
Run length encoding and bit mask based Data

Compression and Decompression Using Verilog

 S.JAGADEESH
 1
, T.VENKATESWARLU

 2
, DR.M.ASHOK

 3

1
Associate Professor & HOD, Department of Electronics and Communication Engineering, Sri Sai Jyothi

Engineering College, Gandipet, Hyderabad-75, (A. P.), India

2 P.G. Student, M.Tech. (VLSI), Department of Electronics and Communication Engineering, Sri Sai

Jyothi Engineering College, Gandipet, Hyderabad-75, (A. P.), India,

3
 Professor, Department of Computer Science and Engineering, Sri Sai Jyothi Engineering College,

Gandipet, Hyderabad-75, (A. P.), India,

Abstract

Higher circuit densities in system-on-chip

designs have led to drastic increase in test data volume.

Larger test data size demands not only higher memory

requirements, but also an increase in testing time. Test data

compression addresses this problem by reducing the test

data volume without affecting the overall system

performance. The major contributions of this paper are as

follows: 1 it develops an efficient bitmask selection

technique for test data in order to create maximum

matching patterns; 2 it develops an efficient dictionary

selection method which takes into account the bitmask

based compression; and 3. it proposes a test compression

technique using efficient dictionary and bitmask selection

to significantly reduce the testing time and memory

requirements. If the bit-stream contains consecutive

repeating bit sequences, the bitmask-based compression

encodes such patterns using same repeated compressed

words, whereas our approach replaces such repetitions

using a bitmask of “00”. In this example, the first

occurrence will be encoded as usual; whereas the remaining

repetitions will be encoded using our method i.e. run length

encoding of these sequences may yield a better

compression result. Interestingly, to represent such

encoding no extra bits are needed. Note that bitmask value

0 is never used, because this value means that it is an exact

match and would have encoded using zero bitmasks. Using

this as a special marker, these repetitions can be encoded

without changing the code format of bitmask-based

compression.

Keywords:bitmasking,dictionary,encoding,compression,dec

ompression

1.Introduction

In system on chip designs, higher circuit den larger memory

requirement in addition to an increased testing time. data

compression plays a crucial role, reducing the testing time

and memory requirements.it proposed a new run length

encoding and bit mask based data compression and

decompression .In this paper solve to the bit mask selection

technique for test data.it develop dictionary selection

method.by using these two techniques solve the data

compression.in dictionary method we can solve only direct

match valus. By using bit mask selection paper solve the

dictionary not find out the valus.so tese paper using

compression in this way.more number of bits repeated

same.now we can modify the compress data.when it occurs

we can solve one postion. Then it occurs all compressed

data.remaining data not necessary.then totally data and

decompressed. . Using this as a special marker, these

repetitions can be encoded without changing the code

format of bitmask-based compression.

Figure 1.1 Block diagram for test data pattern.

2.BACKGROUND OF THE PROJECT

In this describes bitmask-based code compression,and

highlight of the bitmasking As seen in Fig. 2, we can

compress up to six data entries using bitmask based

compression. The compressed data is represented as follows

Those vectors that match directly are compressed with 3

bits. The first bit represents whether it is compressed (using

0) or not (using 1). The second bit indicates whether it is

compressed using bitmask (using 0) or not (using 1).

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org

.

Figure 2 Bitmasked data compression

The last bit indicates the dictionary index. Data that are

compressed. using bitmask requires 7 bits. The first two bits,

as before, rep resent if the data is compressed, and whether

the data is com pressed using bitmasks. The next two bits

indicate the bitmask position and followed by two bits that

indicate the bitmask pat tern. For example, the last data

vector in Fig. 2 is compressed. using a bitmask. The bitmask

position is 11, which indicates

fourth even bit position from left. For this case,

we have as sumed fixed bitmasks, which are always

employed on even-bit positions and hence only 2 bits are

sufficient to represent the four positions in a 8-bit data. The

last bit gives the dictionary index. The bitmask XOR with

the dictionary entry produces Compressed Test data

Division of Test Data into Scan Chains

Once the input test data is considered, next task

would be to divide them into scan chains of predetermined

length. Let’s assume that the test data consists of N test

patterns. Divide the scan elements into m scan chains in the

best balanced manner possible. This results in each vector

being divided into m sub-vectors, each of length, say l.

