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 Abstract — In real life scenario, we are dealing with the 

non-linear dynamic systems which may be mechanical, 

electrical, and aerospace and many others systems 

including aerospace.  Identification and parameter 

estimation of this non-linear dynamic system is 

challengeable and have high scope nowadays. The Kalman 

filter (KF), amongst other methods, has been rather 

successful in many such applications, however it requires a 

sort of complete model description of the dynamics of the 

system [1].The method of invariant embedding will be 

useful in determining accurate invariant model in two 

steps; one is, determining the model error and another step 

is fitting a model to the model error using Least square 

method. Still Invariant embedding method does not yield 

robust estimation of the model error. Here      H-Infinity 

norms are used to introduce robustness in the estimation as 

H-∞ norms places bound on the energy gain from unknown 

deterministic input (error) to the filter error. 

 

 Index Terms – Least square method, Signal norms, 

Invariant embedding method, kalman filtering. 

 

I. INTRODUCTION 

 In many real life situations we need accurate identification 

of nonlinear terms (parameters) in the model of a dynamic 

system. Generally, for all practical applications the parameter 

estimation methods is applied to nonlinear problems. As such, 

KF cannot determine the deficiency or discrepancy in the 

model of the system used in the filter, since it pre-supposes 

availability of accurate state-space model [1]. Consider a 

situation to find the state estimates for the given measurements 

from a nonlinear dynamic system. In this case, extended 

Kalman filter is used and the knowledge of the nonlinear 

functions is required. Any discrepancy in the model will cause 

model errors that will tend to create mismatch of the estimated 

states with the true state of the system. In KF, this is usually 

handled by including the process noise term Q. This method 

generally works, but it still could have some problems [3, 4]: i) 

deviation from the Gaussian assumption might degrade the 

performance of the algorithm, and ii) the filtering algorithm is 

dependent on the covariance matrix P of the state estimation 

error, since this is used for computation of Kalman gain K. 

Actually, the usage of process noise term in the filter doesn’t 

improve the model since the model can be deficient, but it can 

help in getting good match of the states. The estimates depend 

more on the current measurements. 

The foregoing limitations of the KF can be overcome largely 

by using the method based on principle of model error [3]. This 

approach not only estimates the states of the dynamic system 

from its noisy measurements, but also the model discrepancy as 

a time history. The known (deficient or linear) model is used in 

the state estimation procedure, and deterministic discrepancy 

of the model is determined, using the measurements in the 

model error estimation procedure. Once the discrepancy-time 

history is available, we can fit another model to it and estimate 

its parameters using regression method. Then adding the 

previously used model in the state estimation procedure and the 

new additional model which is developed would yield the 

accurate model of the underlying (nonlinear) dynamic system, 

which has generated the data. The main aim of the proposed 

work is to provide a link between estimation of deterministic 

model error by TPBVP/IE and HI norm to arrive at robust 

estimator. The structure of the HI filter has some similarity 

with the structure of the KF. The HI filter places a bound on 

the energy gain from the deterministic error-inputs to the filter 

error output. The approach is expected to produces accurate 

state trajectory, even in the presence of deficient/inaccurate 

model and additionally identifies the unknown model (form) as 

well as its parameters even with some uncertainties due to the 

property of robustness with H-infinity norms. 

 

 

II. BLOCK DIAGRAM 

In the below block diagram figure 1, a non-linear dynamic 

system is considered as the true plant. Deficient model is the 

system with the errors. To minimize these errors invariant 

embedding (IE) algorithm and H-Infinity norms are used. 

Finally after finding the model discrepancy parameter 

estimation is done by using LS (Least Square). 
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III. TWO POINT BOUNDARY VALUE PROBLEM 

(TPBVP) 

 
Consider the dynamic system as: 

)),(),(( ttutxfx   ; 00 xtx )(    (1) 

Defining a composite performance index as: 



ft

t

ff duxttxJ

0

)),(),(()),((     (2) 

The first term is the cost penalty on the final value of the 

state )( ftx . The term (.)  is the cost penalty governing the 

deviation of )(tx  and )(tu  from their desired time-histories. 

