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Abstract— 1In this paper the artificial neural
networks are used for both residual generation and
residual analysis. A Multilayer Perceptron (MLP) is
employed to reproduce the dynamics of the robotic
manipulator. Its outputs are compared with actual
position and velocity measurements, generating the
so-called residual vector. The residuals, when
properly analyzed, provide an indication of the status
of the robot (normal or faulty operation). The ANN
architecture employed in the residual analysis is also a
multilayer perceptron (MLP) or a radial basis function
network (RBFN) which uses the residuals of position
and velocity to perform fault identification.
Simulations employing a selective compliance
assembly rotate arm (SCARA) robotic manipulator
are showed demonstrating that the system can detect
and isolate correctly faults that can occur during the
performance of its task. We opted in our study on
fault diagnosis for a dual neural classification. Thus,
the architecture of the proposed approach is based on
two types of classifiers: Firstly a classifier consisting
only of one neural network (MLP or RBF) followed
by a comparison of the results of detection and
localization. Secondly a classifier consisting of two
neural networks (RBF and MLP) and is followed by a
final decision system.

Keywords— MLP, RBF, RBFN, ANN, FDI, SCARA,
CBR.

L INTRODUCTION

A system can be fault tolerant if it is
reconfigurable, case which FDI is essential. A number
of studies have been dedicated to the assessment and
analysis [I-II] of robot reliability. Other studies related
to enhancing a robot’s tolerance to failure include
work on layered failure tolerance control, failure
tolerance by trajectory planning kinematic failure
recovery and manipulators specifically designed for
fault tolerance. Being able to identify the extent of
fault-tolerance in a system would be a useful analysis
tool for the designer [III-IV]. In recent years neural
networks have been applied to variety of problems in
the areas of pattern recognition, signal processing,
image processing, process identification, etc.
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Fault diagnosis and isolation methods are usually
based on the residual generation and analysis concept
[V-VI]. A mathematical model is used to reproduce
the dynamic behavior of the fault-free system; the
deviation of the output predicted by the model from
actual output measurements forms the so-called
residuals, which, when properly analyzed, provides
valuable information about failures. In this paper, two
artificial neural networks are employed to identify and
isolate the faults. A learning architecture,
approximation of dynamic behavior of robot
manipulator, is used to generate the residual vector,
by comparing with actual measured values. The ANN
outputs are compared with the measured system
outputs and, thus, generate the residual vector. In this
paper, two ANN are utilized: a multilayer perceptron
(MLP) is employed to reproduce the manipulator
dynamic behaviour and a second MLP or a radial
basis function network (RBFN) is used to classify the
residual vector.
The ANN used in this paper is describe in section II.
The robotic manipulator system is described in
section III together with some methods for FDI in this
system. the multilayer perceptron (MLP), trained with
the classical back-propagation algorithm, is employed
to reproduce the manipulator dynamic behaviour and
the radial basis function network (RBFN), initialized
with the classical Kohonen self-organizing map [7], is
used to classify the residual vector.
The second proposed approach with two neural
networks classifier (MLP and RBF), followed by a
decision system is described in section IV.
Manipulator simulation results using two ANN
training procedures are given in section V and, finally,
the conclusions are in section VI.

II. ARTIFICIAL NEURAL NETWORKS

In this paper, an MLP with back-propagation
algorithm is used to reproduce the behavior of
nonlinear dynamical systems and a second MLP is
used to residual classification. For a p-dimensional
input vector and a g-dimensional output vector, the
MLP input/output relationship defines a mapping
from a p-dimensional Euclidean space to a g-
dimensional Euclidean output space. Using only one
hidden layer, presenting in the n-th sample(where (
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n=1,2,....... my), the input vector
X(m)=[x;(n) xy(n)............... ¥y(n)]7 the activation of the
output neuron k (where k=1, 2,..., q) is:
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where m is the number of neurons in the hidden
layer, Wj; is the weight between the j-th neuron of the
hidden layer and the k-th neuron of the output
layer, W is the weight between the i-th neuron of the
input layer and the j-th neuron of the hidden layer, g,
is the non linear activation function of the output layer
and 4; is the nonlinear activation function of the
hidden layer. In this article, the weights of the MLP
are trained by the well known back-propagation
algorithm.