Dissimilarity in the lengths of the sub-vectors are resolved by

padding don’t cares at the end of the shorter sub-vectors. Thus,

all the sub-vectors are of equal length. The m-bit data which is

present at the same position of each sub-vector constitute an m-

bit slice. If there are vectors at the beginning, a total of n*l m-

bit slices is obtained, which is the uncompressed data set that

needs to be compressed. Consider a simple example consisting

of two test patterns 0011 and 1XXX for a design with two scan

chains. Therefore, length of each sub-vector is l. In this case,

padding of don’t cares is not required. Figure 3.2 shows how

four slices (XX, 1X, 01, and 01) can be formed with two

vectors (001X and 11XX) obtained by scan chain based

partitioning of the two original test patterns. These are the four

slices that need to be compressed.

Figure 4: Division of Test Data into Scan Chains

Bit Mask Selection

A “fixed” bit-mask pattern implies that the pattern can be

applied (starting position) only on fixed locations. For example,

an 8-bit fixed mask (referred as 8f) is applicable on 4 fixed

locations (byte boundaries) in a 32-bit vector. A “sliding” bit-

mask pattern can be applied anywhere. For example, an 8-bit

sliding mask (referred as 8s) can be applied in all locations on a

32-bit vector. There is no difference between fixed and sliding

for a 1-bit mask. In this thesis, use of 1-bit sliding mask

(referred as 1s) for uniformity.The number of bits needed to

indicate a location will depend on the mask size and the type of

the mask. A fixed mask of size s can be applied on (32 ÷ s)

number of places. For example, an 8-bit fixed mask can be

applied only on four places (byte boundaries) and requires 2

bits.

Fig. 3. Bitmask-based test data compression

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org

Table 1: Various Bit-Mask Patterns

Bit-mask Fixed Sliding

1 bit X

2 bit X X

3 bit X

4 bits X X

5 bits X

6 bit X

7 bit X

8 bit X X

Similarly, a 4-bit fixed mask can be applied on eight

places (byte and half-byte boundaries) and requires 3 bits for its

position. A sliding pattern will require 5 bits to locate the

position regardless of its size. For instance, a 4-bit sliding mask

requires 5 bits for location and 4 bits for the mask itself

Table 2 Profitable Bit-Mask Patterns

Bit-Mask Fixed Sliding

1 bit X

2bits X X

8bit X x

A careful study of the combinations of up to two bit-

masks using various applications compiled on a wide variety of

architectures. Analyzed result of compression ratios on various

mask combinations and observed that 8f and 8s are not helpful

and also observed that 4s does not perform better than 4f. The

final set of bit-mask patterns are shown in Table 3.3.

Table 3 Final Bit-Mask Sets

Bit-mask Fixed Sliding

1 bit X

2 bits X X

4bits x

Figure 3.3 shows the encoding format for considering

mismatches. A compressed data stores information regarding

the mask type, mask location and the mask pattern itself. The

 mask can be applied on different places on a vector and the

number of bits required for indicating the position varies

depending on the mask type. For instance, consider a 32-bit

vector, an 8-bit mask applied on only byte boundaries requires

2-bits, since it can be applied on four locations. With no

restrict, the placement of the mask, it will require 5 bits to

indicate any starting position on a 32-bit vector

 Itmasks may be sliding or fixed. A fixed bit mask

always operates on half-byte boundaries while a sliding

bitmask can operate anywhere in the data. It is obvious that

generally sliding bitmasks require more bits to represent

themselves compared to fixed bitmasks. In this thesis, the

alphabets `s` and `f` are used to represent sliding and fixed

bitmasks respectively. The optimum bitmasks to be selected for

test data compression are 2s, 2f, 4s and 4f. However, in the last

two need not be considered. This is because as per Lemma 1,

the probability that 4 corresponding contiguous bits will differ

in a set of test data is only 0.02%, which can easily be

neglected. Thus, the compression is performed by using only 2s

and 2f bitmasks. The number of masks selected depends on the

word length and the dictionary entries and is found out using

Lemma 2.

