
  

 

 

  
 

Scalable Adaptive Connectivity based Clustering 

T. Indira Priyadarshini$  
$Member IAENG, Assistant Professor, CSE Dept., Vishnu Institute of Technology, Bhimavaram, India 

 
 

 
Abstract  

 
In this paper, a new application-level clustering algo-
rithm capable of building an overlay on both sides of 
tree among participants of large multicast sessions, 
without any specific help from the network routers is 
proposed. The algorithm and related protocol are 
shown to express scalable properties.  

 
1. Introduction  

More than a decade of research in multicast 
technologies express the need for large-scale 
(application-level) overlay structures. TRee-based 
ACK’s (TRACK’s) have been identified as promising 
approach to providing real-time and scalable de-
livery guarantees to groups of receivers [1], [2]. In 
this scenario, the overlay provides a control 
structure. 

More recently, reasons for the lack of widespread 
deployment of IP multicast have been identified [3]. 
These indicate that everywhere tamp of IP multicast 
services may, even if at all possible, take a very long 
time. In such circumstances, overlays represent an 
attractive alternative to IP multicast for data 
distribution among members of multicast groups.  

In this paper, a new method design to build large-
scale overlays, without requiring any special 
support from the network routers is proposed.  

 
2. Adaptive Connectivity Based Clustering 
Algorithm  
 

2.1 General Strategy and Goal  

In connective based clustering the Hierarchical 

algorithm is used. The algorithm described in this 

section is designed to build, recursively, a hierarchy of 

clusters. A cluster is represented by a cluster head and 

is composed of the cluster head and other nodes ―close‖ 

to the cluster head. The algorithm is ―recursive‖ in the 

sense that each cluster is divided into sub-clusters, 

whose (sub-) cluster heads, are constituent nodes of the 

original cluster. The hierarchy of clusters is organized 

into layers, where layer  is composed of the cluster 

heads of (sub-) clusters that divide Li-1 clusters (i.e., 

clusters whose head is in layer Li-1). This is illustrated 

in Fig. 1(a). For instance, in this figure, the Li -cluster 

headed by C is composed of F & G. This cluster C 

contains two L2 - clusters, respectively headed by F & 

G. 

   The principle of the algorithm is that, starting at layer 

 with a top-level cluster containing all the nodes in 

the hierarchy, and whose cluster head is a well known 

node called the root of the hierarchy, clusters are 

recursively divided into sub-clusters, until all clusters 

obtained are ―singleton-clusters‖ containing only their 

cluster head. 

 
Fig.1 Cluster hierarchy (a) Clusters and layers. (b) Tree. 

 

The cluster hierarchy thus built forms a logical tree 

spanning all the cluster heads (e.g., all the nodes) in the 

hierarchy [see Fig. 1(b)]. Consequently, the state to 

build and maintain this hierarchy can be distributed 

among all the nodes in the hierarchy such that each 

node in layer Li only needs to record its parent cluster 

head (i.e., the Li-1 - cluster head whose cluster it 

belongs to) and the Li+1 - cluster heads that are 

members of its own cluster. For instance, in Fig. 1(a) A 

records R as its parent cluster and D as its child.  

 
2.2 Working of the Algorithm  

The algorithm is distributed and based solely on 

unicast (unique resource is requested) communications. 

In other words, it does not rely on any special network 

support.  

One of the essential ideas in the algorithm is that any 

node (i.e., any cluster head) sees the rest of the world as 

a set of concentric rings (which can be called zones), 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

1www.ijert.org



  

 

 

  
 

centered on the node itself. Each zone starts where the 

previous one finishes and the zones are numbered in 

increasing order, starting at 0 for the smallest ring (see 

Fig. 2). The actual size of each ring, as well as the 

distance measurement used to define it (e.g., delays, 

throughput, etc.), is unimportant for the general 

workings of the algorithm. With each zone, a distance 

called a radius is also defined. Again, the size of the 

radius is unimportant for the workings of the algorithm 

(but its distance measurement is the same as the 

measurements used for defining the zones).  

The scalable hierarchical clustering algorithm works 

as follows. The cluster hierarchy is rooted on a well 

known entity called the root. A node desiring to join 

the cluster hierarchy first measures its distance to the 

root, and then sends to the root a JOIN message 

containing this distance. Based on this distance, the 

root determines the zone of the joining node. Here, two 

cases are possible.  

 

Fig. 2. Zones associated with a node. 

1) The joining node is the first node joining in the 
corresponding zone.  
2) Other nodes from the same zone have already 

joined.  

