
Scalable Controller Based PMBIST Design For Memory Testability
M. Kiran Kumar, G. Sai Thirumal, B. Nagaveni

M.Tech (VLSI DESIGN)

Abstract

With increasing design complexity in modern SOC

design, many memory instances with different sizes and

types would be included. To test all of the memory with

relatively low cost becomes an important issue.

Providing user-defined pattern for screening out

various manufacturing defects is also a major demand.

To ease the trade-off between the hardware cost and

test flexibility, Programmable Built-In Self-Test (P-

MBIST) method is an opening approach to complete

the memory testing under these circumstances. Many

researchers have been focused on P-MBIST design.

Processor-based architecture provides high test

flexibility, but it increases the test development costs

while applying to various processor families. To lower

the design cost, a customized processor and instruction

have been developed. It uses program memory to store

the test program. To further reduce the hardware cost,

the instruction can be serially input and saved in one

internal register by adopting simple controller. In this

project, we implement a hardware sharing architecture

to test the memory with same type in parallelism. The

proposed method uses only one address counter to

generate the required address for March-based

algorithm, including row scan and column scan. The

controller can be applied to different memory types

with the same read/write cycle.

Programmable Built-In Self-Test (P-MBIST)

solution provides a certain degree of flexibility with

reasonable hardware cost, based on the customized

controller/processor. In this work, we propose a

hardware sharing architecture for P-MBIST design.

Through sharing the common address generator and

controller, the area overhead of P-MBIST circuit can

be significantly reduced. Finally, the proposed P-

MBIST circuit can be automatically generated from the

user-defined configuration file.

1. Introduction

With increasing design complexity in modern SOC

(System-On-Chip) design, many memory instances

with different sizes and types would be included. To

test all of the memory with relatively low cost becomes

an important issue. Providing user-defined pattern for

screening out various manufacturing defects is also a

major demand. To ease the tradeoff between the

hardware cost and test flexibility, Programmable Built-

In Self-Test (P-MBIST) method is an opening approach

to complete the memory testing under these

circumstances. Many researches have been focused on

P-MBIST design. Processor-based architecture

provides high test flexibility, but it increases the test

development costs while applying to various processor

families. To lower the design cost, a customized

processor and instruction have been developed. It uses

program memory to store the te4st program. To further

reduce the hardware cost, the instruction can be serially

input and saved in one internal register by adopting

simple controller. In this project, we implement a

hardware sharing architecture to test the memory with

same type in parallelism. The controller can be applied

to different memory types with the same read/write

cycle.

Programmable Built-In Self-Test (P-MBIST) solution

provides a certain degree of flexibility with reasonable

hardware cost, based on the customized

controller/processor. In this work, we propose a

hardware sharing architecture for P-MBIST design.

Through sharing the common address generator and

controller, the area overhead of P-MBIST circuit can be

significantly reduced. Finally, the proposed P-MBIST

circuit can be automatically generated from the user-

defined configuration file.

2. Supported Testing Algorithms

Many efficient testing algorithms have been proposed

to detect different fault models. However, to implement

various testing algorithms in the same P-BIST design

would require high area cost. Thus, the selection of test

algorithm families should be carefully considered.

March-based algorithm is an important class to detect a

large variety of faults. A March test consists of a finite

sequence of March elements. Each element performs a

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

series of “reading” and “writing” operations to all

memory cells. The addressing order of each element is

executed in ascending (), descending (), or either (

) way. The first element performs writing 0 to each

memory cell in either addressing order. The second

element performs two operations to each address in

ascending order. Finally, the third element reads all the

address in descending order. The complexity order is

noted to 4N, where N is the number of memory

addresses.

Test sequence (4N):{ (w0), (r0, w1), (r1)}

Beside, based on the March-based test sequence, the

dynamic faults can be tested by repeatedly performing

the same operation in the same memory cell. To

efficiently implement March-based algorithm, we

define the corresponding instruction for P-MBIST

architecture. The advantage is that one can program the

instruction to modify the testing algorithm during run

time.