Lemma 1: The probability that 4 corresponding

contiguous bits differ in two test data is 0.2 %.

Proof: For two corresponding bits to differ in a set of

test data, none of them should be don’t cares. Consider the

scenario in which they really differ, and find out the probability

of such an event. It can beseen that any position in a test data

can be occupied by 3 different symbols, 0, 1 and X. However,

as already mentioned, to differ, the positions should be filled up

with 0 or 1.Hence, the probability that a certain portion is

occupied by either 0 or 1 is 2/3 = 0.67. Therefore, the

probability that all the four positions have either 0 or 1 is P1 =

(0.67)4 = 0.20.

For the other vector, the same rule applies. The

additional constraint here is that the bits in the corresponding

positions are fixed due to difference in the two vectors, that is,

the bits in the second vector has to be exact complement of

those of the first vector.

 Therefore, the probability of occupancy of a single position is

1/3 = 0.33 Therefore, the probability of 4 mismatches in the

second vector P2 = (0.33)4 = 0.01 The cumulative probability

of the 4-bit mismatch is a product of the two probabilities P1

and P2 and is given by:P = P1 X P2 = 0.2 %

Lemma 2: The number of masks used is dependent on the

word length and dictionary entries.

Proof: Let L be the number of dictionary entries and N be the

word length. If y is the number of masks allowed, then in the

worst case (when all the masks are 2s), the number of bits

required is,and this should be less than N. The first two bits are

required to check whether the data is compressed or not, and if

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org

compressed, mask is used or not. So, the maximum number of

bitmasks allowed is

It is not easy to compute y from here since both sides of the

equation contain y related terms. To ease our calculation, we

can replace the y-related term on the right hand side of the

equation with a constant. It is to be noted that since y<N, a safe

measure would be to use 1 as this constant. Therefore, the

final equation for y is

:

Dictionary Selection Method

Dictio nary selection is a major challenge in code compression

Figure 5 compression using bitmasks

A graph is drawn with nodes, where each node signifies a -bit

test vector. An edge is drawn between two nodes when they are

compatible. Two nodes are said to be compatible if they meet

any one of the following two requirements: For all positions,

the corresponding characters in the two vectors are either equal

or one of them is a don’t care; or 2) Two vectors can be

matched by predetermined profitable bit masks. Each edge also

contains weight information. The weight is determined based

on the number of bits that can be saved by using that edge

(direct or bit mask-based matching). Based on this graph

model, three dictionary selection techniques are developed:

Two-step method (TSM); Method using compatible edges

(MCE) without edge weights;MCE with edge weights (MEW).

 Each of these techniques uses a variant of well-known

clique partitioning algorithm. The remainder of this section

describes these three techniques in detail.1.Two-Step

Method: In TSM, only edges that are formed by direct

matching. In other words are considered, the graph will not

have any edges corresponding to bit mask based matching.

Then a clique partitioning algorithm is performed on the graph.

