue;

create new paths by extending the first

path to all the neighbors of the terminal

node.

 Reject all new paths with loops.

 Sort the new paths, if any, by the

estimated distances between their terminal

nodes and the goal.

Until the first path in the queue terminates

at the goal node or the queue is empty

If the goal node is found, announce

success, otherwise announce failure.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org

Winston (1992) lucidly explains the potential

problems affecting hill climbing. They are all

related to issue of local "vision" versus global

vision of the search space. The foothills problem is

particularly subject to local maxima where global

ones are sought, while the plateau problem occurs

when the heuristic measure does not hint towards

any significant gradient of proximity to a goal. The

ridge problem illustrates just what it's called: you

may get the impression that the search is taking you

closer to a goal state, when in fact you travelling

along a ridge which prevents you from actually

attaining your goal.

3.3 Complexity Of Finding Optimal olutions[9]:

The time complexity of a heuristic search algorithm

depends on the accuracy of the heuristic function.

For example, if the heuristic evaluation function is

an exact estimator, then A* search algorithm runs

in linear time, expanding only those nodes on an

optimal solution path. Conversely, with a heuristic

that returns zero everywhere, A* algorithm

becomes uniform-cost search, which has

exponential complexity.

In general, the time complexity of A* search and

IDA* search is an exponential function of the error

in the heuristic function. For example, if the

heuristic has constant absolute error, meaning that

it never underestimates by more than a constant

amount regardless of the magnitude of the estimate,

then the running time of A* is linear with respect to

the solution cost. A more realistic assumption is

constant relative error, which means that the error

is a fixed percentage of the quantity being

estimated. The base of the exponent, however, is

smaller than the brute-force branching factor,

reducing the asymptotic complexity and allowing

larger problems to be solved. For example, using

appropriate heuristic functions, IDA* can optimally

solve random instance of the twenty-four puzzle

and Rubik’s Cube.

REFERENCES

1.McCulloch, W.S. and Pitts,W. “A Logical

Calculus of the Ideas Immanent in Nervous

Activity”. Bulletin of Mathematical Biophysics,

Volume 5, 1943, pp 115-137.

2.Rzevski, G., Skobelev, P., “Emergent Intelligence

in Large Scale Multi-Agent Systems”.

International Journal of Education and

Information Technology, Issue 2,Volume 1,

2007, pp 64-71.

3.Rzevski, G (ed), “Mechatronics: Designing

Intelligent Machines”, Butterworth Heinemann,

1995.

4. Artificial Intelligence: Search Methods by D.

Kopec and T.A. Marsland

5. Feigenbaum, E , Feldman, J., Computers and

Thought New York: McGraw-Hill, 1963.

6. Amarel, S. On representation of problems of

reasoning about actions. Machine Intelligence,

1968, No 3, pp131-171.

7. Lenat, D. (1983) Theory formation by heuristic

search. In: Search and Heuristics, J. Pearl (Ed.)

New York: , North Holland, 1983.

8. Romanycia, M, Pelletier, F. What is heuristic?

Computer Intelligence, 1985, No. 1, pp. 24-36.

9. Heuristic Search Methods for Combinatorial

Programming Problems, Jacques A. Ferland,and

Daniel Costa,March 2001.

Author
Ajay Kumar Gaur received

the M. Sc(Physics, Computer

Science) and M.Tech degrees

in computer science and

Engineering from Rohilkhand

University and AAIDU

Allahabad, respectively.

Presently Pursuing Ph.D from

Sighania University and working as a Assistant

professor in KIT Kanpur.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

7www.ijert.org

