sc*g-Homeomorphisms in Topological Spaces

A. Pushpalatha Department of Mathematics, Government Arts College Udumalpet-642 126, Tirupur District Tamil Nadu, India

Abstract

In this paper, we introduced a new class sc*g-Homeomorphisms in Topological space.

Key words: Homeomorphism - strongly g-homeomorphism- sc*g homeomorphism.

1. Introduction

Several mathematicians have generalized homeomorphisms in topological spaces. Biswas[18], Crossely and Hildebrand[19], Gentry and Hoyle[20] and Umehara and Maki[21] have introduced and investigated semi-homeomorphisms homeomorphisms somewhat and g-Ahomeomorphisms Crossely and Hildebrand defined yet another "semi-homeomorphism" which is also a generalization of homeomorphisms. Sundaram[6] g-homeomorphisms introduced and gchomeomorphisms in topological spaces.

In the section, we introduce the concept of sc*g- homeomorphisms and study some of their properties.

Definition: 2.7.1 A bijection $f : (X, \tau) \rightarrow (Y, \sigma)$ from a topological space X into a topological space Y is called a sc*generalized homeomorphism (sc*g- homeomorphism) if f is both sc*g-open and sc*g-continuous.

Theorem: 2.7.2 Every homeomorphism is a sc*g-homeomorphism.

Proof: Since every continuous function is sc*gcontinuous and every open map is sc*g-open, the proof follows.

The converse of the above theorem need not be true as seen from the following example.

Example: 2.7.3 Consider the topological spaces $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$. Then the identity map $f : (X, \tau) \rightarrow (Y, \sigma)$ is a sc*g-homeomorphism but not a homeomorphism. Since for the open set $\{a\}$ in Y is not open in X.

R. Nithyakala Department of Mathematics Vidyasagar College of Arts and Science Udumalpet-642 126, Tirupur District Tamil Nadu, India

Theorem:2.7.4 Everystrongly g-homeomorphism is a sc*g-homeomorphism but not conversely.

Proof: Let $f: X \rightarrow Y$ be a strongly g-homeomorphism. Then f is strongly g -continuous and strongly g -open. Since every strongly g - continuous function is sc*g-continuous and every strongly g -open map is sc*g-open, f is sc*g-continuous and sc*g-open. Hence f is a sc*g-

homeomorphism. The converse of the above theorem need not be true as seen from the following example.

Example : 2.7.5 Let $X=Y=\{a, b, c\}$ with

 $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$ respectively. Then the identity map $f : (X, \tau) \to (Y, \sigma)$ is sc*g-homeomorphism but not a strongly g-homeomorphism. Since for the open set $\{a, b\}$ in Y is not a strongly g-open set in X.

Next we shall characterize the sc*ghomeomorphism and sc*g-open maps.

Theorem : 2.7.6 For any bijection $f : X \rightarrow Y$ the following statements are equivalent.

(a) $f^{-1}: Y \to X$ is sc*g-continuous.

(b)f is a sc*g-open map.

(c)f is a sc*g-closed map.

Proof: (a) \rightarrow (b) Let G be any open set in X. Since f^{-1} is sc*g-continuous, the inverse image of G under f^{-1} , namely f(G) is sc*g-open in Y and so f is sc*g-open map.

(b) \rightarrow (c) Let f be any closed set in X. Then F^c is open in X. Since f is sc*g-open, f(F^c) is

sc*g-open in Y. But $f(F^c) = Y - f(F)$ and so f(F) is sc*g-closed in Y. Therefore f is a sc*g-closed map. (c) \rightarrow (a) Let F be any closed set in X. Then

 $(f^{-1)-1}(F) = f(F)$ is sc*g-closed in Y. Since f is a sc*g-closed map. Therefore f^{-1} is sc*g-continuous.

Theorem : 2.7.7 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a bijective and sc*g-continuous map, the following statements are equivalent.

(a)f is a sc*g-open map.

(b) f is a sc*g-homeomorphism.

(c) f is a sc*g-closed map.

Proof: (a) \rightarrow (b) By assumption, f is bijective and sc*g-continuous and sc*g-open. Then by definition, f is sc*g- homeomorphism.

(b) \rightarrow (c) By assumption, f is sc*g-open and bijective. By theorem 2.7.4 f is sc*g-closed map.

 $(c) \rightarrow (a)$ By assumption, f is sc*g-closed and bijective. By theorem 2.7.4 f is sc*g-open map. The following example shows that the composition of two sc*g-homeomorphisms need not be sc*g-

Example : 2.7.8 Consider the topological spaces $X = Y = Z = \{a, b, c\}$ with topologies

homeomorphism.

 $\tau_1 = \{\varphi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\varphi, Y, \{a\}\}$ and $\tau_3 = \{\varphi, Z, \{b, c\}\}$ respectively. Let f and g identity maps such that $f : X \to Y$ and $g : Y \to Z$. Then f and g are sc*g-homeomorphisms but their composition g f : $X \to Z$ is not a sc*ghomeomorphism. For the open set $\{a, b\}$ in X, $g(f\{a, b\}) = \{a, b\}$ is not sc*g-open set in Z.