This is a heuristics-based procedure that selects the node with

the largest connectivity and is entered as the first entry to a

clique. Now, the nodes connected with it are analyzed, and the

node having the largest connectivity among these (and not in

the entire graph) is selected. This process is repeated until no

node remains to be selected. The entries of the clique are

deleted from the graph. The algorithm 1 is repeated until the

graph becomes empty. The clique partitioning algorithm is

used in MCE and MEW as well..Method Using Compatible

Edges (MCE) Without Edge Weights: In MCE, weight of all

the edges (direct or bit mask- based match) are considered

equal. A clique selection algorithm is then performed in the

same way as discussed..MCE With Edge Weights (MEW):

MEW is same as MCE except that consider edge weights are

taken. As indicated earlier, the edge weight is determined based

on the number of bits saved if that edge is used for direct or bit

mask-based matching. Since a predefined number of dictionary

entries are taken, two possibilities may arise. The number of

cliques selected may be greater than the predefined number of

entries or vice versa. In the latter case, it is just need to fill in

the dictionary entries with those obtained from clique

partitioning. However, if the number of cliques is larger, it is to

select the best dictionary entries as illustrated in Algorithm 1

by considering maximum overall savings using both frequency

and bit masks.The three methods are illustrated by using the

example test data set in Table 3-4. The resultant graph is shown

in Figure 3.4. The straight lines in the graph indicate a direct

match while the dotted lines signify a match by applying one

bit mask. Obviously, the dotted lines will be absent in case of

TSM. The dotted lines will have the same weight as the straight

lines for MCE. However, they will have different weights in

case of MEW. In case of MEW, the weight is determined based

on the number of bits saved by using that edge (direct or bit

mask match). TABLE.4: Test Data Sets

Data set Entry

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

11X001XX01100110

1X00X10101011100

0X1010101X0110X1

XXXXX1110010011

101X101X0101XX1

1111100000XXXX1

1100XXXX10001X1

111000XXXX1XX11

1010X101X101X100

1100X010X1010X11

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org

Figure 6 Graph model for test data in TABLE 3.4

C. Run Length Encoding of Compressed WordsThe

configuration bitstream usually contains consecutive

repeating bit sequences. Although the bitmask-based

compression encodes such patterns using same repeated

compressed words, it is suggested in [2] and [4] that run

length encoding of these sequences may yield a better

compression result. Interestingly, to represent such

encoding no extra bits are needed. Note that bitmask value

0 is never used, because this value means that it is an exact

match and would have encoded using zero bitmasks. Using

this as a special marker, these repetitionscan be encoded

without changing the code format of bitmask-based

compression. Fig. 4 illustrates the bitmask-based RLE. The

input contains word “00000000” repeating five times. In

normal bitmask-based compression these words will be

compressed with repeated compressed words, whereas our

approach replaces such repetitionsusing a bitmask of “00”.

In this example, the first occurrence will be encoded as

usual, whereas the remaining 4repetitions will be encoded

using RLE. The number of repetition is encoded as bitmask

offset and dictionary bits

combined together. In this example, the bitmask offset is

“10”and dictionary index is “0”. Therefore, the number of

repetition will be “100” (i.e., 4). The compressed words are

run length encoded only if the RLE yields a shorter code

length than the original bitmask encoding. In other words,

if there are repetitions of code with length and the number

of bits required to encode them using RLE is bits, RLE is

used only if bits. Since RLE is performed independently,

the bit savings calculation during dictionary selection (see

Section IV-B) should be modified accordinglyto model the

effect of RLE.D. Decode-Aware Placement of Compressed

BitstreamsThe placement algorithm places all bitmask

codes in the memory so that they can be decompressed

using the efficient

Figure 7 modified data

3.2.4 Run Length Encoding

If the bit-stream contains consecutive repeating bit

sequences, the bitmask-based compression encodes such

patterns using same repeated compressed words, whereas

our approach replaces such repetitions using a bitmask of

“00”. In this example, the first occurrence will be encoded

as usual; whereas the remaining repetitions will be encoded

using our method i.e. run length encoding of these

sequences may yield a better compression result.

Interestingly, to represent such encoding no extra bits are

needed. Note that bitmask value 0 is never used, because

this value means that it is an exact match and would have

encoded using zero bitmasks. Using this as a special

marker, these repetitions can be encoded without changing

the code format of bitmask-based compression.

