
Robust Multi-Sensor Facial Recognition in Real

Time using Nvidia DeepStream

Dr. Saurabh Gupta
Scientist-G

National Informatics Centre

New Delhi, India

Shri Piyushank Gupta
Scientist-C

National Informatics Centre

Lucknow, Uttar Pradesh, India

Shri Anup Kumar
Scientist-C

National Informatics Centre

New Delhi, India

Mohd. Wasim
Technology Consultant

N.I.C.S.I

New Delhi

Abstract—Parallel processing of multi-sensor face recognition

system had always been a challenge in terms of processing speed.

Making best utilization of GPU time and memory requires lot of

efforts and hyper-tuning of face recognition inference

parameters. This paper presents the scaling up of the Face

Recognition System [5] using Nvidia DeepStream SDK to make

it more robust over multiple camera processing simultaneously

and to generate insights in real time. An end to end solution that

can work in an integrated fashion has been achieved which can

handle multiple live feeds through a single instance and is

contained in a single application. Ease of deployment and best

optimization of models have made face recognition pipeline

lightweight and has scaled the processing speed on a low-end

device like Jetson. DeepStream SDK enabled the solution to be as

configurable as possible so that a new instance can quickly adapt

to the new GPU environment with minimum efforts. This paper

explains the process adopted in achieving the solution mentioned

and also tried to find out the cost of reduction in deployment of

face recognition system, discussed in further sections.

Keywords— Face Detection, Face Tracking, Face Recognition,

FaceNet, FaceDetect model, Nvidia, DeepStream

I. INTRODUCTION

With advent of DNNs (Deep Neural Networks), it has not only

been possible to increase accuracy of Inference but also to

accelerate the Inference over GPU environment. This

acceleration is very much needed to increase the cost

effectiveness of computer vision applications deployment to

solve real-life computer vision problems in real time. A face

recognition system consists of two DNNs in pipeline; a face

detector model followed by face embeddings extractor model.

Face detector finds minimum bounding boxes that contain

human faces from a video frame. This bounding box is

supplied to face embeddings extractor which creates a vector

for each face. For a robust face recognition system, both

DNNs needs to be optimized and should work with good

accuracy. Availability of pre-trained and pre-optimized

models like FaceDetect from Nvidia has helped in detecting

faces at greater speeds and greater accuracy. State of the art

model like FaceNet [1] (for face embeddings extraction from

detected faces) is quite heavy to load into memory and has to

be optimized. Now, the major problem is how to consider

benefit-cost ratio to deploy a face recognition system because

the deep learning algorithms needs GPU to process data in real

time. Since GPUs are costly, DNNs need to be optimized and

pruned so that face recognition pipeline can process more

sensor data in real time. Processing multiple sensor data in real

time is another challenge which needs fast parallel processing

and multithreaded approaches to build a robust face

recognition system. Today Nvidia not only provides advanced

GPUs but also developed SDK known as DeepStream SDK to

build an end to end pipeline to implement and deploy a video

analytics system. Using DeepStream, the solution developed

is able to handle multiple sensors using a single GPU or

multiple GPUs. This is achieved using hardware acceleration

at different stages of pipeline and optimizing the models being

loaded into the pipeline for the GPU being used for inference.

The SDK also helped us to track faces in a video so that the

same face detected in subsequent frames need not to be sent

for further processing again.

Figure 1.1 shows the block sequence of activities that have

been used to build facial recognition system. A facial

recognition system first detects faces from video frames after

little pre-processing like noise reduction to make pixel data

clearer and doing video frames resizing to the required size.

This follows the face detection stage which uses FaceDetect

model which is a pre-built and pruned model. The model gave

better results on RGB images and smaller faces. After detection

of face, the face tracker tracks faces detected by previous stage

in subsequent video frames. This is done to avoid processing

same face again and again in the later stages of pipeline. The

tracking stage outputs the cropped faces being tracked, assigns

them a unique identifier and gives cropped faces to face

recognition stage. Face recognition stage uses state of the art

architecture FaceNet [1] based available model for recognizing

faces against a pre-available watch list of faces. A watch list is

nothing but a collection of face embeddings extracted from

suspect images in advance and saved in a binary file format.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS010096
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 01, January-2022

369

www.ijert.org
www.ijert.org
www.ijert.org

This file consists of pairs of label and face embedding. A label

is the unique name assigned to a face embedding. The last stage

is the classification and alert generation based on the matches

that lie above a threshold percent match. This stage can be

connected to either an on-screen display or a message broker

like Kafka to send alerts back to a central processing server.