The RBFN employed in this article has three layers.
There are no weights linking the first and the hidden
layers. The hidden layer has neurons with radial
activation functions. Each neuron j in the hidden layer
(called radial unit j) is responsible for the creation of a
receptive field in the p-dimensional input space. The
receptive field of each radial unit is centered in a p-
dimensional vector [ called radial unit center.
Therefore, the radial unit j activates according to the
vector distance between the input vector and the radial
unit center. There are weights between the hidden and
the output layers, and the activation in the last layer is
linear. Presenting in the n-th sample the input vector
X(M)=[x,(n) Fa(0).eererreene. ¥,(m)7%, the activation’ of

the k-th output neuron (k = 1, 2,..., g) is given by ;
m

0,.(n) = Z Wi () (7)

i=t @)
where m is the number of radial units,v' i s the
weight between the j-th radial unit and the k-th output
neuron, and Aj is the activation of the j-th radial unit.
In this work, the Cauchy radial function is employed
as activation function in the radial units:

hiin) = ?’:+ |R~* (i) — )| 3)
where R is a diagonal matrix formed by the individual
parameters that define the receptive field size in each
dimension of the input space.

III. MANIPULATOR FDI WITH ANN

We begin with a presentation of residual generation
for a generic dynamic system, and then specialize it
for the case of a robotic manipulator. In the sequence
we discuss the fault isolation criterion we use and the
failures that the system is able to cope.

A. Residual Generation

In discrete time, the state equation of a fault-free
nonlinear dynamic system is given by
x(t+ Ar) — gi(={thui) @)
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where x(t) is the state vector at time 7, u(t) is the
applied control vector, At is the sample rate and f (.) is
the vector-valued nonlinear function of the fault-free
system. Considering now that a fault i occurs, the
dynamics of the system are modified to

x(t+ M) = £t ult)) 5)
where gi(.) is the vector-valued nonlinear function of
the system affected by fault i. The faults may or may
not be additive inputs (i.e., dependent only on the time
variable). The i-th fault vector can be defined as the
difference between the faulty system dynamics (Eq. 5)
and the fault-free system dynamics (Eq. 4):

it + At) = gi(x(E).ut)) - f(x(t).uit)) ©)

Obviously, for the fault-free system g;(t + At .
Generally, for each possible fault i, the fault vector
has a particular behavior, called the fault signature.
For the identification of the fault type, the fault vector
must be computed and analyzed. Therefore, the
dynamic behavior of the fault-free system (Eq. 4)
must be estimated (for example, by the mathematical
model or by an ANN). Then, when fault i occurs, the
residual vector can be computed as:

Flt+A) =x(t+ AL — £+ At) =

gitx(0).uce) —fEe).u) =

@i(t) + ei(x(0). u(t)) 7
where is a vector that represents the input-output
mapping of the estimated fault-free dynamic behavior
of the system and ei is the error between the actual
fault-free behavior and the estimated one. In real
systems and fault free case, the error is due to external
disturbances, unmodeled system uncertainty, mapping
errors (or modeling errors in model-based systems),
and measurement noise. In this work, an MLP is
employed to reproduce (estimate) the fault-free
dynamic behavior of a robotic manipulator. Taking as
inputs the control signals u and the states x measured
at ¢, the MLP reproduces the states x of the fault-free
system measured at t +at (Eq. 7).

B. Residual Generation in Mechanical
Manipulators

As mentioned above, an MLP is used to approximate
the state equation (dynamic function) of the fault-free
manipulator. The dynamic of a fault-free robotic
manipulator with actuators in each joint is given by:

x= Iﬂl:fl] =
Bit)
8(t)
MEE)E| T8+ TaC(8(0).6(2)) -

F(B(E).8(t). t) — G (B(td) ®)

where # is the vector of joint angular positions, T is
the vector of joint torques, M is the inertia matrix, t
is the time index, C is the vector of Coriolis and
centrifugal forces, G is the vector of gravitational
torques, F is the vector of frictional torques and
other nonlinearities, and is the vector of external
uncorrelated disturbances.

