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Abstract—Parallel processing of multi-sensor face recognition 

system had always been a challenge in terms of processing speed. 

Making best utilization of GPU time and memory requires lot of 

efforts and hyper-tuning of face recognition inference 

parameters. This paper presents the scaling up of the Face 

Recognition System [5] using Nvidia DeepStream SDK to make 

it more robust over multiple camera processing simultaneously 

and to generate insights in real time. An end to end solution that 

can work in an integrated fashion has been achieved which can 

handle multiple live feeds through a single instance and is 

contained in a single application. Ease of deployment and best 

optimization of models have made face recognition pipeline 

lightweight and has scaled the processing speed on a low-end 

device like Jetson. DeepStream SDK enabled the solution to be as 

configurable as possible so that a new instance can quickly adapt 

to the new GPU environment with minimum efforts. This paper 

explains the process adopted in achieving the solution mentioned 

and also tried to find out the cost of reduction in deployment of 

face recognition system, discussed in further sections. 

Keywords— Face Detection, Face Tracking, Face Recognition, 

FaceNet, FaceDetect model, Nvidia, DeepStream 

I.  INTRODUCTION 

With advent of DNNs (Deep Neural Networks), it has not only 

been possible to increase accuracy of Inference but also to 

accelerate the Inference over GPU environment. This 

acceleration is very much needed to increase the cost 

effectiveness of computer vision applications deployment to 

solve real-life computer vision problems in real time. A face 

recognition system consists of two DNNs in pipeline; a face 

detector model followed by face embeddings extractor model. 

Face detector finds minimum bounding boxes that contain 

human faces from a video frame. This bounding box is 

supplied to face embeddings extractor which creates a vector 

for each face. For a robust face recognition system, both 

DNNs needs to be optimized and should work with good 

accuracy. Availability of pre-trained and pre-optimized 

models like FaceDetect from Nvidia has helped in detecting 

faces at greater speeds and greater accuracy. State of the art 

model like FaceNet [1] (for face embeddings extraction from 

detected faces) is quite heavy to load into memory and has to 

be optimized. Now, the major problem is how to consider 

benefit-cost ratio to deploy a face recognition system because 

the deep learning algorithms needs GPU to process data in real 

time. Since GPUs are costly, DNNs need to be optimized and 

pruned so that face recognition pipeline can process more 

sensor data in real time. Processing multiple sensor data in real 

time is another challenge which needs fast parallel processing 

and multithreaded approaches to build a robust face 

recognition system. Today Nvidia not only provides advanced 

GPUs but also developed SDK known as DeepStream SDK to 

build an end to end pipeline to implement and deploy a video 

analytics system. Using DeepStream, the solution developed 

is able to handle multiple sensors using a single GPU or 

multiple GPUs. This is achieved using hardware acceleration 

at different stages of pipeline and optimizing the models being 

loaded into the pipeline for the GPU being used for inference. 

The SDK also helped us to track faces in a video so that the 

same face detected in subsequent frames need not to be sent 

for further processing again.  

Figure 1.1 shows the block sequence of activities that have 

been used to build facial recognition system. A facial 

recognition system first detects faces from video frames after 

little pre-processing like noise reduction to make pixel data 

clearer and doing video frames resizing to the required size. 

This follows the face detection stage which uses FaceDetect 

model which is a pre-built and pruned model. The model gave 

better results on RGB images and smaller faces. After detection 

of face, the face tracker tracks faces detected by previous stage 

in subsequent video frames. This is done to avoid processing 

same face again and again in the later stages of pipeline. The 

tracking stage outputs the cropped faces being tracked, assigns 

them a unique identifier and gives cropped faces to face 

recognition stage. Face recognition stage uses state of the art 

architecture FaceNet [1] based available model for recognizing 

faces against a pre-available watch list of faces. A watch list is 

nothing but a collection of face embeddings extracted from 

suspect images in advance and saved in a binary file format. 
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This file consists of pairs of label and face embedding. A label 

is the unique name assigned to a face embedding. The last stage 

is the classification and alert generation based on the matches 

that lie above a threshold percent match. This stage can be 

connected to either an on-screen display or a message broker 

like Kafka to send alerts back to a central processing server. 

The innovative components of the solution are: 

• Usage of Nvidia DeepStream to scale a single 

application to handle at least 4-5 IP camera on a low-end edge 

computing device like Jetson NANO. 

• Optimization of FaceNet model for extracting face 

embeddings from detected faces. This includes conversion of 

original FaceNet Keras model .h5 format to ONNX format 

(DeepStream supported model format) and optimization of 

model using various techniques discussed in section II 

(Methodologies). 

 

 

II. METHODOLOGIES USED 

To handle multiple streams and increase speed of processing 

by processing frames in parallel for facial recognition system, 

following methods were followed: 

A. Model Optimization and High-Speed Face Detection & 

Recognition 

Initially, Dlib library has been taken and its HoG based model 

[7] is used for detecting faces but Dlib’s HoG face descriptor 

model was having many drawbacks. The HoG based face 

detector does not make use of deep learning approach and 

can’t be accelerated over GPU. Also, HoG face detector can 

only detect frontal faces with a good accuracy from good 

quality multimedia only. To leverage hardware acceleration 

for handling already installed IP cameras at premise which 

captures faces at wide variety of angles, it was decided to go 

with Dlib’s CNN based model [7]. After this step Dlib’s CNN 

was tested which was RESNET29 [2] that detects faces with 

great accuracy and is able to detect smaller faces and at odd 

angles. Dlib based face detector [2] was still heavy for 

optimization on a low-end device like Jetson NANO. The 

unpruned model was used for training purpose but for efficient 

and real time inferencing, models needed to be optimized. 

Hence, a pruned model was taken from Nvidia NGC for face 

detection which was highly optimized. The model is based on 

Nvidia DetectNet_v2 detector with ResNet18 as a feature 

extractor. The model from Nvidia is already optimized for 

production deployment but following optimizations 

techniques have been used to compress FaceNet model for fast 

inference with some level of compromised accuracy: 

• Model conversion in DeepStream native format: The 

Keras .h5 format VGG based FaceNet model is taken (which 

is the original format of FaceNet) and converted to ONNX 

format which is supported natively by DeepStream [6]. 

• Model pruning: Pruning is the process of reducing the 

number of weights from the model. This is done using 

DeepStream by removing unnecessary connections in the 

FaceNet network followed by removal of unnecessary neurons 

from it. DeepStream does it automatically from ONNX 

formatted model.  

• Model quantization: Quantization is the process of 

reducing range of model weights. This is done to reduce FP32 

(floating point 32) precision of model weights to FP16 or INT8. 

This is done to increase the speed of tensor mathematical 

operations at the cost of some degradation in accuracy. In our 

case, FP16 has been chosen for quantizing model to be 

deployed on Jetson Nano. 

DeepStream exposes configurable settings file to achieve all 

steps as discussed above. For each stage of the pipeline, there 

is a separate configuration file. Model optimization process 

results in the generation of an engine file which is native of 

TensorRT. DeepStream uses TensorRT for the purpose of 

model optimization for development of high performing 

machine learning inference.   

 

 

The experiment achieved speed of 10 fps for face detection 

and face recognition over Jetson Nano with FP16 (floating 

point precision 16) calibration with batch-size of 4. Batch-size 

must be equal to the number of sensors connected. This model 

accepts 736x416x3 dimension input tensors and outputs 

46x26x4 bbox coordinate tensor and 46x26x1 class 

confidence tensor. 

 

B. More Reduced Processing using Face Tracking 

Technique 

Face tracking is being done to keep track of unique faces 

detected from FaceDetect model and pass them to subsequent 

face recognition step. Since the face recognition phase using 

FaceNet is much heavier (even after optimization) as compared 

to detector and due to complexities in human face embeddings 

extraction process and their 128-D vector representation, 

tracker is placed between detector and recognizer. Tracker 

tracks same faces in subsequent frames and assigns a unique id 

to each detected face so that only a single and unique cropped 

face against each person, seen in a batch is sent to recognizer 

for identification of faces. This ultimately improves throughput 

of entire DeepStream pipeline [3]. 

C. Face Recognition using Optimised FaceNet (as optimized 

in step B) and Machine Learning Based Classifier 

Face recognition is the process of identifying faces from face 

vectors (also known as face embeddings) which is a two-step 

process. At first step, FaceNet, as optimized in step B, has been 

used to generate these vectors from live video frames that 

generates 128-D embeddings (figure 2.1) which uniquely 

defines a face. The optimized FaceNet has shown a 

considerable increase in speed in generating face embeddings 

over Jetson Nano. A sample 128-D embedding is as given: 

Figure 1.1 
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The second step of the recognition is to compare each 

unknown embedding with a list of already generated known 

embeddings. Already generated embeddings are stored in a 

file format where each face embedding has a unique assigned 

label. This file can be called as watch-list.  

 

The combined FPS of face detection, tracking and face 

recognition is 10 from 224*224 video frames on attaching 4 

IP cameras. 

D. DeepStream SDK 

With DeepStream SDK, AI has been applied to streaming 

video and simultaneously optimized video decode/encode, 

image scaling & conversion and edge-to-cloud connectivity for 

complete end-to-end performance optimization. DeepStream 

offers exceptional throughput for a wide variety of object 

detection, image classification and instance segmentation-

based AI models. DeepStream is a readymade bundled toolkit 

which exposes configuration files for defining various pipeline 

[3] parameters like batch size, precision (INT8, FP16, FP32). 

DeepStream lets us optimize the model by creating a model 

engine execution plan which makes best use of available 

CUDA cores on the same GPU over which the inference has to 

be done. The creation of engine file is one-time process for a 

particular GPU against a particular batch size. DeepStream 

uses C++ written plug-in(s) which works in a pipeline [3] to 

achieve high speed video decoding (reading from file or 

camera). It helps in preparing batches, skipping frames, 

tracking camera, their frames and objects in these frames, and 

pushing results over a message broker to achieve an end to end 

face recognition system making the best use of available GPU 

resources. Using these configurable plug-in(s), a high-

performance face recognition pipeline [3] has been built which 

can run as a single instance to handle multiple sensor data. 

III. DETAILED ARCHITECTURE AND IMPROVEMENTS 

All processing related to the implementation of multi-stream 

facial recognition system has been done on Nvidia Jetson 

Nano. The major platform and runtimes used to build 

DeepStream 5.1 based face recognition system includes; 

• JetPack 4.5.1 – Nvidia JetPack SDK is the most 

comprehensive solution for building AI applications. It 

includes the latest OS images for Jetson products, along 

with libraries and APIs, samples, developer tools, and 

documentation. 

• CUDA 10.2.89 – CUDA is a parallel programming 

interface (collection of APIs) that lets your code 

communicate with the Nvidia based GPU architecture. 

•  cuDNN 8.0.0+ - It is a collection of CUDA (Computed 

Unified Device Architecture) libraries for deep neural 

networks that are hardware accelerated) 

• TensorRT 7.1.3 – TensorRT is core library which 

optimizes TensorFlow, PyTorch, Keras, and other 

compatible deep learning models for Nvidia DeepStream 

framework. It re-architects trained models for CUDA 

compatible Nvidia GPU and dGPU like A100, V100 as 

well as edge computing device like Jetson 

A. Application Architecture 

The high-performance pipeline as in figure 3.1 [3] starts with 

decoding process which accepts H.264 and H.265 format 

elementary streams which are the formats that support 

hardware acceleration. Today, most of the sensors support 

these formats (also known as elementary stream). An 

elementary stream doesn’t have audio data along with it.  

 
 

 

Image processing is also hardware accelerated using 

DeepStream plug-in written in C++.  

 

Batching is an important step because GPU processes data in 

batches. Because of this reason, powerful GPU(s) are made 

with abundance of CUDA cores. Nvidia Jetson Nano has been 

used which is having 128 CUDA cores. For best performance 

and as recommended, batch size is kept equal to the number of 

IP camera(s) attached to the device. In our case batch-size of 4 

has been used. DeepStream batching process (also known as 

multiplexing) takes care of which face is detected from which 

frame and which frame belongs to which sensor. This is 

required so that alerts can be generated properly. 

 

After batching, frames are passed to CUDA cores for detection 

of faces in multiple streams simultaneously. Nvidia based 

FaceDetect model is loaded into memory and detection is done 

at high speeds. The model has already been optimised by 

creating engine file for the same GPU. DeepStream uses 

TensorRT SDK to do these optimizations. 

 

Tracker has been placed after detector which is again a GPU 

accelerated stage so that only one cropped face for a detected 

human face is being sent to recognizer.  

 

Figure 3.1 

Figure 2.1 
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After tracker and before visualization, one more DNN, known 

as FaceNet [1] is deployed which is optimized like detector 

model using DeepStream SDK’s engine file creation for this 

particular GPU. 

 

Visualization is achieved using Nvidia NVOSD plug-in. OSD 

stands for on screen display which is GPU accelerated stage.  

 

Only the batching (also known as multiplexing) is taken care 

of by CPU. Other stages are able to be accelerated over GPU. 

This makes pipeline very fast. Both models; detector and 

recogniser are optimised well in advance, before the inference 

pipeline has started. For detector, TLT (Nvidia transfer 

learning toolkit) format model is used. For recogniser, 

VGGFace2 pre-trained FaceNet model in ONNX format has 

been used. 

B. Accuracy Improvements 

Accuracy of a face recognition system depends on the overall 

accuracy of the detector model, FaceNet model and finally the 

matching algorithm that is used to match two face embeddings 

generated by FaceNet. Since Nvidia provided pre-trained 

model known as FaceDetect has been used, which is very 

accurate at detecting faces from video frames, accuracy of face 

detection is 96%. FaceDetect detects smaller faces (faces 

greater than 10% of the image area) at odd angles with high 

confidence.  

 

VGGFace2 pre-trained FaceNet model has been used which is 

able to touch accuracy of almost 100% on YALE, JAFFE, AT 

& T datasets. Accuracy of FaceNet [1] while creating face 

vectors (face embeddings) from video frames depends on 

many factors like percentage of person’s face with respect to 

frame size, degree of sharpness, environmental conditions, 

occlusion level, angle of the face etc. Hence, there is a need to 

pre-process detected faces before passing it to FaceNet. 

Following methods to pre-process detected faces: 

 

• Normalization:  To improve the lighting condition of the 

cropped faces 

• Face alignment: Aligning faces to straighten them 

horizontally with respect to eyes, nose, and other face 

landmarks. 

• Face Resizing: Up-scaling face up to the required level so 

that better embeddings can be obtained. 

• Gray Scale Conversion: Simply converting cropped faces 

to gray scale so as to increase accuracy because color 

information of detected faces is not required. 

 

The last step is to match known face embeddings with 

unknown embeddings. Known embeddings were already 

placed in a watch-list and unknown embeddings are expected 

to come from DeepStream pipeline from live feeds. Following 

methods to do the comparison and corresponding accuracies 

have been used: 

 

• Euclidean Distance: Euclidean distance did not work well 

and is basically used for face verification. Since, our work 

is related to face classification; this is not appropriate and 

reliable metric for identifying faces from live feeds. 

Hence, multiple images per person in watch-list are 

needed during model building phase for good accuracy. 

In those cases where multiple images per person are not 

available, image augmentation techniques to generate 

synthetic images from a single image like horizontal flip, 

scaling, change in lighting conditions etc. can be used. 

The next two approaches work well with multiple images 

per person. 

• K-nearest neighbors (KNN): KNN is a simple, supervised 

learning classification algorithm which takes multiple 

images per person to train a KNN classifier which is then 

used to predict matches. The accuracy of prediction 

achieved (using 20 images per person for creating watch-

list) was 65%. 

• Support Vector Machines (SVM): Another supervised 

learning approach used was SVM (Figure 3.2) which 

works in a similar way to KNN. The accuracy of 

prediction (using 20 images per person for creating watch-

list) was 69%. 

 

 

ratio while considering implementation of a face recognition 

system from multiple sensors. 

IV. RESULT SCREENS OF EXPERIMENT 

Figure 4.1 demonstrates RTSP webcam stream through 

DeepStream face recognition pipeline on Jetson Nano: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 demonstrates live CCTV stream through 

DeepStream face recognition pipeline on Jetson Nano: 

 

Figure 3.2 

Figure 4.1 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS010096
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 01, January-2022

372

www.ijert.org
www.ijert.org
www.ijert.org


  

 

Jetson Nano set up (Figure 4.3): 

 

  

V. CONCLUSION 

The use of DeepStream SDK has scaled up face recognition 

pipeline that can not only works in an integrated fashion to 

fulfil all the tasks like video decoding, batching, running deep 

neural networks and then collecting results [3]. All this has 

been done simultaneously from multiple live feeds in an 

integrated way. Only a single instance running on an edge 

device (having 128 CUDA cores) is now capable to handling 

at least 4 live streams in real time which was not possible 

without using hardware acceleration at various stages of 

pipeline. This shows that cost factor has also been brought 

down by factor of 4. Also, model optimization has been 

achieved to make inference faster over the GPU used for 

inference.  This leads to a better benefit-cost 

 

 

VI. FUTURE WORK 

The following features which can make face recognition more 

robust and that is in our short-term plan are as follows: 

 

• Addition and deletion of sensors in a live fashion. This 

feature lets the pipeline notified about a new camera 

attached or detached from the network. This will let the 

pipeline continuously running and need not to be re-

configured and restarted. 

• Use of optical flows in face recognition pipeline [4]. 

Nvidia GPUs, starting with the Nvidia GPU Turing 

generation and Jetson Xavier generation, contain a 

hardware accelerator for computing optical flow. Optical 

flow vectors [4] are useful in various use cases such as 

object detection and tracking, video frame rate up-

conversion, depth estimation, stitching, and so on. 
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