3. PMBIST (Programmable Memory BIST)

The word programmable indicates that we are defining

user defined patterns to the memory BIST and is

flexible to all types of processors.

It consists of three modules

1. Memory Module

2. Instruction Register

3. BIST Controller

4. Memory Module

Memories are one of the most universal cores. In Alpha

21264, cache RAMs represent 2/3transistors and 1/3

area. In StrongArmSA110, the embedded RAMs

occupy 90% area In average SOC, memory cores will

represent more than 90% of the chip area by 2010. Here

we mentioned different reasons why memory testing is

important.

1) Memory testing is a more and more important issue

 RAMs are key components for electronic systems

 Memories represent about 30% of the semiconductor

market

 Embedded memories are dominating the chip yield.

2) Memory testing is more and more difficult

 Growing density, capacity, and speed

 Emerging new architectures and technologies

 Embedded memories: access, diagnostics & repair,

heterogeneity, custom design, power & noise,

scheduling, compression, etc.

3) Cost drives the need for more efficient test

methodologies

 IFA, fault modeling and simulation, test algorithm

development and evaluation, diagnostics, DFT, BIST,

BIRA, BISR, etc.

4) Test automation is required

 Failure analysis, fault simulation, ATG, and

diagnostics

 BIST/BIRA/BISR generation

5) Embedded memory testing is increasingly difficult

 High bandwidth (speed and I/O data width)

 Heterogeneity and plurality

 Isolation (accessibility)

 AC test, diagnostics, and repair

BIST is considered the best solution. Because, for

Embedded memories accessibility of Pins is not

sufficient for testing out side the chip.SOC consists of

many memory models. Like, SRAM, FLASH, and

ROM etc.

Fig.1 Dual Port SRAM Memory Block Diagram

Description

As our processor/controller is customized, it can

support memory types include single/dual/two-port

SRAM, one/two-port register file and ROM.

In the project, dual-port SRAMs is used, with same

read and write cycles. One port is designed for writing

the data and the other port is designed for reading the

data.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Implementation in Detail

 Fig.1 shows the block diagram of dual-port SRAM.

 When memory write is high, it enable the processor

to write the data to the memory through memory

write data, and to a particular address through

memory write address.

 When, memory read is high, it enable the processor

to read the data from the memory through memory

read data, and from a particular address through

memory read address.

5. Instruction Register

Description

Instruction register stores the instruction currently

being executed or decoded. In simple processors each

instruction to be executed is loaded into the instruction

register which holds it while it is decoded, prepared and

ultimately executed, which can take several steps.

Instructions are serially shifted into instruction register.

The output of Instruction Register is available to

control circuits which generate the timing signals that

controls the various processing elements involved in

executing the instruction.

It acts as an interface between processor and BIST

Controller.

Fig.2 Instruction Register Block Diagram

Our BIST Instruction Register acts as a decoder

wherein it stores the instructions given by the processor

and BIST Controller obeys these instructions for

further testing process.

As shown in Fig.2, it contains few inputs, given as

 Register write & Register read:- it enables the

instructions to write into the instruction register using

register write data and read from the instruction register

using register read data, through processor.

 Register byte enable:- it loads the instructions into

the instruction register as per the processor

requirement. For example, if the processor is of 8 bit

and 32 bits of instructions are to be send to IR, then the

32 bits are partitioned to four 8 bits of instructions and

loaded into the IR. Or if the processor is of 32 bit, then

all bits can be send at a time.

In our project, we enable the register byte enable as

0001 – 1 – 0 to 8 bits

0010 – 2 – 8 to 16 bits

0100 – 4 – 16 to 24 bits

1000 – 8 – 24 to 32 bits

1111 – F – all bits (32 bits)

 Register write data:- instructions are send to IR

through this port, so that the BIST Controller is enabled

and the testing is performed as per our requirement.

 Register address:- instructions are written at any

required address in IR.

 BIST pass:- it is high when the memory completes

the testing process, that indicates that the controller has

passed the testing.

 BIST done:- it is high when the memory completes

the testing process, that indicates that the controller has

completed the testing.

