Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

Rollback Recovery Through Check Points in
Heterogeneous Grid Computing

P.Venkata Maheswara
Assistant Professor, Dept. Of CSE,
KMM Inistitute of Technology and Sciences
Tirupati,India

Abstract:-Large applications executing on Grid or cluster
architectures consisting of hundreds or thousands of
computational nodes create problems with respect to
reliability. The sources of the problems are node failures and
the need for dynamic configuration over extensive runtime.
This paper presents two fault-tolerance mechanisms called
Theft-Induced Check pointing and Systematic Event Logging.
These are transparent protocols capable of overcoming
problems associated with both benign faults, i.e., crash faults,
and node or subnet volatility.

Specifically, the protocols base the state of the execution
on a dataflow graph, allowing for efficient recovery in
dynamic heterogeneous systems as well as multithreaded
applications. By allowing recovery even under different
numbers of processors, the approaches are especially suitable
for applications with a need for adaptive or reactionary
configuration control. The low-cost protocols offer the
capability of controlling or bounding the overhead. A formal
cost model is presented, followed by an experimental
evaluation.

I INTRODUCTION

GRID and cluster architectures have gained popularity for
computationally intensive parallel applications. However,
the complexity of the infrastructure, consisting of
computational nodes, mass storage, and interconnection
networks, poses great challenges with respect to overall
system reliability. Simple tools of reliability analysis show
that as the complexity of the system increases, its
reliability, and thus, Mean Time to Failure (MTTF),
decreases. The reliability of the entire system is computed
as the product of the reliabilities of all system components.
The high failure probabilities are due to the fact that, in the
absence of fault-tolerance mechanisms, the failure of a
single node will cause the entire execution to fail. Note that
this simple example does not even consider network
failures, which are typically more likely than computer
failure. Fault tolerance is, thus, a necessity to avoid failure
in large applications, such as found in scientific computing,
executing on a Grid, or large cluster.

The fault-tolerance mechanisms also have to be
capable of dealing with the specific characteristics of a
heterogeneous and dynamic environment. Even if
individual clusters are homogeneous, heterogeneity in a
Grid is mostly unavoidable, since different participating
clusters often wuse diverse hardware or software
architectures. One possible solution to address

Ch. Chengamma
Assistant Professor, Dept. Of CSE,
KMM Inistitute of Technology and Sciences
Tirupati,India

heterogeneity is to use platform independent abstractions
such as the Java Virtual Machine. However, this does not
solve the problem in general.

There is a large base of existing applications that have been
developed in other languages. Reengineering may not be
feasible due to performance or cost reasons. Environments
like Microsoft .Net address portability but only few
scientific applications on Grids or clusters exist. Whereas
Grids and clusters are dominated by Unix operating
systems, e.g., Linux or Solaris, Microsoft .Net is Windows-
centric with only recent or partial

Unix support. Besides heterogeneity, one has to
address the dynamic nature of the Grid. Volatility is not
only an intracluster issue, i.e., configuration changes
within a cluster, but also an intercluster reality.

Intracluster volatility may be the result of node
failures, whereas intercluster volatility is caused by
network disruptions between clusters. From an
administrative viewpoint, the reality of Grid operation,
such as cluster/node reservations or maintenance, may
restrict long executions on fixed topologies due to the fact
that operation at different sites may be hard to coordinate.
It is usually difficult to reserve a large cluster for long
executions, let alone scheduling extensive uninterrupted
time on multiple, perhaps geographically dispersed, sites.
Lastly, configuration changes may be induced by the
application as the result of changes of runtime observable
quality-of-service (Quos) parameters. To overcome the
aforementioned problems and challenges, we present
mechanisms that tolerate faults Operation-induced
disruption of parts or the entire execution of the
application. We introduce flexible rollback recovery
mechanisms that impose no artificial restrictions on the
execution. They do not depend on the refailure
configuration and consider
1) Node and cluster failures as well as operation-induced
unavailability of resources and
2) Dynamic topology reconfiguration in heterogeneous
systems.

1. MODULE DESCRIPTION

1. Network Module:
Client-server computing or networking is a distributed
application architecture that partitions tasks or workloads
between service providers (servers) and service requesters,

Volume 3, | ssue 18

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

called clients. Often clients and servers operate over a
computer network on separate hardware. A server machine
is a high-performance host that is running one or more
server programs which share its resources with clients. A
client also shares any of its resources; Clients therefore
initiate communication sessions with servers which await
(listen to) incoming requests.