The innovative components of the solution are:

• Usage of Nvidia DeepStream to scale a single

application to handle at least 4-5 IP camera on a low-end edge

computing device like Jetson NANO.

• Optimization of FaceNet model for extracting face

embeddings from detected faces. This includes conversion of

original FaceNet Keras model .h5 format to ONNX format

(DeepStream supported model format) and optimization of

model using various techniques discussed in section II

(Methodologies).

II. METHODOLOGIES USED

To handle multiple streams and increase speed of processing

by processing frames in parallel for facial recognition system,

following methods were followed:

A. Model Optimization and High-Speed Face Detection &

Recognition

Initially, Dlib library has been taken and its HoG based model

[7] is used for detecting faces but Dlib’s HoG face descriptor

model was having many drawbacks. The HoG based face

detector does not make use of deep learning approach and

can’t be accelerated over GPU. Also, HoG face detector can

only detect frontal faces with a good accuracy from good

quality multimedia only. To leverage hardware acceleration

for handling already installed IP cameras at premise which

captures faces at wide variety of angles, it was decided to go

with Dlib’s CNN based model [7]. After this step Dlib’s CNN

was tested which was RESNET29 [2] that detects faces with

great accuracy and is able to detect smaller faces and at odd

angles. Dlib based face detector [2] was still heavy for

optimization on a low-end device like Jetson NANO. The

unpruned model was used for training purpose but for efficient

and real time inferencing, models needed to be optimized.

Hence, a pruned model was taken from Nvidia NGC for face

detection which was highly optimized. The model is based on

Nvidia DetectNet_v2 detector with ResNet18 as a feature

extractor. The model from Nvidia is already optimized for

production deployment but following optimizations

techniques have been used to compress FaceNet model for fast

inference with some level of compromised accuracy:

• Model conversion in DeepStream native format: The

Keras .h5 format VGG based FaceNet model is taken (which

is the original format of FaceNet) and converted to ONNX

format which is supported natively by DeepStream [6].

• Model pruning: Pruning is the process of reducing the

number of weights from the model. This is done using

DeepStream by removing unnecessary connections in the

FaceNet network followed by removal of unnecessary neurons

from it. DeepStream does it automatically from ONNX

formatted model.

• Model quantization: Quantization is the process of

reducing range of model weights. This is done to reduce FP32

(floating point 32) precision of model weights to FP16 or INT8.

This is done to increase the speed of tensor mathematical

operations at the cost of some degradation in accuracy. In our

case, FP16 has been chosen for quantizing model to be

deployed on Jetson Nano.

DeepStream exposes configurable settings file to achieve all

steps as discussed above. For each stage of the pipeline, there

is a separate configuration file. Model optimization process

results in the generation of an engine file which is native of

TensorRT. DeepStream uses TensorRT for the purpose of

model optimization for development of high performing

machine learning inference.

The experiment achieved speed of 10 fps for face detection

and face recognition over Jetson Nano with FP16 (floating

point precision 16) calibration with batch-size of 4. Batch-size

must be equal to the number of sensors connected. This model

accepts 736x416x3 dimension input tensors and outputs

46x26x4 bbox coordinate tensor and 46x26x1 class

confidence tensor.

B. More Reduced Processing using Face Tracking

Technique

Face tracking is being done to keep track of unique faces

detected from FaceDetect model and pass them to subsequent

face recognition step. Since the face recognition phase using

FaceNet is much heavier (even after optimization) as compared

to detector and due to complexities in human face embeddings

extraction process and their 128-D vector representation,

tracker is placed between detector and recognizer. Tracker

tracks same faces in subsequent frames and assigns a unique id

to each detected face so that only a single and unique cropped

face against each person, seen in a batch is sent to recognizer

for identification of faces. This ultimately improves throughput

of entire DeepStream pipeline [3].

