Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 11, November-2021

Sales Forecasting for Telecom Vertical Using
ARIMAINR

Mangesh Patil'*
Dept. of Electronics Engineering
Terna Engineering College
Navi Mumbai, India

Abstract— The aim of this paper is to incorporate Time
Series in order to predict sales growth and measure the demand
and supply of optic fibre connections in a area. Thus, improving
the conversion rates, Customer experience leading to good
retention rates and the business model works on subscriptions.
This prediction exhibits seasonal patterns, by analysing
historical data in Time series to understand trends of seasonal as
well as non-seasonal subscription numbers to forecast product
Revenue & Supply of optic Fibre for next business period.. The
data source used is the CRM data.
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I. INTRODUCTION

In Today’s Growing Market, a smart decision is to
understand the demand of customer and be prepared for the
supply. It drives the Fundamentals of every business planning,
procurement and production activities. We have analyzed the
same to improve the user experience thus increase retention of
users opting for Broadband Subscription. It is important to
understand the demand because the service is been provided
by natural resource like optic fiber and copper wire, which not
only increase the cost of acquisition of customer but to also
use these resources carefully. In this traditional business
model, the use of data has been a key indicator to manage
most things. With the help of data, we collected we analyzed
the seasonal patterns understand the User behavior for a
particular region and thus predicted the users for subscription
for the next business quarter. this not only helped in planning
but also to measure the future profitability. This was carried
on past CRM data using ARIMA model in R.

Il. RELATED WORK

Lot of research is happening in the field of Data Analytics.
In our project we have used ARIMA model which is a
forecasting-based algorithm that forecasts future values based
on past data and its core components meaning the trends,
seasonality and remainder associated with the dataset. This
information can be used to understand the time series and
predict future values.

I1l. AUTOREGRESSIVE INTEGRATED MOVING
AVERAGE

We used only past values to predict future supply. In other
words, we used univariate time series.

ARIMA stands for Auto-Regressive Integrated Moving
Average. This algorithm proposes that only information from
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past values can predict future values. This model functions to
predict x; with values.

P (X¢| Xe1, ... ,X1)

This Algorithm forecasts future values based on past values,
its own deviation (latency) and predicted deviation (latency)
so that this equation is used to predict future values.

To Incorporate ARIMA we need to breakdown its parameters
p, g and d. where p stands for order of AR term, g stands for
order of MA term and d is the number of differencing.

Auto Regressive is a linear regression model. The AR model

is stated below: p

AR(p) 1 ap = a+ Z,{)’;.rf_; + €
i=1

P value in the equation determines the number of past values.
P will be taken into account for prediction. The higher the
value of p the more past values will be taken into
consideration. For e.g., if p value is 1 then the generalized
equation will be Lt = & + 51Z;_1 + € Therefore, the AR
model can also be a linear combination of p past values.

MA model .

The moving average MA model is opposite of AR model. It
depends  on pastrf forecast  errors to make

Ty = WU+ Z (I:',;Ef_l
predictions i=1

Thus, MA model can be defined as linear combination of g
past forecast errors.

IV.STATIONARY & NON STATATIONARY DATA

Stationary data means this data is independent of time. It does
not depend on time variable.

If we want to predict basis only past values, then we require
stationary data only. Not having stationary data will give you
predictions unsatisfactory as your model would take the time
variable into account.

To make a series stationary we need to at least difference it.
i.e. subtracting the previous value from the current values.
Thus, the value of d determines the minimum number to
make a series stationary.
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For stationary data the value of d is 0. To determine if the
data is stationary or not, we can perform a Augmented Dicky
fuller test.

The results of this test are stated below[1]

= adf.test(work_order.ts)

laugmented Dickey-Fuller Test

data: work_order.ts
Dickey-Fuller = -3.4569, Lag order = 3, p-value = 0.06498
alternative hypothesis: stationary

Fig [1] Stationarity check test

The hypothesis is if the p values is significantly less. The
benchmark is 0.05. Thus we need to make this series as a
stationary series.

In the most simpliest words, the non stationary data can be
made stationary by taking the difference between the
successive rows.

V. TRANSFORMING THE SERIES AS
STATIONARY

The Telecommunication sales connection data that we used is
seen below [1]. This dataset used is non-stationary data.
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Fig[2] Time series of the dataset.

The first step is to make this stationary data [2] in non
stationary data and then decompose the series to analyse the
seasonality & trend. On performing the dickey fuller test we
found the lag order, value of d required to make the necessary
transformation.