The aim is to determine the input )(tu , in the 

interval fttt 0 , such that the performance index J is 

minimized, subject to the constraint of eqn. (1), which states 

that the state should follow integration of eqn. (1) with the 

input thus determined [1]. Lagrange multiplier is used to 

handle the constraint within the functional J: 

 
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ft

t

T

ffa

dxuxfux

ttxJ

0

)])),(),((()),(),(([

)),((






     (3) 

Here,   is the Lagrange multiplier or co-state. That is, in the 

process of determination of )(tu  by minimization of aJ , the 

condition of eqn. (1) should not be violated. Eqn. (3) can be 

rewritten as: 

 

ft

t
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ffa dxuxHttxJ

0
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Here, )),(),(()()),(),((  uxfuxH T  (5) 

H is called Hamiltonian. The term 

ft

t

T dx

0

   of eqn.(4) is 

integrated by parts to obtain other terms in eqn.(5).  
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From eqn.(6), the so-called Pontryagin’s necessary conditions 

are obtained: 
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and   0




u

H
          (9) 

Here, 00 )(tx , assuming that the initial conditions )( 0tx  

are independent of )(tu . The eqns. (1) and (7)–(9) define the 

TPBV problem: the boundary condition for state is specified at 

0t  and for the co-state;   it is specified at ft . From eqn.(7) 

and (9), we obtain: 
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One method to solve the TPBVP is to start with 

guesstimate on )( 0t  and use )( 0tx  to integrate forward to 

the final time ft . Then verify the boundary condition 

T

ftx
ft







 )( . If the condition is not satisfied, then iterate 

once again with new )( 0t  and so on until the convergence of 

the algorithm is obtained. In the next section, we discuss the 

method of invariant embedding for solution of the TPBV 

problem. 

 

 

IV. INVARIANT EMBEDDING METHOD 

 

Considering the resultant equations of TPBV problem, 

)),(),(( tttxx         (12) 

)),(),(( tttx          (13) 
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Figure 1: Block Diagram of the Model Error Estimation Algorithm with  norms 
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We see that    and  are dependent on )()( ttx  and . 

Hence, here we have general two-point boundary value 

problem with associated boundary conditions as: a)(0  

and bt f )( . Now, though the terminal condition 

bt f )(  and time are fixed, we consider them as free 

variables. Therefore, this dependency can be represented as: 

)),((),()( ffff ttrtcrtx      (14) 

with ttt ff  , we obtain by neglecting higher order 

terms: 

ccttttt fff  )()()(     (15) 

We also get, using eqn.(13) in (15) 

ttttxccc fff  )),(),((     (16) 

and therefore, we get 

ttcrc f  ),,(        (17) 

In addition, we get, like eqn. (15): 

),()()()( ttccrttxtxttx ffff    

            (18) 

and hence, using eqn.(12) in (18), we get: 
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Using Taylor’s series, we get: 
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Comparing eqn. (18) and (19), we get: 
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or, using eqn.(20) in (21), we obtain: 
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The above equation simplifies to 
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The eqn. (23) links the variation of the terminal condition 

),()( ff tcrtx   to the state and co-state differential 

functions, see eqn. (12) and (13). Now in order to find an 

optimal estimate )(ˆ ftx , we need to determine ),( ftbr : 

),()(ˆ ff tbrtx          (24) 

The eqn. (21) can be transformed to an initial value problem by 

using approximation: 

)(ˆ)(),( fff txctStcr       (25) 

Substituting eqn. (23) in eqn.(25), we get: 
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            (26) 

Next, expanding   and   about ),,ˆ( ftbx  and 

),,ˆ( ftbx , we obtain: 

))(ˆ),()(,,ˆ(),,ˆ(),,( ˆ fffxff txtcrtbxtbxtcr 

 

       = ctStbxtbx ffxf )(),,ˆ(),,ˆ( ˆ  (27) 

and  

ctStbxtbxtcr ffxff )(),,ˆ(),,ˆ(),,( ˆ   

            (28) 

Utilizing expressions of eqn.(27)and (28), in eqn.(26), we 

obtain: 
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  ctStbxtbx ffxf )(),,ˆ(),,ˆ( ˆ   (29) 

The eqn. (29) is in essence a sequential state estimation 

algorithm but a composite one involving x̂  and )( ftS . The 

above equation can be separated by substituting the specific 

expressions for   and  in eqn. (29).  