C. Face Recognition using Optimised FaceNet (as optimized

in step B) and Machine Learning Based Classifier

Face recognition is the process of identifying faces from face

vectors (also known as face embeddings) which is a two-step

process. At first step, FaceNet, as optimized in step B, has been

used to generate these vectors from live video frames that

generates 128-D embeddings (figure 2.1) which uniquely

defines a face. The optimized FaceNet has shown a

considerable increase in speed in generating face embeddings

over Jetson Nano. A sample 128-D embedding is as given:

Figure 1.1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS010096
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 01, January-2022

370

www.ijert.org
www.ijert.org
www.ijert.org

The second step of the recognition is to compare each

unknown embedding with a list of already generated known

embeddings. Already generated embeddings are stored in a

file format where each face embedding has a unique assigned

label. This file can be called as watch-list.

The combined FPS of face detection, tracking and face

recognition is 10 from 224*224 video frames on attaching 4

IP cameras.

D. DeepStream SDK

With DeepStream SDK, AI has been applied to streaming

video and simultaneously optimized video decode/encode,

image scaling & conversion and edge-to-cloud connectivity for

complete end-to-end performance optimization. DeepStream

offers exceptional throughput for a wide variety of object

detection, image classification and instance segmentation-

based AI models. DeepStream is a readymade bundled toolkit

which exposes configuration files for defining various pipeline

[3] parameters like batch size, precision (INT8, FP16, FP32).

DeepStream lets us optimize the model by creating a model

engine execution plan which makes best use of available

CUDA cores on the same GPU over which the inference has to

be done. The creation of engine file is one-time process for a

particular GPU against a particular batch size. DeepStream

uses C++ written plug-in(s) which works in a pipeline [3] to

achieve high speed video decoding (reading from file or

camera). It helps in preparing batches, skipping frames,

tracking camera, their frames and objects in these frames, and

pushing results over a message broker to achieve an end to end

face recognition system making the best use of available GPU

resources. Using these configurable plug-in(s), a high-

performance face recognition pipeline [3] has been built which

can run as a single instance to handle multiple sensor data.

III. DETAILED ARCHITECTURE AND IMPROVEMENTS

All processing related to the implementation of multi-stream

facial recognition system has been done on Nvidia Jetson

Nano. The major platform and runtimes used to build

DeepStream 5.1 based face recognition system includes;

• JetPack 4.5.1 – Nvidia JetPack SDK is the most

comprehensive solution for building AI applications. It

includes the latest OS images for Jetson products, along

with libraries and APIs, samples, developer tools, and

documentation.

• CUDA 10.2.89 – CUDA is a parallel programming

interface (collection of APIs) that lets your code

communicate with the Nvidia based GPU architecture.

• cuDNN 8.0.0+ - It is a collection of CUDA (Computed

Unified Device Architecture) libraries for deep neural

networks that are hardware accelerated)

• TensorRT 7.1.3 – TensorRT is core library which

optimizes TensorFlow, PyTorch, Keras, and other

compatible deep learning models for Nvidia DeepStream

framework. It re-architects trained models for CUDA

compatible Nvidia GPU and dGPU like A100, V100 as

well as edge computing device like Jetson

A. Application Architecture

The high-performance pipeline as in figure 3.1 [3] starts with

decoding process which accepts H.264 and H.265 format

elementary streams which are the formats that support

hardware acceleration. Today, most of the sensors support

these formats (also known as elementary stream). An

elementary stream doesn’t have audio data along with it.

Image processing is also hardware accelerated using

DeepStream plug-in written in C++.

Batching is an important step because GPU processes data in

batches. Because of this reason, powerful GPU(s) are made

with abundance of CUDA cores. Nvidia Jetson Nano has been

used which is having 128 CUDA cores. For best performance

and as recommended, batch size is kept equal to the number of

IP camera(s) attached to the device. In our case batch-size of 4

has been used. DeepStream batching process (also known as

multiplexing) takes care of which face is detected from which

frame and which frame belongs to which sensor. This is

required so that alerts can be generated properly.