 Clear resume:- whenever an error occurs it pauses

the BIST Controller for a while, so that the error data

sent to the processor. Clear resume enable the BIST

Controller to start the process again from the pause

state.

 Register read data:- shows the error data to the

processor.

 Error State:- which displays the error to the Register

read data, when an error occurs.

Implementation in Detail

 In IR, by enabling the register read, register write

and making the register byte enable to 1111 (sending all

instructions at a time) as we are using 32 bit processor,

we are sending instructions through register write data at

some address using register address.

 Instructions should be in such a way that, it enables

the controller and sets the testing as per our requirement.

 Instructions are internally applied to the register

blocks, as shown in Fig.3, so that it can be retained by

the controller.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.3 Internal Register Block Diagram in IR

 By these register blocks, the outputs of the

instruction register are instructed.

 BIST Control Register:- Controls the BIST

Controller internal operations like, BIST enable

machine, BIST resume, BIST stop, etc, as shown in

Fig.4.

Fig.4 BIST Control Register Block Diagram

 BIST Status Register:- It indicates the status of the

Instruction Register, operations like, BIST pass and

BIST done, as shown in Fig.5.

Fig.5 BIST Status Register Block Diagram

 Instruction Register:- It enable the instruction like

march array, serial test , pattern select and up count, in

the BIST Controller, as shown in Fig.6.

Fig.6 Instruction Register Block Diagram

 Test Status Register:- All 32 bits are indicated for

the error state to display the fault data.

 Memory Data Width:- It sends the size of the

instruction.

 In the Instruction register, first the instructions are

written into the register and, then read by the BIST

Controller for testing.

 BIST pass and BIST done are high when the testing

is completed and clear resume is high when a fault is

detected and the testing is started again.

6. BIST Controller

Fig.7 BIST Controller Block Diagram

Description

Typically the BIST controllers that are going to be

generated will have test algorithms built into them.

(E.g. Marching 0’s, 1's, Checker - Board ...). To

summarize BIST Logic is going to test your RAM.

BIST Controller is internally built by Finite State

Machine (FSM) which consists of March algorithm,

counter, etc.

It takes instructions from the IR, test the memory and

detect the faults.

As shown in Fig.7, inputs of BIST Controller are

 Up Count:- Its enables that the memory should be

tested upwards or downwards as per our requirement.

 Pattern Select:- It selects that which pattern should

be selected to test the memory through the March

algorithm.

Examples,

00 – Write zeros and Read zeros

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

01 – Write zeros and Read ones

10 – Write ones and Read zeros

11 – Write ones and Read ones

 March Array:- It is selects that which format need to

be followed by the controller to test the memory which

are instructed by the IR.

Examples,

0000 – State m0, only read

0001 – State m1, write then read

0010 – State m2, read then write

0011 – State m2, read, write and read

 Serial Test:- If multiple memories are to be tested, it

specifies that, memories are to be serially tested or at a

time..

 BIST Enable Machine:- Enable the BIST Controller

for testing.

 BIST Resume:- Makes the BIST Controller start,

while it is stopped when an error occurred.

 BIST Stop:- Stops the BIST Controller when the

testing is completed.

The outputs of BIST Controller are connected to the

Memory to run the test algorithm.

Implementation in Detail

 Instructions from IR are sourced to BIST controller,

wherein, if BIST enable is high, the instruction enable

up count, selects the patterns select as 11 (i.e., write

one and read 1), march array as 0011 (i.e., read, write

and read) and, BIST resume and BIST stop is high,

then it indicates that, data is loaded from 0000 to

1111, as it’s an up count. In memory, all the initial

data is read (i.e., 0’s) from the memory, then 1’s are

written into the memory, which is known to be the

valid data, and finally the written values are read from

the memory which is known to be the expected data.

Then, an Ex-or operation takes place, which ex-or the

valid and expected data, if the result is all 0’s, then the

memory has no faults or if the result has any 1’s, then

the memory has a fault which is sent by the Error state.

 If the testing process is completed, BIST pass, BIST

done is high.