User fesource ; Service resource : Functionality
I 1 I

ﬁ_—l 1 identyeed :
|
|

2. request() 3. doComputeRequest))

Y

. S.respond() 4. process()

6. provide()

Rl

L
|
|
|
|
|

2. Logging Module:

Logging can be classified as pessimistic, optimistic, or
causal. It is based on the fact that the execution of a process
can be modeled as a sequence of state intervals. The
execution during a state interval is deterministic. However,
each state interval is initiated by a nondeterministic event.
Now, assume Othat the system can capture and log
sufficient information about the nondeterministic events
that initiated the state interval. This is called the piecewise
deterministic (PWD) assumption .Then, a crashed process
can be recovered by 1) restoring it to the initial state and 2)
replaying the logged events to it in the same order they
appeared in the execution before the crash. To avoid a
rollback to the initial state of a process and to limit the
amount of nondeterministic events that need to be replayed,
each process periodically saves its local state. Log-based
mechanisms in which the only nondeterministic events in a
system are the reception of messages is usually referred to
as message logging.

3. Check-pointing Module

Rather than logging events, check pointing relies on
periodically saving the state of the computation to stable
storage. If a fault occurs, the computation is restarted from
one of the previously saved states. Since the computation is
distributed, one has to consider the tradeoff space of local
and global check pointing strategies and their resulting
recovery cost. Thus, check pointing based methods differs
in the way processes are coordinated and in the derivation
of a consistent global state. The consistent global state can
be achieved either at the time of check pointing or at the
time of rollback recovery. The two approaches are called
coordinated and uncoordinated check pointing,
respectively.

4. Work Stealing Module:

The runtime environment and primary mechanism for load
distribution is based on a scheduling algorithm called
work-stealing .The principle is simple: when a process
becomes idle it tries to steal work from another process
called victim. The initiating process is called thief. Work-
stealing is the only mechanism for distributing the
workload constituting the application, i.e., an idle process
seeks to steal work from another process. From a practical
point of view, the application starts with the process
executing main (), which creates tasks. Typically, some of
these tasks are then stolen by idle processes, which are
either local or on other processors. Thus, the principal
mechanism for dispatching tasks in the distributed
environment is task stealing

Home
Network

RF Tuners

CableCARD or
Embedded
CAS

and

Cable

Plant
RF Transmitter

DOCSIS

Internet
Protocol
Packetizer

Ethernet Port

Multiple
Devices

coordinator participant coordinator participant
Fo B time Pa R
@ i @
log log
@ vos YES
1 hase 1
phase g prase O votenO
YES YES
(o} O
log log
phasa 2 e phasa 2 @ [abort
og log
O . force log
log O no forca log log

modem

Parts of UPnP on Standard IP
Protocols (HTTP, SSL, etc)
Linux or other OS)

Cable Gateway

Software Hardware
Component Component

5. Fault and Fault Free Module:
We add a check pointing mechanism; it is of special
interest to analyze its overhead associated with fault-free
execution, since the occurrence of faults is considered to be
the rare exception rather than the norm.

Volume 3, | ssue 18

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

BEGIN

605

606

WAIT UNTIL
RECEIVING NEW
ROUTINGS

l CONSTRUCT

INITIAL ROUTING

l 608
‘ IMPROVE ROUTING t—/

610
UPDATE NODES
WITH NEW ROUTINGS

* 612
RESUME ROUTING
PACKETS

END

1. IMPLEMENTATION

Implementation is the stage in the project where the
theoretical design is turned into a working system and is
giving confidence on the new system for the users, which it
will work efficiently and effectively. It involves careful
planning, investigation of the current System and its
constraints on implementation, design of methods to
achieve the change over, an evaluation, of change over
methods. Apart from planning major task of preparing the
implementation are education and training of users. The
more complex system being implemented, the more
involved will be the system analysis and the design effort
required just for implementation.

An implementation co-ordination committee
based on policies of individual organization has been
appointed. The implementation process begins with
preparing a plan for the implementation of the system.
According to this plan, the activities are to be carried out,
discussions made regarding the equipment and resources
and the additional equipment has to be acquired to
implement the new system.
Implementation is the final and important phase, the most
critical stage in achieving a successful new system and in
giving the users confidence. That the new system will work
be effective.