After batching, frames are passed to CUDA cores for detection

of faces in multiple streams simultaneously. Nvidia based

FaceDetect model is loaded into memory and detection is done

at high speeds. The model has already been optimised by

creating engine file for the same GPU. DeepStream uses

TensorRT SDK to do these optimizations.

Tracker has been placed after detector which is again a GPU

accelerated stage so that only one cropped face for a detected

human face is being sent to recognizer.

Figure 3.1

Figure 2.1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS010096
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 01, January-2022

371

www.ijert.org
www.ijert.org
www.ijert.org

After tracker and before visualization, one more DNN, known

as FaceNet [1] is deployed which is optimized like detector

model using DeepStream SDK’s engine file creation for this

particular GPU.

Visualization is achieved using Nvidia NVOSD plug-in. OSD

stands for on screen display which is GPU accelerated stage.

Only the batching (also known as multiplexing) is taken care

of by CPU. Other stages are able to be accelerated over GPU.

This makes pipeline very fast. Both models; detector and

recogniser are optimised well in advance, before the inference

pipeline has started. For detector, TLT (Nvidia transfer

learning toolkit) format model is used. For recogniser,

VGGFace2 pre-trained FaceNet model in ONNX format has

been used.

B. Accuracy Improvements

Accuracy of a face recognition system depends on the overall

accuracy of the detector model, FaceNet model and finally the

matching algorithm that is used to match two face embeddings

generated by FaceNet. Since Nvidia provided pre-trained

model known as FaceDetect has been used, which is very

accurate at detecting faces from video frames, accuracy of face

detection is 96%. FaceDetect detects smaller faces (faces

greater than 10% of the image area) at odd angles with high

confidence.

VGGFace2 pre-trained FaceNet model has been used which is

able to touch accuracy of almost 100% on YALE, JAFFE, AT

& T datasets. Accuracy of FaceNet [1] while creating face

vectors (face embeddings) from video frames depends on

many factors like percentage of person’s face with respect to

frame size, degree of sharpness, environmental conditions,

occlusion level, angle of the face etc. Hence, there is a need to

pre-process detected faces before passing it to FaceNet.

Following methods to pre-process detected faces:

• Normalization: To improve the lighting condition of the

cropped faces

• Face alignment: Aligning faces to straighten them

horizontally with respect to eyes, nose, and other face

landmarks.

• Face Resizing: Up-scaling face up to the required level so

that better embeddings can be obtained.

• Gray Scale Conversion: Simply converting cropped faces

to gray scale so as to increase accuracy because color

information of detected faces is not required.

The last step is to match known face embeddings with

unknown embeddings. Known embeddings were already

placed in a watch-list and unknown embeddings are expected

to come from DeepStream pipeline from live feeds. Following

methods to do the comparison and corresponding accuracies

have been used:

• Euclidean Distance: Euclidean distance did not work well

and is basically used for face verification. Since, our work

is related to face classification; this is not appropriate and

reliable metric for identifying faces from live feeds.

Hence, multiple images per person in watch-list are

needed during model building phase for good accuracy.

In those cases where multiple images per person are not

available, image augmentation techniques to generate

synthetic images from a single image like horizontal flip,

scaling, change in lighting conditions etc. can be used.

The next two approaches work well with multiple images

per person.

• K-nearest neighbors (KNN): KNN is a simple, supervised

learning classification algorithm which takes multiple

images per person to train a KNN classifier which is then

used to predict matches. The accuracy of prediction

achieved (using 20 images per person for creating watch-

list) was 65%.

• Support Vector Machines (SVM): Another supervised

learning approach used was SVM (Figure 3.2) which

works in a similar way to KNN. The accuracy of

prediction (using 20 images per person for creating watch-

list) was 69%.

ratio while considering implementation of a face recognition

system from multiple sensors.