In the former case, the root records the presence of 

the joining node in the corresponding zone and sends 

the node a NEW_CLUSTER_ACK message, indicating 

that the joining node has found its place in the 

hierarchy (this finishes the algorithm for the joining 

node). The joining node is now the cluster head of one 

of the sub-clusters dividing the cluster headed by the 

root.  

In the latter case, the root sends to the joining node, 

in a TRY message, the list of the cluster heads in the 

same zone as the joining node, along with the radius 

associated with this zone. The joining node then 

measures its distance to each of the nodes in the list. 

Again, we consider two cases:  

1) The distance of the joining node to at least one of 

the cluster heads in the list is smaller than the given 

radius. The clusters headed by these cluster heads are 

called attracting clusters.  

2) The distance of the joining node to all the 
cluster heads in the list is greater than the given 
radius.  
In the former case, the joining node chooses the 

closest attracting cluster and joins it: that is, the 

algorithm starts again with the corresponding cluster 

head acting as the root. In this case, the joining node is 

said to ―go down one layer‖ (as the cluster it is heading 

will potentially be part of the partition of the attracting 

cluster) and it is important to note that the root does not 

record the presence of the joining node. In essence, 

from the root’s point of view, the members of the 

attracting cluster are ―collapsed‖ into the attracting 

cluster head, as this cluster head is the only node in the 

attracting cluster remembered by the root.  

    In the latter case, the joining node creates a new sub-

cluster by sending a NEW_CLUSTER message to the 

root (including its distance to the root). The root then 

keeps a record of the new cluster head (i.e., the joining 

node) and of its zone and replies with a 

NEW_CLUSTER_ACK message which finishes the 

algorithm for this joining node. 

 
3. Scalability Considerations 

From the previous section, it should be clear that the 

state overhead imposed on each node in the hierarchy is 

proportional to the number of zones needed for that 

node to ―span‖ its cluster, times the number of clusters 

per zone. This number of clusters per zone also 

influences the scalability of the join procedure, as any 

joining node must measure its distance to all the cluster 

heads at the same zone, for all traversed layers. Also, 

the further away from the central node a zone is, the 

more nodes—and thus the more clusters—such a zone 

potentially contains. These observations favor the use 

of large clusters, within few zones.  

On the other hand, large clusters tend to create many 

layers (as they can contain large sub-clusters which, in 

turn, will have to be divided), which has a negative 

impact on the latency of the join procedure.  

In order to accommodate these conflicting 

requirements, we propose to define zones based on 

round-trip time (RTT) measurements, and whose sizes 

follow an ―exponential distribution‖ (see Fig. 2):  

zoneO: 0 < dist ≤ 1                      (1) 
zonei: (1+∆)i-1 < dist ≤ (1+∆)i, with ∆ > 0       (2) 
     This, in turn, allows us to define the size (i.e., 

radius) of the clusters at zonei as:  

                          (3)      

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

2www.ijert.org



  

 

 

  
 

The parameter  in the formulas could be either fixed 

or varied according to which layer the cluster, headed 

by the corresponding node, belongs to. Other size 

―distributions‖ for both zones and radii are of course 

possible, but the ones proposed prevents explosion of 

the number of clusters in far zones while keeping the 

number of zones down and retaining the desirable 

property that ―detail‖ (i.e., ―fine grain positioning‖) 

matters only for nodes close to a cluster head.  

 
4. Performance Evaluation  

The algorithm is analyzed by means of simulations. 

Both the NS-2 simulator [4] and the GT-ITM topology 

generator [5] were used to test scenarios involving 

groups of 500 members randomly distributed on 

topologies of 100 and 600 nodes, respectively 

(following a transit-stub model [5]). In these 

simulations, each group member (including the root) 

used the same value of  [see (2) and (3)] which was 

varied in unit steps from 1 to 5. Each scenario was 

repeated 20 times for each value of . In this paper, it 

was discussed about assessing the scalability of the 

proposed clustering algorithm. State overhead is of 

prime concern and Fig. 3 shows the maximum number 

of cluster heads ―remembered‖ by any node in the 

hierarchy, as a percentage of the group size. This figure 

illustrates the influence of the value  in controlling the 

state overhead of the algorithm. For instance, for 

groups of 500 members in a network of 600 nodes, we 

see that the maximum state overhead at any cluster 

head can be reduced from 182 sub-clusters (36%) when 

 is equal to 1, down to 36 sub-clusters (7%) when  is 

equal to 5.  

It is also seen that the efficiency of the algorithm 

increases with the group size, stabilizing the curves into 

gently decreasing slopes indicating a small increase in 

state as more members are added. For instance, in the 

scenario with 600 nodes and  of 5, the maximum state 

at any node increases from 30 (10%) for a group of 300 

members to only 36 for a group of 500 members.  

