

P.Venkata Maheswara

 Ch. Chengamma

Assistant Professor, Dept. Of CSE, Assistant Professor, Dept. Of CSE,

KMM Inistitute of Technology and Sciences KMM Inistitute of Technology and Sciences

Tirupati,India Tirupati,India

Abstract:-Large applications executing on Grid or cluster

architectures consisting of hundreds or thousands of

computational nodes create problems with respect to

reliability. The sources of the problems are node failures and

the need for dynamic configuration over extensive runtime.

This paper presents two fault-tolerance mechanisms called

Theft-Induced Check pointing and Systematic Event Logging.

These are transparent protocols capable of overcoming

problems associated with both benign faults, i.e., crash faults,

and node or subnet volatility.

Specifically, the protocols base the state of the execution

on a dataflow graph, allowing for efficient recovery in

dynamic heterogeneous systems as well as multithreaded

applications. By allowing recovery even under different

numbers of processors, the approaches are especially suitable

for applications with a need for adaptive or reactionary

configuration control. The low-cost protocols offer the

capability of controlling or bounding the overhead. A formal

cost model is presented, followed by an experimental

evaluation.

I. INTRODUCTION

GRID and cluster architectures have gained popularity for

computationally intensive parallel applications. However,

the complexity of the infrastructure, consisting of

computational nodes, mass storage, and interconnection

networks, poses great challenges with respect to overall

system reliability. Simple tools of reliability analysis show

that as the complexity of the system increases, its

reliability, and thus, Mean Time to Failure (MTTF),

decreases. The reliability of the entire system is computed

as the product of the reliabilities of all system components.

The high failure probabilities are due to the fact that, in the

absence of fault-tolerance mechanisms, the failure of a

single node will cause the entire execution to fail. Note that

this simple example does not even consider network

failures, which are typically more likely than computer

failure. Fault tolerance is, thus, a necessity to avoid failure

in large applications, such as found in scientific computing,

executing on a Grid, or large cluster.

The fault-tolerance mechanisms also have to be

capable of dealing with the specific characteristics of a

heterogeneous and dynamic environment. Even if

individual clusters are homogeneous, heterogeneity in a

Grid is mostly unavoidable, since different participating

clusters often use diverse hardware or software

architectures. One possible solution to address

heterogeneity is to use platform independent abstractions

such as the Java Virtual Machine. However, this does not

solve the problem in general.

There is a large base of existing applications that have been

developed in other languages. Reengineering may not be

feasible due to performance or cost reasons. Environments

like Microsoft .Net address portability but only few

scientific applications on Grids or clusters exist. Whereas

Grids and clusters are dominated by Unix operating

systems, e.g., Linux or Solaris, Microsoft .Net is Windows-

centric with only recent or partial

Unix support. Besides heterogeneity, one has to

address the dynamic nature of the Grid. Volatility is not

only an intracluster issue, i.e., configuration changes

within a cluster, but also an intercluster reality.

Intracluster volatility may be the result of node

failures, whereas intercluster volatility is caused by

network disruptions between clusters. From an

administrative viewpoint, the reality of Grid operation,

such as cluster/node reservations or maintenance, may

restrict long executions on fixed topologies due to the fact

that operation at different sites may be hard to coordinate.

It is usually difficult to reserve a large cluster for long

executions, let alone scheduling extensive uninterrupted

time on multiple, perhaps geographically dispersed, sites.

Lastly, configuration changes may be induced by the

application as the result of changes of runtime observable

quality-of-service (Quos) parameters. To overcome the

aforementioned problems and challenges, we present

mechanisms that tolerate faults Operation-induced

disruption of parts or the entire execution of the

application. We introduce flexible rollback recovery

mechanisms that impose no artificial restrictions on the

execution. They do not depend on the refailure

configuration and consider

 1) Node and cluster failures as well as operation-induced

unavailability of resources and

2) Dynamic topology reconfiguration in heterogeneous

systems.

II. MODULE DESCRIPTION

1. Network Module:

Client-server computing or networking is a distributed

application architecture that partitions tasks or workloads

between service providers (servers) and service requesters,

Rollback Recovery Through Check Points in

Heterogeneous Grid Computing

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

1

called clients. Often clients and servers operate over a

computer network on separate hardware. A server machine

is a high-performance host that is running one or more

server programs which share its resources with clients. A

client also shares any of its resources; Clients therefore

initiate communication sessions with servers which await

(listen to) incoming requests.

2. Logging Module:

Logging can be classified as pessimistic, optimistic, or

causal. It is based on the fact that the execution of a process

can be modeled as a sequence of state intervals. The

execution during a state interval is deterministic. However,

each state interval is initiated by a nondeterministic event.

Now, assume 0that the system can capture and log

sufficient information about the nondeterministic events

that initiated the state interval. This is called the piecewise

deterministic (PWD) assumption .Then, a crashed process

can be recovered by 1) restoring it to the initial state and 2)

replaying the logged events to it in the same order they

appeared in the execution before the crash. To avoid a

rollback to the initial state of a process and to limit the

amount of nondeterministic events that need to be replayed,

each process periodically saves its local state. Log-based

mechanisms in which the only nondeterministic events in a

system are the reception of messages is usually referred to

as message logging.

3. Check-pointing Module

 Rather than logging events, check pointing relies on

periodically saving the state of the computation to stable

storage. If a fault occurs, the computation is restarted from

one of the previously saved states. Since the computation is

distributed, one has to consider the tradeoff space of local

and global check pointing strategies and their resulting

recovery cost. Thus, check pointing based methods differs

in the way processes are coordinated and in the derivation

of a consistent global state. The consistent global state can

be achieved either at the time of check pointing or at the

time of rollback recovery. The two approaches are called

coordinated and uncoordinated check pointing,

respectively.

4. Work Stealing Module:

 The runtime environment and primary mechanism for load

distribution is based on a scheduling algorithm called

work-stealing .The principle is simple: when a process

becomes idle it tries to steal work from another process

called victim. The initiating process is called thief. Work-

stealing is the only mechanism for distributing the

workload constituting the application, i.e., an idle process

seeks to steal work from another process. From a practical

point of view, the application starts with the process

executing main (), which creates tasks. Typically, some of

these tasks are then stolen by idle processes, which are

either local or on other processors. Thus, the principal

mechanism for dispatching tasks in the distributed

environment is task stealing

5. Fault and Fault Free Module:

We add a check pointing mechanism; it is of special

interest to analyze its overhead associated with fault-free

execution, since the occurrence of faults is considered to be

the rare exception rather than the norm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

2

III. IMPLEMENTATION

Implementation is the stage in the project where the

theoretical design is turned into a working system and is

giving confidence on the new system for the users, which it

will work efficiently and effectively. It involves careful

planning, investigation of the current System and its

constraints on implementation, design of methods to

achieve the change over, an evaluation, of change over

methods. Apart from planning major task of preparing the

implementation are education and training of users. The

more complex system being implemented, the more

involved will be the system analysis and the design effort

required just for implementation.

An implementation co-ordination committee

based on policies of individual organization has been

appointed. The implementation process begins with

preparing a plan for the implementation of the system.

According to this plan, the activities are to be carried out,

discussions made regarding the equipment and resources

and the additional equipment has to be acquired to

implement the new system.

Implementation is the final and important phase, the most

critical stage in achieving a successful new system and in

giving the users confidence. That the new system will work

be effective.

User Training:

After the system is implemented successfully, training of

the user is one of the most important subtasks of the

developer. For this purpose user manuals are prepared and

handled over to the user to operate the developed system.

Thus the users are trained to operate the developed systems

successfully in future .In order to put new application

system into use, the following activities were taken care

of:

 Preparation of user and system documentation

 Conducting user training with demo and hands on

 Test run for some period to ensure smooth

switching over the system

The users are trained to use the newly developed

functions. User manuals describing the procedures for

using the functions listed on menu and circulated to all the

users .it is confirmed that the system is implemented up to

user need and expectations.

Protocol :

It detects traffic faulty routers by validating the

queue of each output interface for each router. Given the

buffer size and the rate at which traffic enters and exits a

queue, the behavior of the queue is deterministic. If the

actual behavior deviates from the predicted behavior, then

a failure has occurred. We present the failure detection

protocol in terms of the solutions of the distinct sub

problems: traffic validation, distributed detection, and

response.

IV. CONCLUISON

 To overcome the problem of applications

executing in large Systems where the MTTF approaches or

sinks below the execution time of the application, two

fault-tolerant protocols, TIC and SEL, were introduced.

The two protocols take under consideration the

heterogeneous and dynamic characteristics of Grid or

cluster applications that pose limitations on the effective

exploitation of the underlying infrastructure. The flexibility

of dataflow graphs has been exploited to allow for a

platform-independent description of the execution state.

This description resulted in flexible and portable rollback

recovery strategies. SEL allowed for rollback at the lowest

level of granularity, with a maximal computational loss of

one task. However, its overhead was sensitive to the size of

the associated dataflow graph. TIC experienced lower

overhead, related to work-stealing, which was shown

bounded by the critical path of the graph. By selecting an

appropriate application granularity for SEL and period _

for TIC, the protocols can be tuned to the specific

requirements or needs of the application. A cost model was

derived, quantifying the induced overhead of both

protocols. The experimental Results confirmed the

theoretical analysis and demonstrated the low overhead of

both approaches. ACKNOWLEDGMENTS the authors

wish to thank Jean-Louis Roche, ID-IMAG, France, for all

the discussions and valuable insight that led to the success

of this research.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

3

V. REFERENCES

1. Bouteiller et al., “MPICH-V2: A Fault Tolerant MPI for

Volatile Nodes Based on the Pessimistic Sender Based

Message Logging,” Proc. ACM/IEEE Conf.

Supercomputing (SC ’03), pp. 1-17, 2003.
2. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello,

“Coordinated Checkpoint versus Message Log for Fault

Tolerant MPI,” Proc. Fifth IEEE Int’l Conf. Cluster
Computing (Cluster ’03), p. 242, 2003.

3. S. Chakravorty and L.V. Kale, “A Fault Tolerant

Protocol for Massively Parallel Machines,” Proc. 18th
IEEE Int’l Parallel and Distributed Processing Symp.

(IPDPS ’04), p. 212a, 2004.

4. K.M. Chandy and L. Lamport, “Distributed Snapshots:
Determining Global States of Distributed Systems,”

ACM Trans. Computer Systems, vol. 3, no. 1, pp. 63-75,

1985.
5. E.N. Elnozahy, L. Alvisi, Y.-M. Wang, and D.B.

Johnson, “A Survey of Rollback-Recovery Protocols in

Message-Passing Systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375-408, Sept. 2002.

6. S. Jafar, T. Gautier, A. Krings, and J.-L. Roch, “A

Checkpoint/ Recovery Model for Heterogeneous
Dataflow Computations Using Work-Stealing,” Proc.

European Conf. Parallel Processing (EuroPar ’05), pp.
675-684, Aug.-Sept. 2005.

7. G. Zheng, L. Shi, and L.V. Kale´, “FTC Charm++: An

In-Memory Checkpoint-Based Fault Tolerant Runtime
for Charm++ and MPI,” Proc. Sixth IEEE Int’l Conf.

Cluster Computing (Cluster ’04), pp. 93-103, Sept. 2004.

8. A.W. Krings, J.-L. Roch, S. Jafar, and S. Varrette, “A
Probabilistic Approach for Task and Result Certification

of Large-Scale Distributed Applications in Hostile

Environments,” Proc. European Grid Conf. (EGC ’05), P.
Sloot et al., eds., Feb. 2005.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

4

