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Abstract

In this paper, we introduced a new class sc*g-
Homeomor phismsin Topological space.
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1. Introduction

Several mathematicians have generalized
homeomorphisms in topological spaces.
Biswas[18], Crossely and Hildebrand[19], Gentry
and Hoyle[20] and Umehara and Maki[21] have
introduced and investigated semi-homeomorphisms
somewhat homeomorphisms and g-A-
homeomorphisms Crossely and Hildebrand defined
yet another “semi-homeomorphism” which is also'a
generalization of homeomorphisms. Sundaram[6]
introduced g-homeomorphisms  and gc-
homeomorphisms in topological spaces.

In the section, we introduce the concept of

sc*g- homeomorphisms and study some of their
properties.

Definition: 2.7.1 A bijection f: (X, T ) — (Y, o)
from a topological space X into a topological space
Y is called a sc*generalized homeomorphism
(sc*g- homeomorphism) if f is both sc*g-open and
sc*g-continuous.

Theorem: 2.7.2 Every homeomorphism is a
sc*g-homeomorphism.

Proof : Since every continuous function is sc*g-
continuous and every open map is sc*g-open, the
proof follows.

The converse of the above theorem need
not be true as seen from the following example.
Example: 2.7.3 Consider the topological spaces
X =Y={a, b, c} with topologiesT ={¢ ,X{a,

b}} and s = { ¢ ,Y.{a}, {a, b}}. Then the identity
map f X, T) —» (Y, o) is a sc*g-
homeomorphism but not a homeomorphism. Since
for the open set {a} in Y is not open in X.
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Theorem:2.7.4 Everystrongly g-
homeomorphism is a sc*g-homeomorphism but not
conversely.

Pr oof Let f : X— Y be a strongly g-

homeomorphism. Then f is strongly g -continuous
and strongly g -open. Since every strongly g -
continuous function is sc*g-continuous and every
strongly g -open map is sc*g-open, f is sc*g-
continuous and sc*g-open. Hence f is a sc*g-
homeomorphism.

The converse of the above theorem need not be true
as seen from the following example.

Example: 2.7.5 Let X=Y={a, b, c} with

T ={ ¢ X{a}}and o = { ¢ ,Y {a, b}} respectively.
Then the identity map f : (X ) — (Y, o) is
sc*g-homeomorphism but not a strongly g¢-
homeomorphism. Since for the open set {a, b} in
Y is not a strongly g-open set in X.

Next we shall characterize the
homeomorphism and sc*g-open maps.
Theorem : 2.7.6 For any bijection f : X> Y the
following statements are equivalent.

(a)f % Y— X is sc*g-continuous.

(b)f is a sc*g-open map.

(c)f is a sc*g-closed map.

Proof : (a) —»(b) Let G be any open set in X.
Since fis sc*g-continuous, the inverse image of
G under f*, namely f(G) is sc*g-open in Y and so f
is sc*g-open map.

(b) —(c) Let f be any closed set in X. Thehif
open in X. Since f is sc*g-open, fjAs

sc*g-open in Y. But f(§ = Y- f(F) and so f(F) is
sc*g-closed in Y. Therefore f is a sc*g-closed map.
(c) —(a) Let F be any closed set in X. Then

(f U%F) = (F) is sc*g-closed in Y . Since fis a
sc*g-closed map. Thereforé'fis sc*g-continuous.
Theorem : 2.7.7 Letf: (X, T) — (Y, o) be a
bijective and sc*g-continuous map, the following
statements are equivalent.

(a)f is a sc*g-open map.

(b) f is a sc*g-homeomorphism.

(c) fis a sc*g-closed map.

Proof : (a)—(b) By assumption, f is bijective and
sc*g-continuous and sc*g-open. Then by
definition, f is sc*g- homeomorphism.

Sc*g-
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(b)—(c) By assumption, f is sc*g-open and
bijective. By theorem 2.7.4 f is sc*g-closed map.
(c)—(a) By assumption, f is sc*g-closed and
bijective. By theorem 2.7.4 f is sc*g-open map.
The following example shows that the composition
of two sc*g-homeomorphisms need not be sc*g-
homeomorphism.

Example: 2.7.8 Consider the topological spaces
X =Y=2Z={a, b, c} with topologies

I={¢ X {a {a b}, T={¢,Y, {aj}}and
Ta={¢@, Z, {b, c}} respectively. Let f and ¢
identity maps such that f : %X Y and g : ¥ Z.
Then f and g are sc*g-homeomorphisms but their
compositon g f X> Z is not a sc*g-
homeomorphism. For the open set {a, b} in X,
g(f{a, b}) = {a, b} is not sc*g-open set in Z.
Definition :2.7.9 A bijection f: (X, T) — (Y, o)

is said to be a (sc*g)*-homeomorphism if f and it's

inverse f -lare sc*g-irresolute maps.
Notation : Let family of all (sc*g)*-
homeomorphisms from () onto itself be

denoted by (sc*g)*h(XT ) and family of all sc*g-
homeomorphisms from (X,) onto itself be

denoted by sc*g h(X ). The family of all

homeomorphisms form from (X,) onto itself be

denoted by h(XT ).

Theorem :2.7.10 Let X be a Topological space.

Then

(HThe set (sc*g)*h(X)

composition of maps.

(ii)h(X) is a subgroup of (sc*g)*h(X).

(iii)(sc*g)*n(X) O sc*g h(X).

Proof: (i) Letf, g (sc*g)*h(X). Then g0 h

(sc*g)*h(X) and so (sc*g)*h(X) is closed under the

composition of maps. The composition of maps is

associative. The identity map i+ is a (sc*g)*-

homeomorphism and so i (sc*g)*h(X). Alsof.i=

i. f=ffor every f (sc*g)*h(X). If f (sc*g)*h(X),

then ' [ (sc*g)*h(X) and f. f*= f* f=i.

Hence (sc*g)*h(X) is a group under the

composition of maps.

(ii) Let f : X— Y be a homeomorphism. Then by

theorem 2.6.5 both f and f -1 are

(sc*g)*-irresolute and so f is a (sc*g)*

homeomorphism. Therefore every homeomorphism

is a (sc*g)*-homeomorphism and so h(X) is a

subset of (sc*g)*h(X). Also h(X) is a group under

the composition of maps. Therefore h(X) is a

subgroup of the group (sc*g)*h(X).

(iii)Since every (sc*g)*-irresolute map is sc*g-

continuous, (sc*g)*h(X) is a subset of sc*gh(X).
From the above observations we get the

following diagram:

is a group . under

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

Homeomorphism;: strongly g-homeomorphism
4—75 sc*g - homeomorphism
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