 

Fig. 3. Maximum state overhead.  

 

Fig. 4. Mean distance sampling overhead. 

The number of cluster heads to which a new member 

measures its distance is also of prime concern, as this 

―sampling‖ has a direct bearing on the join latency and 

ultimately the scalability of the algorithm. This is 

because the message overhead, under static conditions, 

is proportional to the ―sampling.‖ Fig. 4 depicts the 

average number of cluster heads that a newcomer 

samples during its join procedure. This figure shows 

that for judiciously chosen values of , the increase in 

sampling overhead and thus in join latency is sublinear 

compared to the group size. This is, of course, an 

extremely desirable property of any scalable method 

and algorithm.  

    During these simulations, we have also observed that 

the maximum sampling by any joining node was as low 

as 42 peers. These results show that the maximum 

joining overhead observed by all newcomers is kept 

small.  

 
5. Discussion & Conclusions  

In this paper, a method to build a hierarchy of nodes, 

based on the notion of proximity, in a distributed and 

scalable way is proposed. The hierarchy is built 

through a series of ―local‖ decisions involving only a 

small subset of the hierarchy’s population for each 

decision. This, coupled with an innovative adaptive 

cluster size distribution approach, yields a simple, yet 

powerful, approach to building overlay, application-

level structures without relying on any special support 

from network routers.  

The hierarchy thus built is loopless and spans all the 

nodes in it. Our scalable adaptive hierarchical 

clustering algorithm can, therefore, be seen as a new 

member in the category of application-level multicast 

tree building methods (e.g., [6]–[9]). The overlay 

application-level multicasting trees built with our 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

3www.ijert.org



  

 

 

  
 

scalable adaptive hierarchical clustering are 

unconstrained, meaning that nodes in the tree cannot 

explicitly control their number of children. This may 

not be a problem for overlay trees built for control 

purposes [1] but could yield a significant penalty for 

trees built for data distribution. However, the method 

presented in this letter can still be very useful in the 

context of application-level multicast data distribution.  

    Indeed, a constrained application-level multicast 

overlay tree can be built by having each cluster head 

and its sub-clusters (i.e., its members populating the 

next layer in the hierarchy) run any algorithm that 

builds a constrained overlay tree [6], [8], [9]. With this 

approach, each node in the cluster hierarchy would be a 

member of the overlay tree rooted at its parent cluster, 

as well as the root of the overlay tree spanning its own 

cluster. This would allow the building of very large 

constrained overlay trees.  

    In future work, investigation of the performance of 

the proposed algorithm under dynamic conditions can 

be implemented (e.g., dynamic group membership, 

failures, etc.). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
7. References  
 
[1] B. Whetten and G. Taskale, ―An overview of reliable 

multicast transport protocol II,‖ IEEE Network Mag., vol. 14, 

no. 1, pp. 37–47, Jan. 2000.  

[2] M. Kadansky, D. M. Chiu, B. Whetten, B. Levine, G. 

Taskale, B. Cain, D. Thaler, and S. J. Koh. (2001, Mar.) 

Reliable multicast transport building block: Tree auto-

configuration. IETF. [Online]Internet Draft draft-ietf-rmt-bb-

tree-config-02, Work in progress  

[3] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. 

Balensiefen, ―Deployment issues for the IP multicast service 

and architecture,‖ IEEE Network, vol. 14, no. 1, pp. 78–88, 

Jan./Feb. 2000.  

[4] Ns-2 Network Simulator [Online]. Available: 

http://www.isi.edu/ nsnam/ns/.  

[5] E. Zegura, K. Calvert, and S. Bhattacharjee, ―How to 

model an internetwork,‖ in IEEE Infocom, Mar. 1996, pp. 40–

52.  

[6] Y.-H. Chu, S. Rao, and H. Zhang, ―A case for end system 

multicast,‖ in ACM SIGMETRICS, Santa Clara, CA, June 

2000, pp. 1–12.  

[7] J. Jannotti, D. Gifford, K. Johnson, F. Kaashoek, and J. 

O’Toole, ―Overcast: Reliable multicasting with an overlay 

network,‖ in USENIX OSDI, San Diego, CA, Oct. 2000.  

[8] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, 

―ALMI: An application level multicast infrastructure,‖ in 3rd 

USENIX Symp. on Internet Technologies, San Francisco, CA, 

Mar. 2001.  

[9] L. Mathy, R. Canonico, and D. Hutchison, ―An overlay 

tree building control protocol,‖ in Proc. Int. Workshop on 

Networked Group Communication (NGC), Nov. 2001, pp. 

76–87. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

4www.ijert.org



  

 

 

  
 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

5www.ijert.org


