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Abstract— In this paper the artificial neural 

networks are used for both residual generation and 

residual analysis. A Multilayer Perceptron (MLP) is 

employed to reproduce the dynamics of the robotic 

manipulator. Its outputs are compared with actual 

position and velocity measurements, generating the 

so-called residual vector. The residuals, when 

properly analyzed, provide an indication of the status 

of the robot (normal or faulty operation). The ANN 

architecture employed in the residual analysis is also a 

multilayer perceptron (MLP) or a radial basis function 

network (RBFN) which uses the residuals of position 

and velocity to perform fault identification. 

Simulations employing a selective compliance 

assembly rotate arm (SCARA) robotic manipulator 

are showed demonstrating that the system can detect 

and isolate correctly faults that can occur during the 

performance of its task. We opted in our study on 

fault diagnosis for a dual neural classification. Thus, 

the architecture of the proposed approach is based on 

two types of classifiers: Firstly a classifier consisting 

only of one neural network (MLP or RBF) followed 

by a comparison of the results of detection and 

localization. Secondly a classifier consisting of two 

neural networks (RBF and MLP) and is followed by a 

final decision system.  

Keywords— MLP, RBF, RBFN, ANN, FDI, SCARA, 

CBR . 

I.  INTRODUCTION  

    A system can be fault tolerant if it is 

reconfigurable, case which FDI is essential. A number 

of studies have been dedicated to the assessment and 

analysis [I-II] of robot reliability. Other studies related 

to enhancing a robot’s tolerance to failure include 

work on layered failure tolerance control, failure 

tolerance by trajectory planning kinematic failure 

recovery and manipulators specifically designed for 

fault tolerance. Being able to identify the extent of 

fault-tolerance in a system would be a useful analysis 

tool for the designer [III-IV]. In recent years neural 

networks have been applied to variety of problems in 

the areas of pattern recognition, signal processing, 

image processing, process identification, etc.  

Fault diagnosis and isolation methods are usually 

based on the residual generation and analysis concept 

[V-VI]. A mathematical model is used to reproduce 

the dynamic behavior of the fault-free system; the 

deviation of the output predicted by the model from 

actual output measurements forms the so-called 

residuals, which, when properly analyzed, provides 

valuable information about failures. In this paper, two 

artificial neural networks are employed to identify and 

isolate the faults. A learning architecture, 

approximation of dynamic behavior of robot 

manipulator, is used to generate the residual vector, 

by comparing with actual measured values. The ANN 

outputs are compared with the measured system 

outputs and, thus, generate the residual vector. In this 

paper, two ANN are utilized: a multilayer perceptron 

(MLP) is employed to reproduce the manipulator 

dynamic behaviour and a second MLP or a radial 

basis function network (RBFN) is used to classify the 

residual vector.  

The ANN used in this paper is describe in section II. 

The robotic manipulator system is described in 

section III together with some methods for FDI in this 

system. the multilayer perceptron (MLP), trained with 

the classical back-propagation algorithm, is employed 

to reproduce the manipulator dynamic behaviour and 

the radial basis function network (RBFN), initialized 

with the classical Kohonen self-organizing map [7], is 

used to classify the residual vector.  

The second proposed approach with two neural 

networks classifier (MLP and RBF), followed by a 

decision system is described in section IV.  
Manipulator simulation results using two ANN 

training procedures are given in section V and, finally, 
the conclusions are in section VI. 

     II.    ARTIFICIAL NEURAL NETWORKS 

 In this paper, an MLP with back-propagation 

algorithm is used to reproduce the behavior of 

nonlinear dynamical systems and a second MLP is 

used to residual classification. For a p-dimensional 

input vector and a q-dimensional output vector, the 

MLP input/output relationship defines a mapping 

from a p-dimensional Euclidean space to a q-

dimensional Euclidean output space. Using only one 

hidden layer, presenting in the n-th sample(where ( 
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n=1,2,....... ), the input vector 

X(n)=[ (n) (n).............. (n)  the activation of the 

output neuron k (where k = 1, 2,..., q) is:  

          (1)  

 where m is the number of neurons in the hidden 

layer,  is the weight between the j-th neuron of the 

hidden layer and the k-th neuron of the output 

layer,  is the weight between the i-th neuron of the 

input layer and the j-th neuron of the hidden layer,  

is the non linear activation function of the output layer 

and  is the nonlinear activation function of the 

hidden layer. In this article, the weights of the MLP 

are trained by the well known back-propagation 

algorithm.  

The RBFN employed in this article has three layers. 

There are no weights linking the first and the hidden 

layers. The hidden layer has neurons with radial 

activation functions. Each neuron j in the hidden layer 

(called radial unit j) is responsible for the creation of a 

receptive field in the p-dimensional input space. The 

receptive field of each radial unit is centered in a p-

dimensional vector , called radial unit center. 

Therefore, the radial unit j activates according to the 

vector distance between the input vector and the radial 

unit center. There are weights between the hidden and 

the output layers, and the activation in the last layer is 

linear. Presenting in the n-th sample the input vector 

X(n)=[ (n) (n).............. (n) , the activation of 

the k-th output neuron (k = 1, 2,..., q) is given by   

                                        (2)  

where m is the number of radial units,  is the 

weight between the j-th radial unit and the k-th output 

neuron, and hj is the activation of the j-th radial unit. 

In this work, the Cauchy radial function is employed 

as activation function in the radial units:  

                                 (3)  

where R is a diagonal matrix formed by the individual 

parameters that define the receptive field size in each 

dimension of the input space. 

III.   MANIPULATOR FDI WITH ANN 

We begin with a presentation of residual generation 

for a generic dynamic system, and then specialize it 

for the case of a robotic manipulator. In the sequence 

we discuss the fault isolation criterion we use and the 

failures that the system is able to cope. 

A. Residual Generation 

In discrete time, the state equation of a fault-free 

nonlinear dynamic system is given by  

                                         (4)  

where x(t) is the state vector at time t, u(t) is the 

applied control vector,  is the sample rate and f (.) is 

the vector-valued nonlinear function of the fault-free 

system. Considering now that a fault i occurs, the 

dynamics of the system are modified to  

                                           (5) 

where gi(.) is the vector-valued nonlinear function of 

the system affected by fault i. The faults may or may 

not be additive inputs (i.e., dependent only on the time 

variable). The i-th fault vector can be defined as the 

difference between the faulty system dynamics (Eq. 5) 

and the fault-free system dynamics (Eq. 4):  

                   (6)  

Obviously, for the fault-free system  .  

Generally, for each possible fault i, the fault vector 

has a particular behavior, called the fault signature. 

For the identification of the fault type, the fault vector 

must be computed and analyzed. Therefore, the 

dynamic behavior of the fault-free system (Eq. 4) 

must be estimated (for example, by the mathematical 

model or by an ANN). Then, when fault i occurs, the 

residual vector can be computed as:  

 
(t)  

                                               (7) 

where is a vector that represents the input-output 

mapping of the estimated fault-free dynamic behavior 

of the system and ei is the error between the actual 

fault-free behavior and the estimated one. In real 

systems and fault free case, the error is due to external 

disturbances, unmodeled system uncertainty, mapping 

errors (or modeling errors in model-based systems), 

and measurement noise. In this work, an MLP is 

employed to reproduce (estimate) the fault-free 

dynamic behavior of a robotic manipulator. Taking as 

inputs the control signals u and the states x measured 

at t, the MLP reproduces the states x of the fault-free 

system measured at   (Eq. 7). 

B. Residual Generation in Mechanical 

Manipulators 

As mentioned above, an MLP is used to approximate 

the state equation (dynamic function) of the fault-free 

manipulator. The dynamic of a fault-free robotic 

manipulator with actuators in each joint is given by:  

    

                     (8)  

where  is the vector of joint angular positions,  is 

the vector of joint torques, M is the inertia matrix, t 
is the time index, C is the vector of Coriolis and 
centrifugal forces, G is the vector of gravitational 
torques, F is the vector of frictional torques and 
other nonlinearities, and is the vector of external 
uncorrelated disturbances. 
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C. Residual Analysis 

In this work residual analysis for fault isolation 

purposes is also performed with ANNs, an MLP 

utilizing the velocity residuals. A general schema is 

shown in the figure 1 below.  

Outputs 1 through q-1 correspond to the q-1 possible 

failure modes, while output q corresponds to fault-free 

operation. The ANN’s output i ( i = 1,..., q-1) is 

trained to present a ‘1’ in case fault i occurs and ‘0’ 

otherwise. The output q is trained to present a ‘1’ in 

case fault-free operation and ‘0’ otherwise.  

In the FDI procedure, the normalized positions and 

velocities and the torques applied at t are presented to 

the MLP, which estimates the positions and velocities 

at t+∆t; the MLP outputs are compared with the 

normalized positions and velocities measured at t+∆t 

to generate the residuals; the velocity residuals are 

presented to the second ANN (MLP or RBFN) which 

classifies the residuals and generates a vector that, 

when analyzed under the fault criterion, indicates the 

operation status of the system 

 
Figure 1.Residual anaylsis employing different architecture. 

D. Fault Indication Criterion 

Generally, the fault is signaled when a threshold is 

crossed. However, as the faults and the mapping 

errors are generally correlated with the system 

dynamics, a small threshold can be a source of false 

alarms, while a large one can hide the fault effects. 

The fault isolation scheme presented above will 

indicate the fault information in the ANNs outputs. It 

is known, however, that false alarms may occur, and 

one cannot rely on isolated information to decide on 

whether a failure actually occurred. In this work we 

adopt the following fault criterion: a fault is said to 

have occurred whenever one of the ANN outputs is 

greater than the other ones for g consecutive time 

steps; where g is achieved by trial and error (searching 

for a good compromise between false alarm rate and 

detection delays).  

Mathematically we have:  

if  during consecutive samples :  

                                    fault i=1                              (9)  

otherwise :               fault i=0  

where i is the output i (i = 1, ..., q-1) of the ANN 

(recall that output q refers to fault-free system 

operation). In this work we consider one possible joint 

failure type. In free-swinging joint faults, a loss of 

torque occurs on a joint. This fault can be caused, for 

example, by a loss of electric power on an electric 

actuator, or by a mechanical fault in a drive.  

Other faults can be taken into consideration: locked 

joint faults occur when there is an immobilization of a 

joint in a fixed position. This fault may be due, for 

example, to a very high gear ratio on an actuator that 

has lost power, or due to Indeed, opting for multiple 

classification , one of the usual solutions is to choose 

the classification model giving the best result. In our 

work, we used both the redundancy and 

complementarily of classification models used. 

IV.    DUAL NERUAL CLASSIFICATION 

The second proposed approach consists of two neural 

networks (MLP and RBF), followed by a decision 

system (Figure 2).  

There are several methods for decision making 

(Analogy, Fuzzy Logic, statistical treatment, etc.).  

We opted for the analogy approach. This method is 

more natural and nearest to the human reasoning.  
The principle of this method is to draw the 

decisions taken in the past in similar situations to solve 
new problems. The technique of this method is the 
reasoning from cases (examples) or'' Case-Based 
Reasoning (CBR).'' This technique is based on the 
assumption that the decisions and the resolution of a 
problem is the access to information stored in previous 
experiments to further exploitation.  

 

          Figure 2. Dual classification with robust decision 

   V .    SIMULATIONS AND RESULTS 

To evaluate our ANN-based FDI method we 

performed an extensive simulation study with a three-

link SCARA robot. The dynamic equations, which 

can be derived via the Euler-Lagrangian method, are 

represented as follows:  
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where:  

 
                      

 
-  

 

 
= =  

In which q1,q2 and q3 are the angles of joints 1, 2 and 

3; and are the mass of links m1, m2 and m3; and are 

the length of links l1, l2 and l3; g is the gravity 

acceleration. This simulation study demonstrates that 

the presented scheme is effective when applied to a 

real life robotic system. The simulation was 

conducted using Matlab & Simulink. In this study we 

considered free-swinging joint faults, as described in 

Section 3. 

    A.   Residual generation results 

The MLP used to reproduce the manipulator dynamic 

behavior has one hidden layer with 49 neurons. The 

input layer has 9 neurons (3 joint positions, 3 joint 

velocities, and 3 joint torques measured at (t+ ∆t) and 

the output layer has 6 neurons ( joint positions and 

joint velocities at (t+∆t)). The training set is formed 

from 2500 patterns obtained by simulating more than 

90 different trajectories with 25 samples each (at a 

sample rate of 0.073 s).  

Two test sets are used to validate the residual 

generation. The first set has 5000 patterns obtained in 

the simulation of 200 random trajectories. The second 

set has 5000 patterns with measurement noise (with 

variance = 0.01) added to the positions and velocities. 

 B.  Residual analysis results: free-swinging joint 

faults 

Here, we considered a free-swinging joint fault in the 

robot dynamics as described in Section 3. The MLP 

and the RBFN are trained with 900 patterns, obtained 

with the simulation of 90 trajectories with 10 samples 

each as shown in Table 1. 

 

 

 

 

 

 

 

 

 

 Table 1. Trajectories of the RBFN Training set 

 
The faults are set to occur in the beginning of the 

trajectories, before the manipulator reaches its set-

point. Two test sets were used to evaluate the 

architecture. The first set has 5000 patterns obtained 

by simulating of 250 random trajectories with 10 

samples each. The second set has 5000 patterns with 

measurement noise (with variance = 0.01) added to 

the positions and velocities. The Table 2 presents the 

mean squared errors for the architecture. 

 

Table 2. Mean Squared Errors (MSE) of the MLP and 

RBFN trained in Classifying the Residual  

 
To simulate the occurrence of free-swinging joint 

faults, we set the torque applied at a joint to zero.  

In first time, the residual analysis for fault isolation 

purposes is performed with an MLP utilizing the 

velocity residuals.  

 

The figures 3, 4 and 5 shows the residual, position and 

velocity of the joint 2 with a free-swinging joint faults 

occurring at t = 4s. 

 
Figure 3. Residual with a free-swinging joint faults in joint 2  

at t=4 s. 
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Figure 4. Normalized position and respective MLP output  

in a trajectory with fault in joint 2 at t=4 s. 

 

 
Figure 5. Normalized velocity and respective MLP output  

in a trajectory with fault in joint 2 at t=4 s. 

 

In second time, the residual analysis for fault isolation 

purposes is performed with an RBFN utilizing the 

velocity residuals. 

The figures 6, 7 and 8 shows the residual, position and 

velocity of the joint 2 with a free-swinging joint faults 

occurring at t = 5s. 
 

 
 

Figure 6. Residual with afree-swwinging joint faults in foint 

2 at t=5s. 

 

 
Figure 7. Normalized velocity and respective RBFN output 

in     a trajectory with fault in joint 2 at t=5 s. 

 

 
Figure 8. Normalized velocity and respective RBFN output 

in a trajectory with fault in joint 2 at t=5 s. 

 

C.   ANALYSIS OF THE RESULTS 

The ANN-based FDI system presents very 

satisfactory results when applied in a simulation of the 

Scara manipulator for consider free-swinging joint 

faults. It can detect and isolate faults that occur in 

trajectories that do not belong to the training set. The 

MLP reproduces the dynamic behavior of the fault-

free robot with a small residual signal. It is important 

to remember that the quality of the MLP training 

(residual generation) is very important for the 

performance of the FDI system. The comparison of 

different ANN architectures for residual analysis led 

us to conclude that the RBFN outperforms the MLP 

for the task of residual analysis. This occurs because 

the classification made by the RBFN is more robust 

than that by the MLP. Recall that the RBFN classifies 

the patterns according to the distance between them 

and the radial unit centers, while the MLP classifies 

the patterns according to decision surfaces that are 

placed according to the training patterns. Another 

advantage of the RBFN is that the time spent for 

training it is smaller than the time spent for training 

the MLP. One disadvantage is that the time for 

running the RBFN is greater than the time for running 

the MLP because the number of radial units (and the 

time of processing) in the former are generally greater 

than the number of hidden units in the latter. It is 

important to emphasize that the results presented are 

somewhat dependent on the choice of the parameters 

in each training procedure. Also, fault isolation is 

difficult to perform when different faults occupy the 

same region in the residual space.  

Indeed, the comparison between the results obtained 

with the MLP network may be different from those of 

RBF network, which makes diagnosis difficult to 

achieve.  

While with the second approach involving two neural 

networks (MLP and RBF) followed by a decision 

system, the diagnosis becomes more robust. 
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    VII.   CONCLUSIONS 

The Fault Diagnosis System proposed here presents 

good results when it is applied to a three-link SCARA 

robot.  

With an extensive simulation study results, we were 

able to conclude that ANNs are a powerful means for 

Fault Diagnosis System tasks, robustly performing 

both residual generation and residual analysis.  

Research work developed in this paper deals with 

decision support systems for fault diagnosis and 

decision-making based on Artificial Intelligence using 

hybrid techniques, and soft computing implying 

neural networks and Case-Based Reasoning (CBR).  

Further work on this is to extend the Fault Diagnosis 

System scheme to robotic manipulators with a larger 

number of degrees of freedom.  

Other different types of faults can be detected and 

isolated using other methods: Fault detection and 

isolation of robotic manipulator via fuzzy logic, 

neuro-fuzzy control, hybrid system and expert system 

[8-12]. The work presented here can be expanded to 

include post failure control of the robotic manipulator 

in a hybrid system framework. 
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