Definition :2.7.9 A bijection $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ is said to be a $(sc^*g)^*$ -homeomorphism if f and it's inverse f -1are sc*g-irresolute maps. **Notation :** Let family of all $(sc^*g)^*$ homeomorphisms from (X, \mathcal{T}) onto itself be denoted by $(sc^*g)^*h(X, \mathcal{T})$ and family of all sc^*g homeomorphisms from (X, \mathcal{T}) onto itself be denoted by $sc^*g h(X, \mathcal{T})$. The family of all

denoted by sc^{*}g $h(X, \tau)$. The family of all homeomorphisms form from (X, τ) onto itself be denoted by $h(X, \tau)$.

Theorem :2.7.10 Let X be a Topological space. Then

(i)The set $(sc^*g)^*h(X)$ is a group under composition of maps.

(ii)h(X) is a subgroup of $(sc^*g)^*h(X)$.

 $(iii)(sc^*g)^*h(X) \subset sc^*g h(X).$

Proof: (i) Let f, $g \in (sc^*g)^*h(X)$. Then g O h $(sc^*g)^*h(X)$ and so $(sc^*g)^*h(X)$ is closed under the composition of maps. The composition of maps is associative. The identity map $i : x \rightarrow x$ is a $(sc^*g)^*$ -homeomorphism and so $i (sc^*g)^*h(X)$. Also f. i = i. f = f for every $f \in (sc^*g)^*h(X)$. If $f (sc^*g)^*h(X)$, then $f^{-1} \in (sc^*g)^*h(X)$ and f. $f^{-1} = f^{-1}$. f = i.

Hence $(sc^*g)^*h(X)$ is a group under the composition of maps.

(ii) Let $f: X \rightarrow Y$ be a homeomorphism. Then by theorem 2.6.5 both f and f -1 are

 $(sc^*g)^*$ -irresolute and so f is a $(sc^*g)^*$ -homeomorphism. Therefore every homeomorphism is a $(sc^*g)^*$ -homeomorphism and so h(X) is a subset of $(sc^*g)^*h(X)$. Also h(X) is a group under the composition of maps. Therefore h(X) is a subgroup of the group $(sc^*g)^*h(X)$.

(iii)Since every $(sc^*g)^*$ -irresolute map is sc^*g continuous, $(sc^*g)^*h(X)$ is a subset of $sc^*gh(X)$.

From the above observations we get the following diagram:

Homeomorphism \longrightarrow strongly g-homeomorphism

 $sc^*g - h$

sc*g - homeomorphism

References

[1] Levine , N., "Semi-open sets and semi-continuity in topologicalspaces", Amer.Math.Monthly,70(1963),36-41.

[2] Levine ,N., "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, 19(1970),89-96.
[3] Maki., Devi, R., and Balachandran, K., "Generalized α-closed sets in topology", Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
[4] Hatir, E., Noiri, T., and Yuksel, S., "A decomposition

[5] Rajamani, M., "Studies on decompositions of generalized continuous maps in topological spaces",
Ph.D Thesis, Bharathiar University, Coimbatore,(2001).
[6] Sundaram, P., "Studies on generalizations of continuous maps in topological spaces", Ph.D Thesis, Bharathiar University, Coimbatore,(1991).

[7] Sundaram, P., "On C-continuous maps in topological spaces", Proc. of 82nd session of the Indian Science Congress, Calcutta (1995),48-49.

[8] Tong, J., "On decomposition of continuity in topological spaces", ActaMath.Hungar.,54(1989),51-55.
[9] Bhattachraya and Lahiri, B.K., "Semi-generalized closed sets in topology", Indian J.Math., 29(3)375-382(1987)

[10] Nagaveni, N., "Studies on Generalizations of Homeomorphisms in Topological spaces", Ph.D Thesis, Bharathiar University, Coimbatore, (1999).
[11] Andrijevic, D., "Semi-preopen sets", Mat.

Vesnik,38(1986),24-32.

[12] Dontchev, J., "On generalizing semi-pre open sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.

[13] Nithyakala, R., "scg, sc*g, sc(s)g-closed sets in Topological spaces", Proc. Of 99th Indian Science Congress, Bhubaneswar(2012), 89.

[14] Balachandran, K., Sundaram, P., and Maki, H., "On generalized continuous maps in Topological spaces",

Mem. Fac. Kochi Univ. Ser. A. Math., 12(1991), 5-13.

[15] Maki, H., Devi, R., and Balachandran, K.,

"Associated topologies of generalized α - closed sets and α - generalized closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15 (1994), 51-63.

[16] Crossley, S.G., and Hildebrand, S.K., "Semiclosure", Texas J. Sci., 22 (1971), 99-112.

[17] Malghan, S.R., "Generalized closed maps",

J.Karnataka Univ.Sci., 27(1982), 82-88.

[18] Biswas, N., "On some mappings in Topological

spaces", Bull.Cal.Math.Soc., 61(1969),127-135

[19] Crossley, S. G. and Hildebrand, S.K., "Semi-

topological properties", Fund.Math., 74(1972), 233-254.

[20] Gentry, K. R. And Hoyle, H. G., "Somewhat continuous functions", Czechoslovak Math. J., 21(1971),

5-12. [21] Umehara, J. and Maki, H., "A note on the

homeomorphic image of a T v- space", Mem. Fac. Sci. Kochi Univ. (Math)., 10(1989), 39-45

IJERTV2IS120389