144



C. Residual Analysis

In this work residual analysis for fault isolation
purposes is also performed with ANNs, an MLP
utilizing the velocity residuals. A general schema is
shown in the figure 1 below.

Outputs 1 through g-1 correspond to the g-1 possible
failure modes, while output q corresponds to fault-free
operation. The ANN’s output i (i = 1,..., g-1) is
trained to present a ‘1’ in case fault i occurs and ‘0’
otherwise. The output q is trained to present a ‘1’ in
case fault-free operation and ‘0’ otherwise.

In the FDI procedure, the normalized positions and
velocities and the torques applied at ¢ are presented to
the MLP, which estimates the positions and velocities
at t+At; the MLP outputs are compared with the
normalized positions and velocities measured at t+At
to generate the residuals; the velocity residuals are
presented to the second ANN (MLP or RBFN) which
classifies the residuals and generates a vector that,
when analyzed under the fault criterion, indicates the
operation status of the system
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Figure 1.Residual anaylsis employing different architecture.

D. Fault Indication Criterion

Generally, the fault is signaled when a threshold is
crossed. However, as the faults and the mapping
errors are generally correlated with the system
dynamics, a small threshold can be a source of false
alarms, while a large one can hide the fault effects.
The fault isolation scheme presented above will
indicate the fault information in the ANNs outputs. It
is known, however, that false alarms may occur, and
one cannot rely on isolated information to decide on
whether a failure actually occurred. In this work we
adopt the following fault criterion: a fault is said to
have occurred whenever one of the ANN outputs is
greater than the other ones for g consecutive time
steps; where g is achieved by trial and error (searching
for a good compromise between false alarm rate and
detection delays).

Mathematically we have:

P q' -
it 917 mmjﬂw"lduring consecutive samples :
Fault i=1 )
otherwise : Sault i=0
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where i is the output i (i = 1, ..., g-1) of the ANN
(recall that output ¢ refers to fault-free system
operation). In this work we consider one possible joint
failure type. In free-swinging joint faults, a loss of
torque occurs on a joint. This fault can be caused, for
example, by a loss of electric power on an electric
actuator, or by a mechanical fault in a drive.

Other faults can be taken into consideration: locked
joint faults occur when there is an immobilization of a
joint in a fixed position. This fault may be due, for
example, to a very high gear ratio on an actuator that
has lost power, or due to Indeed, opting for multiple
classification , one of the usual solutions is to choose
the classification model giving the best result. In our
work, we wused both the redundancy and
complementarily of classification models used.

IV. DUAL NERUAL CLASSIFICATION

The second proposed approach consists of two neural
networks (MLP and RBF), followed by a decision
system (Figure 2).

There are several methods for decision making
(Analogy, Fuzzy Logic, statistical treatment, etc.).

We opted for the analogy approach. This method is
more natural and nearest to the human reasoning.

The principle of this method is to draw the
decisions taken in the past in similar situations to solve
new problems. The technique of this method is the
reasoning from cases (examples) or" Case-Based
Reasoning (CBR)." This technique is based on the
assumption that the decisions and the resolution of a
problem is the access to information stored in previous
experiments to further exploitation.

e

Figure 2. Dual classification with robust decision

V. SIMULATIONS AND RESULTS

To evaluate our ANN-based FDI method we
performed an extensive simulation study with a three-
link SCARA robot. The dynamic equations, which
can be derived via the Euler-Lagrangian method, are
represented as follows:
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Dy =1 (5 + my) cos(gy) — (G2 +mg) = Dy
L My )
Dy =1 T""mgj: 3= My
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In which q1,q2 and g3 are the angles of joints 1, 2 and
3; and are the mass of links m1, m2 and m3; and are
the length of links 11, 12 and 13; g is the gravity
acceleration. This simulation study demonstrates that
the presented scheme is effective when applied to a
real life robotic system. The simulation was
conducted using Matlab & Simulink. In this study we
considered free-swinging joint faults, as described in
Section 3.