7. Programmable Memory BIST

(Architecture)

Fig.8 Programmable Memory BIST Architecture

Connected To Memory

Description

Finally, it is the top module, combination of both

Instruction Register and BIST Controller, as shown

in Fig.8. When instructions are given to the Instruction

Register by the processor, it stores the instructions

currently being decoded and forwards it to the BIST

Controller, where, the controller is connected to the

memory. As per the instructions, controller tests the

memory, and checks for the faults. If any fault is

detected, then the data and address are sent to the

processor by register read data. And if there is no fault

and testing is completed, then BIST pass and BIST

done become high.

8. Simulations

Fig.5.4. Simulations of PMBIST

 In here, we can see that, instructions are sent to

the PMBIST using register write data, at some

address using register address, by which we are

selecting up count, pattern select as 01, march

array as 0011, wherein, we are operating the march

operation as read, write, read, which can be viewed

at memory write and memory read. These pins are

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

enabled when ever the march test is conducted in a

particular pattern as mentioned in IR.

 Memory read address and memory writer

address are incremented to write the binary values

and test the memory.

 Finally, an ex-or operation is done between the

memory read data (which is read from memory)

and expected data (data which undergoes March

operations), so that we get the xored result as,

0 F = F and 0 0 = 0 (32 bit or 64 bit data),

indication for no fault memory.

 If any fault is detected, that can be viewed by

register read data in IR via, error state in BIST

Controller.

9. Conclusion

An Area Efficient Programmable Memory Built-

in-Self-Test, proposed in our paper gives users the

flexibility to select test algorithm patterns (User

defined configuration file). The test complexity can be

easily adjusted as a result. Compared with earlier

Memory BIST designs, our method achieves more the

level of flexibility. The proposed method will be very

useful in SOC testing, since many different memory

core modules (e.g., DRAM, SRAM and ROM) may be

employed in SOC and they required different same test

algorithm with different patterns. Moreover, the

controller can be extended to different memory types in

the same read/write cycle condition, without increasing

any state. The proposed design greatly simplifies the

reconfiguring process when a new testing pattern is

selected, and thus reduces the overall test time. Thus,

the hardware cost can be greatly reduced. The

advantages of the proposed architecture include

reduced test time, re-programmability, easy and simple

to control test procedure.

9. References

1. Chung-Fu Lin and Yeong-Jar Chang, “An area efficient

design for programmable Memory built in self test,” IEEE

transaction, 2008.

2. V. D. Agrawal, C. R. Kime, and K. K. Saluja, “A tutorial

on built-in self-test. I. Principles,” IEEE Design & Test of

Computers, Vol. 10, No. 1, pp.73-82, Mar. 1993.

3. (No)D. Appello, V. Tancorre, P. Bernardi, M. Grosso, M.

Rebaudengo and M.S. Reorda, "Embedded Memory

Diagnosis: An Industrial Workflow," in Proc. ITC, pp:1 - 9,

Oct. 2006.

4. S. Boutobza, M. Nicolaidis, K.M. Lamara and A. Costa,

“Programmable memory BIST,” in Proc, ITC, pp:45.2,

Nov.205.

5. D. Xiaogang, N Mukherjee, C. Wu-Tung: S.M. Reddy,

“Full speed field-Programmable memory BIST architecture,”

in Proc. ITC,pp:45.3,Nov.2005.

6. A.J. Van de Goor and J. de Neef "Industrial Evaluation of

DRAM Tests," in Proc. Design, Automation Test in Europe,

pp. 623-631, March 1999.

7. C.F. Wu, C.T. Huang and C.W. Wu, "RAMSES: a fast

memory fault simulator," in Proc. Defect and Fault

Tolerance in VLSI Systems Symposium, pp. 165 - 173, Nov.

1999.

8. www.searchmobilecomputing.techtarget.com/definition/R

AM

9. Michael D. Ciletti “Advanced Digital Design with Verilog

HDL,” Prentice-Hall, Inc.(PHI) publishers.

10. http://en.wikipedia.org/wiki/Xilinx_ISE

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