VI. DECOMPOSITION OF TIME SERIES
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The Series is further broken down in core components.
Seasonality i.e the cyclic behaviour of the series, Trends i.e
overall rise or fall in the mean values, along with remainder
which the noise or random varaiation associated with the
data[3]. Remainder means whatever remains after removing
trends and seasonality from the series. The Time series Model
has assumptions that the data is stationary and only, this
residual component satisfies the condition for stationary. The
seasonality can be additive and multiple depending upon the
data.

y = noise(t) = ¢

VII. EVALUATION OF THE MODEL
Step 1 is to forecast using a given model.
Step 2 is to then fit the model and get the fitted values.
Step 3 Based on these fitted values we can calculate residuals
as the difference between the actual values and the fitted
values.

Post which we can perform residual test. There are several
tests that we can carry to check residual such as
a) Time plot: to know if the mean value is 0, if the series
have any outliers, or check if we have constant variance.
b) ACF: To test whether residuals are correlated or not c) the
Lung-box: if a series does not show any correlation then its
white noise. To figure this out we can simply perform Lung-
box test instead of looking at the ACF. If the series is white
noise that means we have used all the information in our
forecasting. If the Series is not white noise that means we
haven’t used all parameters and the residuals are correlated,
thus we need to review & perform our forecasting method
d) histogram: to check whether these residuals are normally
distributed or not.

Residuals from ARIMA(0,0,0)(0,1,0)[12] with drift
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Fig[4] plot of residuals, ACF and histogram

> checkresiduals (model)

Ljung-Box test

o
E L . data: Residuals from ARIMA(O,0,0)(0,1,0)[12] with drift
£ i T ‘ [ Q* = 3.3538, df = 6, p-value = 0.7633
[ir} [=1
2016.0 20165 20170 20175 20180 20185 20190 Model df: 1. Total Tags used: 7
me Fig[5] residuals result
. . . 1 resiauals results.
Fig[3] Decomposition of series g
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From the figure, we can see that the ACF values are in the
border range, the time plot is also hovering around mean 0
and the histogram is normally distributed.

The accuracy of this model, the MAPE value is 1.8 seen in
the figure[6]

> accuracy(model)
ME RMSE MAE MPE MAPE MASE ACF1
Traiming set 0.1184085 12.50488 B.076742 -0.1475509 1.870625 0.1697389 0.1976634

Fig[6] accuracy of test data set.

Forecast error means difference between the actual & the
observed values. Error in prediction is not mistake but the
unpredictable part of the observation.

eT+h=yT+h-"yT+h|T

where the training data is

by {y1,...yT}{yl,...,yT} and the test data is
by {yT+1,yT+2,...} {yT+1,yT+2,...}.

Error and residuals are not same. Residuals are calculated on
training data set , while forecast are calculated on test data
set. Residuals are based on one step forecast whereas errors
are based on multi step forecast.

given
given

These errors are classified as

a) Scale dependent: MAE (Mean absolute error= mean(jet|),)
minimizing this error will lead to forecast the median.

Root mean squared error RMSE = vYm(e2t). Minimizing
RMSE leads to mean forecasting.

b) Percentage error: Mean absolute error percentage
MAPE=mean(|pt|). This error has advantage of being unit
free and is therefore used majorly to evaluate the accuracy of
forecast. For e.g., it does not consider the unit of the data like
Celsius or Fahrenheit while forecasting temperature since
temperature have arbitrary zero point.

c) Scaled error: it is an alternative forecasting percentage
error calculator in cases with series having different units.
MASE: mean(|qj|).

The training dataset used in this project had MAPE value 1.8
and thus this concludes that the model accuracy is best and
good to go.

* The data used is not the company data as its confidential, but a similar
data set is used for demonstration purpose of this paper.

VIIl. RESULTS

Time Series Forecast

=}
=)

work_order ts
e

400~
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2016 2017 2018 2019
Time

> model_forecast

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 2019 464.5833 444,.5339 484.6328 433.9203 495.2484
Feb 2019 438.5833 418.5339 458.6328 407.9203 469, 2464
Mar 2019 466.5833 446.5339 486.6328 435.9203 497. 2464

Fig 7: Forecasted series

A. Equations

IX. CONCLUSION
To conclude we were able to predict future sales basis the
ARIMA model. To predict this, we must first plot the time
series, parsing this series in its principal component. i.e. to
determine if the data is stationary data or non-stationary data,
observe the seasonality and trend associated with it and the
remainder which is the white noise.

We can perform the Dicky Fuller test to analyse the
stationarity characteristic of the series. The data set is made
stationary by differencing method or logarithmic method post
which we can then again perform the dickey fuller test after
each difference to confirm the stationarity

Next steps is to forecast, we used the ARIMA model to build
the forecast and fit the model to get fitted values. On
checking the residues will tell us if we have used all the data
pointers.

Thus, we could forecast the number of sales for future
months with a accuracy of MAPE = 1.8
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