3.5 Efficiency For Compression and

Decompression

Input previous modified

00XX11X0 0 1 0 0 1 0

11X010XX 1 11X010XX 1 11X010XX

X00X110X 0 1 1 0 1 1

00XX1110 0 1 0 0 1 0

X0XXX100 0 0 11 10 0 0 0 11 10 0

X0XXX100 0 0 11 10 0 0 0 01 00 1

X0XXX100 0 0 11 10 0

X0XXX100 0 0 11 10 0

X0XXX100 0 0 11 10 0

X001XX1X 0 0 01 10 0 0 0 01 10 0

Figure 8: Run Length Encoding For compression

The above figure shows Efficiency for compression and

decompression.when we are given 10 vectors. And each

vector length 8 bits.so totally you are given 80 bit input

data. Using previous method we can reduced only 20 bits

i.e 60 bits are there. The same data repeted contuniesly then

we need not check each and every thing.Using modified

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org

method we can reduced half of the input data. when

efficiency high the data size automatically decresed.

Decompression Technique.

 Figure 9 Decompression engine

The design of a decompression engine (DCE), shown

in Figure.3.7, that can easily handle bit masks and provide fast

decompression. The design of our engine is based on the one

cycle decompression engine proposed by Seong et al. The

most important feature isthe introduction of XOR gate in

addition to the decompression scheme for dictionary based

compression. The decompression engine generates a test data

length bit mask, which is then XOR ed with the dictionary

entry. The test data length bit mask is created by applying the

bit mask on the specified position in the encoding. The

generation of bit mask is done in parallel with dictionary

access, thus reducing additional penalty. The DCE can decode

more than one compressed data in one cycle.The

decompression engine takes the compressed vector as input. It

checks the first bit to see whether the data is compressed. If the

first bit is “1” (implies uncompressed), it directly sends the

uncompressed data to the output buffer. On the other hand, if

the first bit is a “0”, it implies this is a compressed data. Now,

there are two possibilities in this scenario. The data may be

compressed directly using dictionary entry or may have use bit

masks. The decompression engine will operate differently in

these two cases.

 State machine control

Figure 10 state machine control

 Figure 10shows the state diagram of Compression Technique.

Idle state is the initial state. When the rst, clk signal are active,

then for the next state transition it checks the test data memory

is enable, when TDMemEna is high then the test vectors from a

text file is copied to a buffer. When SCEna is high, the vectors

are fed to the scan chain div block. Until Cnt is less than or

equal to number of test vectors, it will be in this state only.

Experimental results

Figure 11:Simulation for compression

Figure 11 Simulation for decompression

 Figure 12 RTL view for decompression

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org

Efficiency for compression and decompression result

CONCLUSION

Using dictionary and bit masking methods we compress

the data and also incress the efficiency of data i.e,data will

be compressed.we have applied our algoritham on various

benchmarks and compared our results with existing test

compression technique.

References

[1] S. Hauck and W. D. Wilson, “Runlength compression

techniques forFPGA configurations,” in Proc. IEEE Symp.

Field-Program. CustomComput. Mach., 1999, pp. 286–287

[2] L. Li, K. Chakrabarty, and N. A. Touba, “Test data

compression usingdictionaries with selective entries and fixed-

length indices,” ACMTrans. Des. Autom. Electron. Syst., vol. 8, no.

4, pp. 470–490, 2003.

[3] J. Nikara, S. Vassiliadis, J. Takala, and P. Liuha, “Multiple-

symbol paralleldecoding for variable length codes,” IEEE Trans.

Very Large ScaleIntegr. (VLSI) Syst., vol. 12, no. 7, pp. 676–685,

Jul. 2004.

[5] S. Seong and P. Mishra, “Bitmask-based code compression for

embeddedsystems,” IEEE Trans. Comput.-Aided Des. Integr.

CircuitsSyst., vol. 27, no. 4, pp. 673–685, Apr. 2008.

0%

5%

10%

15%

20%

25%

30%

16 bits 8 bits

Efficient bit

mask

Dictionary

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