User Training:
After the system is implemented successfully, training of
the user is one of the most important subtasks of the
developer. For this purpose user manuals are prepared and
handled over to the user to operate the developed system.
Thus the users are trained to operate the developed systems
successfully in future .In order to put new application
system into use, the following activities were taken care
of:

e Preparation of user and system documentation

e Conducting user training with demo and hands on

e Test run for some period to ensure smooth

switching over the system

The users are trained to use the newly developed
functions. User manuals describing the procedures for
using the functions listed on menu and circulated to all the
users .it is confirmed that the system is implemented up to
user need and expectations.

Protocol :

It detects traffic faulty routers by validating the
queue of each output interface for each router. Given the
buffer size and the rate at which traffic enters and exits a
queue, the behavior of the queue is deterministic. If the
actual behavior deviates from the predicted behavior, then
a failure has occurred. We present the failure detection
protocol in terms of the solutions of the distinct sub
problems: traffic validation, distributed detection, and
response.

N

Node B
Trom
A=
A - | node
‘ o
Service rate L

packets/sec

V. CONCLUISON

To overcome the problem of applications
executing in large Systems where the MTTF approaches or
sinks below the execution time of the application, two
fault-tolerant protocols, TIC and SEL, were introduced.
The two protocols take wunder consideration the
heterogeneous and dynamic characteristics of Grid or
cluster applications that pose limitations on the effective
exploitation of the underlying infrastructure. The flexibility
of dataflow graphs has been exploited to allow for a
platform-independent description of the execution state.
This description resulted in flexible and portable rollback
recovery strategies. SEL allowed for rollback at the lowest
level of granularity, with a maximal computational loss of
one task. However, its overhead was sensitive to the size of
the associated dataflow graph. TIC experienced lower
overhead, related to work-stealing, which was shown
bounded by the critical path of the graph. By selecting an
appropriate application granularity for SEL and period _
for TIC, the protocols can be tuned to the specific
requirements or needs of the application. A cost model was
derived, quantifying the induced overhead of both
protocols. The experimental Results confirmed the
theoretical analysis and demonstrated the low overhead of
both approaches. ACKNOWLEDGMENTS the authors
wish to thank Jean-Louis Roche, ID-IMAG, France, for all
the discussions and valuable insight that led to the success
of this research.

Volume 3, | ssue 18

Published by, www.ijert.org 3

Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

V. REFERENCES

1. Bouteiller et al., “MPICH-V2: A Fault Tolerant MPI for
Volatile Nodes Based on the Pessimistic Sender Based
Message Logging,” Proc. =~ ACM/IEEE Conf.
Supercomputing (SC ’03), pp. 1-17, 2003.

2. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello,
“Coordinated Checkpoint versus Message Log for Fault
Tolerant MPI,” Proc. Fifth IEEE Int’l Conf. Cluster
Computing (Cluster ’03), p. 242, 2003.

3. S. Chakravorty and L.V. Kale, “A Fault Tolerant
Protocol for Massively Parallel Machines,” Proc. 18th
IEEE Int’l Parallel and Distributed Processing Symp.
(IPDPS °04), p. 212a, 2004.

4. K.M. Chandy and L. Lamport, “Distributed Snapshots:
Determining Global States of Distributed Systems,”
ACM Trans. Computer Systems, vol. 3, no. 1, pp. 63-75,
1985.

5. E.N. Elnozahy, L. Alvisi, Y.-M. Wang, and D.B.
Johnson, “A Survey of Rollback-Recovery Protocols in
Message-Passing Systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375-408, Sept. 2002.

6. S. Jafar, T. Gautier, A. Krings, and J.-L. Roch, “A
Checkpoint/ Recovery Model for Heterogeneous
Dataflow Computations Using Work-Stealing,” Proc.
European Conf. Parallel Processing (EuroPar ’05), pp.
675-684, Aug.-Sept. 2005.

7. G. Zheng, L. Shi, and L.V. Kale’, “FTC Charm++: An
In-Memory Checkpoint-Based Fault Tolerant Runtime
for Charm++ and MPL” Proc. Sixth IEEE Int’l Conf.
Cluster Computing (Cluster *04), pp. 93-103, Sept. 2004.

8. AW. Krings, J.-L. Roch, S. Jafar, and S. Varrette, “A
Probabilistic Approach for Task and Result Certification
of Large-Scale Distributed Applications in Hostile
Environments,” Proc. European Grid Conf. (EGC °05), P.
Sloot et al., eds., Feb. 2005.

Volume 3, Issue 18 Published by, www.ijert.org 4