A. Residual generation results

The MLP used to reproduce the manipulator dynamic
behavior has one hidden layer with 49 neurons. The
input layer has 9 neurons (3 joint positions, 3 joint
velocities, and 3 joint torques measured at (t+ At) and
the output layer has 6 neurons ( joint positions and
joint velocities at (t+At)). The training set is formed
from 2500 patterns obtained by simulating more than
90 different trajectories with 25 samples each (at a
sample rate of 0.073 s).

Two test sets are used to validate the residual
generation. The first set has 5000 patterns obtained in
the simulation of 200 random trajectories. The second
set has 5000 patterns with measurement noise (with
variance = 0.01) added to the positions and velocities.

B. Residual analysis results: free-swinging joint
Sfaults

Here, we considered a free-swinging joint fault in the
robot dynamics as described in Section 3. The MLP
and the RBFN are trained with 900 patterns, obtained
with the simulation of 90 trajectories with 10 samples
each as shown in Table 1.
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Table 1. Trajectories of the RBFN Training set

Trajectories Operation
1-20 Fault in joint 1 (fault 1)
21-40 Fault in joint 2 (fault 2)
41-75 Fault in joint 3 (fault 3)
76-90 No fault

The faults are set to occur in the beginning of the
trajectories, before the manipulator reaches its set-
point. Two test sets were used to evaluate the
architecture. The first set has 5000 patterns obtained
by simulating of 250 random trajectories with 10
samples each. The second set has 5000 patterns with
measurement noise (with variance = 0.01) added to
the positions and velocities. The Table 2 presents the
mean squared errors for the architecture.

Table 2. Mean Squared Errors (MSE) of the MLP and
RBFN trained in Classifying the Residual

MLP RBFN

Training (900 patterns) 2.1x107 | 2.1x 107

Test 1 (5000 patterns — without noise| 1.9x107 | 3.9x 107

Test 2 (5000 patterns — with noise) 2.8x107 | 1.5x 10

To simulate the occurrence of free-swinging joint
faults, we set the torque applied at a joint to zero.

In first time, the residual analysis for fault isolation
purposes is performed with an MLP utilizing the
velocity residuals.

The figures 3, 4 and 5 shows the residual, position and
velocity of the joint 2 with a free-swinging joint faults
occurring at ¢t = 4s.

0.4

0.2

-0.2

] 5 10 15 20
Figure 3. Residual with a free-swinging joint faults in joint 2
att=4s.

-0.4 t(s)

146



pD2p---we o nh

-0.4

'l 1 '[S
] 5 10 15 2EI|;]

Figure 4. Normalized position and respective MLP output
in a trajectory with fault in joint 2 at t=4 s.
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Figure 5. Normalized velocity and respective MLP output
in a trajectory with fault in joint 2 at t=4 s.

In second time, the residual analysis for fault isolation
purposes is performed with an RBFN utilizing the
velocity residuals.
The figures 6, 7 and 8 shows the residual, position and
velocity of the joint 2 with a free-swinging joint faults
occurring at t = 5s.
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Figure 6. Residual with afree-swwinging joint faults in foint
2 at t=5s.
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Figure 7. Normalized velocity and respective RBFN output
in  atrajectory with fault in joint 2 at t=5 s.
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Figure 8. Normalized velocity and respective RBFN output
in a trajectory with fault in joint 2 at t=5 s.

C. ANALYSIS OF THE RESULTS

The ANN-based FDI system presents very
satisfactory results when applied in a simulation of the
Scara manipulator for consider free-swinging joint
faults. It can detect and isolate faults that occur in
trajectories that do not belong to the training set. The
MLP reproduces the dynamic behavior of the fault-
free robot with a small residual signal. It is important
to remember that the quality of the MLP training
(residual generation) is very important for the
performance of the FDI system. The comparison of
different ANN architectures for residual analysis led
us to conclude that the RBFN outperforms the MLP
for the task of residual analysis. This occurs because
the classification made by the RBFN is more robust
than that by the MLP. Recall that the RBFN classifies
the patterns according to the distance between them
and the radial unit centers, while the MLP classifies
the patterns according to decision surfaces that are
placed according to the training patterns. Another
advantage of the RBFN is that the time spent for
training it is smaller than the time spent for training
the MLP. One disadvantage is that the time for
running the RBFN is greater than the time for running
the MLP because the number of radial units (and the
time of processing) in the former are generally greater
than the number of hidden units in the latter. It is
important to emphasize that the results presented are
somewhat dependent on the choice of the parameters
in each training procedure. Also, fault isolation is
difficult to perform when different faults occupy the
same region in the residual space.