 

A. Continuous-time algorithm 

Let the dynamic system be represented by: 

)()),(( tdttxfx         (30) 

)()()( tvtHxtz         (31) 

The invariant embedding method is solved for continuous time 

system resulting in the following equations,  

))()(()()),((ˆ tHxtzRHtSttxfx T  12     (32) 









)()ˆ(
ˆ

)(
1

2

1

)(
1

)(2)(ˆˆ)()(

tSxf
T

x
tSQ

tHSR
T

HtStSxf
T

xftStS









 

             (33) 

We divide eqn.(33) by   and for 0 , we get: 

1

2

112  QtHSRTHtStSxfT
x

ftStS )()()(ˆˆ
)()(

            (34) 

))()(()()(ˆ tHxtzRTHtStd  12      

            (35) 

The equations (33)-(35) give invariant embedding based model 

error estimation algorithm for continuous time system of eqn. 

(30) and (31), in a recursive form. The eqn. (34) is often called 

matrix Riccati equation, and eqn. (35) is the direct estimation 

or the determination of deterministic discrepancy or the so 

called model error. 
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V. H-INFINITY NORMS/FILTERING 

 

Consider the system shown in the figure below: 

 

 
Figure 2: Filter Configuration. 

 

Where the system and variables are defined as follows:   

P  Plant; F  Filter 

y   Plant output, input to filter ( measurements) 

w  System disturbances 

n  Output disturbances 

   Performance estimates 

  Estimate error (output performance) 

 

The goal is to determine a filter F, which will operate in the 

plant output, y, and produce an estimate, , that is some linear 

combination of plant state estimates, and satisfies a 

strategically developed performance criterion. The 

performance criterion is generally a minimization or restriction 

on a norm of some system parameters. 

 

Performance criteria: 

For the system, the  norm can be interpreted as the peak 

system gain (squared). For H criteria, the transfer function, 

from the input disturbances to the estimate error, , shall be 

required to have a system gain that conforms to an upper 

bound, i.e. it is confined below the bound: 

    (36) 

This criteria represents a family of solutions where the peak 

energy gain of the transfer function from the input disturbances 

to the estimate error are less that an upper bound, . The 

performance criteria can also be rewritten as: 

 

(37) 

 

The below figure shows the peak gain for H  criteria: 

 

 
Figure 3: Peak gain of H  filter 

 

 

A method to get proper weighting of these elements is to 

normalize the inputs as follows: 

 

    (38) 

Where, 

         (39) 

 

 

 The performance bound can be written as, 

           (40) 

Or, can be re-written as, 

      (41) 

Because the system disturbances and sensor noise will produce 

an estimate error, there is a lower bound on the value of  

which is designated o. The cost function for the variational 

approach is written as: 

          (42) 

Thus, considering any linear, time-invariant dynamic system, 

the model error can be determined as the robust model error 

using H norms. 

 

VI. ILLUSTRATION 

 

Let us consider a non-linear continuous time system as an 

example: 

 

)(0195.0)()(68.0)cos(5.2)( 3

2211 tXtXtXttX   

)()( 12 tXtX   

 

Step 1: )(1 tX  & )(2 tX  are the state equations after 

integrating both consider it as true plant. 

 

Step 2: Now by removing one or two co-efficient from the  

equation introduce error in it. 

 

Step 3: By the combination of invariant embedding method and 

HI norms find out the model discrepancy. 

 

Step 4: Fit a model i.e., parameter estimation using Least 

square method. 

 

Here two cases are considered 
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Case i) Removing the co-efficient of )(3

2 tX (a3) 

Caseii)Removing the co-efficient of )(1 tX (a1), )(2 tX (a2)& 

)(3

2 tX (a3) 

 

VII. SIMULATION RESULTS 

 
Simulation results of above mentioned cases are as follows: 

 

Figure 4 and Figure 5 shows the estimated state 1X & 

2X respectively. Figure 6 & 7 is the simulated results of the 

model discrepancies for case(i)  & case(ii) respectively. 

 

 

Figure 4: State 1X  

 

 

Figure 5: State 2X   

 
Figure 6: time history match of model discrepancy (case (i)) 

 
Figure 7: Time history match of model discrepancies 

 (Case (ii)) 

 

 

TABLE 1: Non-linear parameter estimation results. 

 

parameters True 

values 

Estimated values 

Case(i) