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Abstract—The twin rotor MIMO system is a laboratory 

setup resembling the dynamics of a helicopter. It is a 

complicated non linear system with heavy cross coupling effects 

between the propellers commonly used for verification of 

control methods and observers. In this paper the robustness and 

tracking capabilities of the decoupled system are evaluated and 

compared using PID controllers, LQI controller and a robust 

optimal controller. It was observed that the robust optimal 

controller exhibited superior performance to the output 

feedback and optimal controllers.      

Keywords—Optimal control,Linear Quadratic Regulator with 

integral action(LQI),robust optimal control etc.. 

I.  INTRODUCTION  

The Twin Rotor MIMO System (TRMS) is a laboratory 
prototype of a helicopter developed by Feedback Instruments 
Ltd. for the purpose of validating new control methodologies. 
A lot of research work has been carried out in applying 
machine learning algorithm to the system to find out the 
optimal parameters that guarantee the desired system 
performance. However, these methods do not guarantee a 
robust performance which is very essential in aerospace 
applications. To ensure robustness different control strategies 
like deadbeat control, H infinity and sliding mode control are 
applied to the system. 

 The simplest way of controlling a plant is by using a PID 
controller. However, manual tuning of the PID controller 
requires a greater human effort which is a major drawback. In 
[6], Meon M.S. proposed a PID active force control method 
which estimated the external torque disturbances and used 
soft computing techniques to optimize the PID response. The 
method provided a smooth response but the response of the 
yaw subsystem was not reported.  

A better but complex method is to use the optimal 
controllers which deal with finding the optimal solution by 
solving the Algebraic Riccatti Equation. These controllers 
require linear system and full state feedback. In 2004, A.Q. 
Khan used a Linear Quadratic Regulator (LQR) method to 
control a 3 DOF helicopter [7]. The controller provided good 
response but was not robust to uncertainties. In 2012, 
B.Pratap decoupled the system into two subsystems and 
designed two LQR controllers for the subsystems [5]. The 
Kalman gain was updated iteratively to find the optimal 
solution. The regulation was excellent but nothing was 
published on the tracking results. In 2014, Andrew Phillips 
proposed a sub optimal LQR controller by adding integral 
action [4]. Both regulation and tracking responses were 

excellent but no conclusion was drawn on the controller’s 
ability to withstand disturbances. 

Among the various controllers available the Sliding Mode 
Controller (SMC) provides superior robustness in case of 
internal as well as external disturbances affecting the system. 
The main idea of SMC is to create a switching surface and 
then to force the states of the system to reach this surface and 
then to slide along it. In 2013, D.K.Saroj designed and 
implemented SMC with non linear state observer was for 
decoupled TRMS [8]. The controller provided excellent 
tracking of reference signal but nothing was published about 
the controller’s ability to attenuate input chattering. In 2012, 
S.Mondal et al designed an adaptive integral sliding mode 
controller that takes care of the unmodeled disturbances and 
dynamics [1]. The controller eliminated chattering in 
simulation.  

In this paper, combining LQI and SMC, the design of a 
robust optimal sliding mode controller is concerned. In part 
two, mathematical model of the TRMS is derived. In part 
three, optimal control with integral action is derived. In part 
four, the optimal controller is robustified by combining 
sliding mode control action. In part five, simulation results 
are discussed and in part six, conclusions are drawn. 

II. MATHEMATICAL MODEL OF THE TRMS

 
Fig. 1. The Twin Rotor MIMO System. 

 

      The Twin Rotor MIMO system consists of two rotors. 

One is the main rotor which is responsible for controlling the 

flight of the TRMS in the vertical direction and other is the 

tail rotor which is responsible for controlling the flight of the 

TRMS in the horizontal direction. A horizontal beam is 
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affixed to a vertical pillar via a two dimensional pivot. The 

main rotor is attached to the front of the beam, parallel to the 

ground and the tail rotor is attached to the rear of the beam, 

perpendicular to the ground. A counter balance weight is 

attached to the beam to balance the system under steady state. 

The two rotors are driven by two separate DC motors. 

 

 The plant model can be derived by forming the vertical 

and horizontal equations of momentum. The momentum 

equation for vertical movement can be given as: 

 

𝐼1�̈�𝑉 = 𝑀1 − 𝑀𝐹𝐺 − 𝑀𝐵𝜃𝑉
− 𝑀𝐺             (1) 

 

The momentum equation for horizontal movement is given 

by: 

𝐼2�̈�𝐻 = 𝑀2 − 𝑀𝐵𝜃𝐻
− 𝑀𝑅                          (2) 

 

Where, 𝜃𝑉 and 𝜃𝐻 are the pitch and yaw angles, 𝑀1 and 𝑀2 

are the nonlinear static characteristics of the main and tail 

rotors defined by: 

 

𝑀1 = 𝑎1𝜏1
2 + 𝑏1𝜏1                                   (3) 

  

𝑀2 = 𝑎2𝜏2
2 + 𝑏2𝜏2                                  (4) 

 

𝑀𝐵𝜃𝑋
 is the frictional momentum given by: 

 

𝑀𝐵𝜃𝐻
= 𝐵1𝜃𝑋

�̇�𝑋 − 
0.0326

2
sin(2𝜃𝑋) �̇�𝑋

2
               (5) 

 

𝑀𝐹𝐺  is the gravitational momentum defined by: 

 

𝑀𝐹𝐺 = 𝑀𝑔 sin 𝜃𝑉                                                           (6) 

 

𝑀𝐺 is the gyroscopic momentum given by: 

 

𝑀𝐺 = 𝐾𝑔𝑦𝑀1�̇�𝐻𝑐𝑜𝑠𝜃𝑣                                             (7) 

 

𝑀𝑅 is the cross reaction momentum given by: 

 

𝑀𝑅 =
𝐾𝑐(𝑇0𝑠 + 1)

(𝑇𝑃𝑠 + 1)
𝑀1                                                    (8) 

 

Above equation can be written in state space form as: 

 

�̇�𝑅 = −
1

𝑇𝑃

𝑀𝑅 + 𝑀1                                                (9) 

The DC motors can be modeled as first order systems. 

Equations for vertical and horizontal systems are given by: 

 

𝜏1 =
𝐾1

𝑇11𝑠 + 𝑇10

𝑈𝑉                                                       (10) 

 

𝜏2 =
𝐾2

𝑇21𝑠 + 𝑇20

𝑈𝐻                                                      (11) 

 

Combining equations (1) to (11) the complete state equations 

for the TRMS plant can be derived as in (12): 

𝑑𝜃𝑉

𝑑𝑡
= ΩV 

 
𝑑ΩV

𝑑𝑡
=

1

𝐼1

[𝑎1𝜏1
2 + 𝑏1𝜏1 − 𝑀𝑔 sin 𝜃𝑉 − 𝐵1𝜃𝑉

ΩV

+  
0.0326

2
sin(2𝜃𝑉) ΩV

2

− 𝐾𝑔𝑦𝑎1 cos(𝜃𝑉) ΩHτ1
2

− 𝐾𝑔𝑦𝑏1 cos(𝜃𝑉) ΩHτ1] 
 

𝑑𝜃𝐻

𝑑𝑡
= ΩH 

 

𝑑ΩH

𝑑𝑡
=

1

𝐼2

[𝑎2𝜏2
2 + 𝑏2𝜏2 − 𝐵1𝜃𝐻

ΩH − (
𝐾𝑐

𝑇𝑃

−
𝐾𝑐𝑇𝑃

𝑇𝑃
2 ) 𝑀𝑅

−                  
𝐾𝑐𝑇0

𝑇𝑃

(𝑎1𝜏1
2 + 𝑏1𝜏1)] 

 

�̇�𝑅 = −
1

𝑇𝑃
𝑀𝑅 + 𝑎1𝜏1

2 + 𝑏1𝜏1 

 
𝑑𝜏1

𝑑𝑡
= −

T10

T11

𝜏1 +
𝐾1

T11

𝑈𝑉 

 
𝑑𝜏2

𝑑𝑡
= −

T20

T21

𝜏2 +
𝐾2

T21

𝑈𝐻                                                 (12) 

 

Now the state variables are defined as: 

𝑋 = [𝜃𝑉 ΩV 𝜃𝐻 ΩH 𝑀𝑅 𝜏1 𝜏2]𝑇                (13) 

 

TABLE Ι.  PHYSICAL PARAMETERS OF THE TRMS 
 

Parameter Description Value Units 

a1 Main Rotor Coefficient 0.0135 N/A 

b1 Main Rotor Coefficient 0.0924 m 

a2 Tail Rotor Coefficient 0.01 m 

b2 Tail Rotor Coefficient 0.09 m 

B1θV
 Friction Coefficient 0.003 Nms/rad 

B1θH
 Friction Coefficient 0.1 Nms/rad 

Mg Moment of Gravity 0.29 Nm 

I1 Pitch Moment of Inertia 0.0535 Kgm2 

I2 Yaw Moment of inertia 0.02 Kgm2 

Kgy Gyroscopic Momentum 0.05 s/rad 

TP Cross-Reaction 

Momentum Parameter 

2 N/A 

T0 Cross-Reaction 

Momentum Parameter 

3.5 N/A 

Kc Cross-Reaction 

Momentum Gain 

-0.2 N/A 

T10 Main Rotor Denominator 1 N/A 

T11 Main Rotor Denominator 1.1 N/A 

T20 Tail Rotor Denominator 1 N/A 

T21 Tail Rotor Denominator 1 N/A 

III. OPTIMAL CONTROL WITH INTEGRAL ACTION 

It has been widely accepted that the method of full state 
feedback provides a much superior performance than output 
feedback. Controller design by pole placement results in an 
over determined system of equations. That is the number of 
equations are more than the number of variables to be solved 
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for. Since there is more than one solution, one will be better 
than others in a quantifiable manner and this gave birth to the 
concept of optimal control theory. 

 To implement optimal control, the plant model given by 
(12) is linearized about the origin to form a continuous time 
linear system is given by: 

�̇� = 𝐴𝑋 + 𝐵𝑈                                                              (14) 
  

The optimal control input can be obtained as 

𝑈 = −𝐾𝑋                                                                     (15) 

Where, K is the state feedback gain or kalman gain, 

𝐾 = 𝑅−1𝐵𝑇𝑃                                                               (16) 

 Obtained by solving the Algebraic Riccatti Equation for P 
given by: 

−�̇� = 𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄                     (17)    

 Here P is a positive definite time varying matrix that 
weights the final states of the system, Q is a positive definite 
time varying matrix that weights the states of the system over 
time and R is a positive semi definite matrix that weights the 
input of the system over time.  
 

 Equations (16) and (17) implies that the Kalman gain is 
time varying. The optimal Kalman gain matrix can be 
approximated by assuming a steady state solution to (17). 
This is given by (18). 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                         (18)    

 In order to design the controller using above equation that 
is by ensuring zero steady state error to a step input, integral 
action must be imparted on the control loop. This is imparted 
by restating the system with additional states that are the 
output errors of the system. This method releases an 
outstanding precise tracking response compared to the 
conventional state dependent riccatti equation controller. 

 Integral action is imparted by augmenting the state space 
system as: 

�̂� = [
𝐴 0

−𝐶 0
] ,   

 

�̂� = [
𝐵
0

]                                                                        (19) 

 

 The result of this augmentation is that number of poles 
equal to number of outputs is placed at the origin. 
 

 

                 Fig. 2. Block diagram of optimal control with integral action. 
  

IV. ROBUSTIFYING THE OPTIMAL CONTROLLER 

The optimal controller design described above is based on 
precise mathematical models. If the controlled system is 
subjected to uncertainties or external disturbances, the 
performance criterion optimized based on nominal system 
might deviate from optimal value and the system might even 
become unstable.   

To alleviate this problem, the sliding mode control which 
is a precise and robust control algorithm is combined with the 
optimal controller to generate a global robust optimal sliding 
mode controller(ROSMC) for the system. 

The state equation for an uncertain dynamic system can 
be written as: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝛿(𝑥, 𝑡)                                (20) 

Where, 

            𝛿(𝑥, 𝑡) = 𝐵�̌�(𝑥, 𝑡)  

‖�̌�(𝑥, 𝑡)‖ ≤ 𝛾0 + 𝛾1‖𝑥(𝑡)‖                                           (21) 

is the uncertain extraneous disturbance acting on the system 
and 𝛾0 and 𝛾1 are small positive constants. 

A. Design of optimal sliding mode controller 

Considering the uncertain system in (20), an integral 
sliding surface is defined as: 

𝑠(𝑥, 𝑡) =   𝐺[𝑥(𝑡) − 𝑥(0)] − 𝐺 ∫(𝐴 − 𝐵𝑅−1𝐵𝑇𝑃

𝑡

0

)𝑥(𝜏)𝑑𝜏 

 = 0                                                                      (22) 

Where 𝐺 𝜖 𝑅𝑚𝑋𝑛 , which satisfies GB is non singular. 

Differentiating (22) with respect to t, we get, 

�̇� = 𝐺[𝐴𝑥 + 𝐵𝑢 + 𝛿] − 𝐺[𝐴 − 𝐵𝑅−1𝐵𝑇𝑃]𝑥              (23) 
 

The equivalent control law becomes, 

𝑢𝑒𝑞 = −[𝐺𝐵]−1[𝐺𝛿 + 𝐺(𝑅−1𝐵𝑇𝑃)𝑥]                           (24) 

Substituting (24) into (20), the ideal sliding mode 
dynamics become, 

�̇� = 𝐴𝑥 − 𝐵[𝐺𝐵]−1[𝐺𝛿 + 𝐺(𝑅−1𝐵𝑇𝑃)𝑥] + 𝛿             (25) 

To ensure reachability of the sliding mode in finite time, 
the control law is defined as: 

𝑢 = 𝑢𝑐 + 𝑢𝑑                                                                      (26) 

Where, 𝑢𝑐 is the continuous part which is same as U 
given by (15) used to stabilize and optimize the nominal 
system and 𝑢𝑑  is the discontinuous part which completely 
compensates for the uncertainties of the system. 

𝑢𝑑 = −(𝐺𝐵)−1(𝜂 + 𝛾0‖𝐺𝐵‖ + 𝛾1‖𝐺𝐵‖‖𝑥‖)𝑠𝑔𝑛(𝑠)    (27) 

 

With the above control law (26) and integral sliding 
surface (22), the uncertain system (20) achieves global 
sliding mode and the performance index can be minimized. 
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V. SIMULATION RESULTS 

All the simulations were performed in MATLAB and 
SIMULINK environment using ode5 solver and a sampling 
time of 1 ms. A Luenberger observer was designed to provide 
full state feedback and for the purpose of comparison a PID 
controller was used. The step response and tracking response 
of the plant with PID controller, LQI controller and robust 
optimal sliding mode controller are evaluated and compared. 
Then a robustness evaluation of the plant with LQI and 
ROSMC is performed.  

 

 

Fig. 3. Step response of TRMS with different controllers. 

 

Fig. 4. Tracking response of TRMS with different controllers. 
 

 

Fig. 5. Robustness evaluation of ROSMC and LQI controller. 
 

The step response of the plant with PID controller, LQI 
controller and Robust Optimal Sliding Mode Controller was 
evaluated with a desired pitch of 0.2Π radians and desired 
yaw of 0.6 Π radians. It can be seen from Fig. 3. that the PID 

controller exhibits the worst performance with maximum 
overshoot. The LQI controller provides a better performance 
but has a slight overshoot in the pitch response. The ROSMC 
exhibits the best step response with no overshoot, rapid rise 
time and quick settling. 

Fig. 4. Shows the tracking response of the plant with PID 
controller, LQI controller and Robust Optimal Sliding Mode 
Controller. A sine wave of 0.2 Π radians amplitude and 
0.025Hz frequency was used to evaluate the tracking 
capabilities of the controllers. Here also the PID controller 
exhibits the worst tracking with greatest deviation from the 
reference signal. LQI and ROSMC provide almost similar 
tracking response with reduced deviation from the reference 
signal. Backward integration in the optimal control loop has 
greatly improved the tracking capabilities of the controllers.  

It can be seen that, in the absence of external disturbances 
the LQI controller and ROSMC exhibits almost similar 
response. In order to evaluate the robustness properties of the 
designed controllers, an external disturbance, d(t)= 0.2sin2t 
was  applied to the system in the time interval 40s to 50s. It 
can be seen from Fig. 5 that the response of system with LQI 
controller is affected by external disturbance while the system 
with ROSMC remains unaffected. Thus the designed 
ROSMC guarantees complete robustness to the system in 
case of external disturbances.  

 
Fig. 6. Simulated pitch step response by A.K. Agrawal [3] 

 

Fig. 7. Simulated yaw step response by A.K. Agrawal[3] 

Fig.6 and Fig.7 show the results obtained by A.K Agrawal by 

optimizing Q and R matrices of Linear Quadratic Gaussian 

controller using Bacteria Forging Algorithm. On comparing 

these results with Fig. 3 we can see that the ROSMC provides 

much better performance than the optimized controller 

implemented by A.K.Agrawal due to reduced rise time and 

settling time and reduced overshoot. 
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VI. CONCLUSION 

A Linear Quadratic Regulator with integral action was 

designed and combined with a robust sliding mode controller. 

The combined robust optimal sliding mode controller was 

simulated and compared with output feedback and optimal 

controllers. It was found that the designed controller exhibits 

a much superior performance and robustness compared to 

other simulated controllers and existing controllers in the 

literature.  
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