Indeed, the comparison between the results obtained
with the MLP network may be different from those of
RBF network, which makes diagnosis difficult to
achieve.

While with the second approach involving two neural
networks (MLP and RBF) followed by a decision
system, the diagnosis becomes more robust.
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VII. CONCLUSIONS

The Fault Diagnosis System proposed here presents
good results when it is applied to a three-link SCARA
robot.

With an extensive simulation study results, we were
able to conclude that ANNs are a powerful means for
Fault Diagnosis System tasks, robustly performing
both residual generation and residual analysis.
Research work developed in this paper deals with
decision support systems for fault diagnosis and
decision-making based on Artificial Intelligence using
hybrid techniques, and soft computing implying
neural networks and Case-Based Reasoning (CBR).
Further work on this is to extend the Fault Diagnosis
System scheme to robotic manipulators with a larger
number of degrees of freedom.

Other different types of faults can be detected and
isolated using other methods: Fault detection and
isolation of robotic manipulator via fuzzy logic,
neuro-fuzzy control, hybrid system and expert system
[8-12]. The work presented here can be expanded to
include post failure control of the robotic manipulator
in a hybrid system framework.

REFERENCES

[1] C. Fantuzzi, C. Secchi, and A. Visioli, “On the
fault detection and isolation of industrial robot
manipulator”, In 7th International IFAC Symposium
on Robot Control, 2003.

[2] A. T. Vemuri, M. M. Polycarpou, and S. A.
Diakourtis, “Neural network based fault detection in
robotic manipulators”, IEEE Transactions on Robotics
and Automation, 14(2), 1998, pp. 342-348.

[3] Y. Yi, J. E. Mcinroy, and Y. Chen, “Fault
tolerance of parallel manipulators using task space
and kinematic redundancy”, IEEE Transactions and
Robotics, vol. 22, no. 5, 1017-1021, 2006.

[4] W. Chen, and M. Saif, “Unknown input observer
design for a class of nonlinear systems: An LMI
approach”, Proc. of the American Control Conference
ACC’06, USA , 2006.

[5] M. H. Terra, and R. Tinos, “’Fault detection and
isolation in robotic manipulators via neural networks:
A comparison among three architectures for residual
analysis”, Journal of Robotic Systems, 18(7), 57-374,
2001.

[6] M. H. Terra, and R. Tinos, “Fault detection and
isolation for robotic systems using a multilayer
perceptron and a radial basis function network”, IEEE
International Conference on Systems, Man, and
Cybernetics, Vol. 2, pp. 1880-1885, 1998.

[7] T. Kohonen, Self-Organizing Maps, Springer-
Verlag, Berlin, 1995.

[8] D. Fragkoulis, G. Roux, and B. Dahhou,
“Application of a model based fault isolation method
for nonlinear dynamic systems”, International
Conference on Prognostic and Health Management,
USA, 2007.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ICONECT' 14 Conference Proceedings

[9] R. Merzouki, K. Fawaz, and B. Ould Bouamama,
“Hybrid Fault Diagnosis for Telerobotics System”,
Mechatronics, vol. 20, 729-738, 2010.

[10] A. F. T. Winfield, J. Nembrini, and Y. Chen,
“Fault tolerance in robot swarms”, International
Journal of Modeling, Identification and Control, vol.
1, No. 1, 30-37, 2006.

[11] J. Gertler, Proc. Of the IFAC Simp. “On Fault
Detection, Supervision and Safety for Technical
Processes”, Kingston Upon Hull, U. K., vol. 1, pp.
133, 1997.

[12] L. Eski, S. Erkaya, S. Savas, and S. Yildrim,
“Fault detection on robot manipulators using artificial
neural networks”, Robotics and Computer-Integrated
Manufacturing, vol. 27, Issue 1, pp. 115-123, 2011.

148