IV. RESULT SCREENS OF EXPERIMENT

Figure 4.1 demonstrates RTSP webcam stream through

DeepStream face recognition pipeline on Jetson Nano:

Figure 4.2 demonstrates live CCTV stream through

DeepStream face recognition pipeline on Jetson Nano:

Figure 3.2

Figure 4.1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS010096
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 01, January-2022

372

www.ijert.org
www.ijert.org
www.ijert.org

Jetson Nano set up (Figure 4.3):

V. CONCLUSION

The use of DeepStream SDK has scaled up face recognition

pipeline that can not only works in an integrated fashion to

fulfil all the tasks like video decoding, batching, running deep

neural networks and then collecting results [3]. All this has

been done simultaneously from multiple live feeds in an

integrated way. Only a single instance running on an edge

device (having 128 CUDA cores) is now capable to handling

at least 4 live streams in real time which was not possible

without using hardware acceleration at various stages of

pipeline. This shows that cost factor has also been brought

down by factor of 4. Also, model optimization has been

achieved to make inference faster over the GPU used for

inference. This leads to a better benefit-cost

VI. FUTURE WORK

The following features which can make face recognition more

robust and that is in our short-term plan are as follows:

• Addition and deletion of sensors in a live fashion. This

feature lets the pipeline notified about a new camera

attached or detached from the network. This will let the

pipeline continuously running and need not to be re-

configured and restarted.

• Use of optical flows in face recognition pipeline [4].

Nvidia GPUs, starting with the Nvidia GPU Turing

generation and Jetson Xavier generation, contain a

hardware accelerator for computing optical flow. Optical

flow vectors [4] are useful in various use cases such as

object detection and tracking, video frame rate up-

conversion, depth estimation, stitching, and so on.

ACKNOWLEDGEMENTS

The work described herein has been inspired from

DeepStream and TensorRT from NVIDIA

[https://developer.nvidia.com/deepstream-sdk]. The work is

an extended approach of sample python apps available at

https://github.com/NVIDIA-AI-IOT/deepstream_python

apps. The python bindings available for DeepStream was used

which was an extension of Pybind11. Thanks to NVIDIA

NGC [https://ngc.nvidia.com] for providing base container

and base model for face detection to achieve the high-speed

inference.

REFERENCES
[1] Florian Schroff ; Dmitry Kalenichenko ; James Philbin ; FaceNet: A

Unified Embedding for Face Recognition and Clustering retrieved from
arXiv:1503.03832v3 [cs.CV] 17th June, 2015

[2] Davis E. King; Dlib-ml: A Machine Learning Toolkit, Journal of
Machine Learning Research 10 (2009) 1755-1758 Submitted 10/08;
Revised 4/09; Published 7/09.

[3] MyungJoo Ham; Ji Joong Moon; Geunsik Lim; Wook Song; Jaeyun

Jung; Hyoungjoo Ahn; Sangjung Woo; Youngchul Cho; Jinhyuck Park;

Sewon Oh; Hong-Seok Kim; NNStreamer: Stream Processing Paradigm
for Neural Networks, Toward Efficient Development and Execution of

On-Device AI Applications, retrieved from arXiv:1901.049885v1
[cs.DC] 12th January, 2019.

[4] C. Hsieh, S. Lai and Y. Chen, "An Optical Flow-Based Approach to

Robust Face Recognition Under Expression Variations," in IEEE
Transactions on Image Processing, vol. 19, no. 1, pp. 233-240, Jan.
2010, doi: 10.1109/TIP.2009.2031233.

[5] Advances in Intelligent Systems and Computing Image Processing and
Capsule Net, 2021, Volume 1200, ISBN: 978-3-030-51858-5.

[6] Keras to ONNX conversion available at https://github.com/riotu-
lab/tf2trt_with_onnx.

[7] Dlib models available at https://github.com/davisking/dlib-models.

Figure 4.2

Figure 4.3

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS010096
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 01, January-2022

373

https://github.com/riotu-lab/tf2trt_with_onnx
https://github.com/riotu-lab/tf2trt_with_onnx
https://github.com/davisking/dlib-models
www.ijert.org
www.ijert.org
www.ijert.org

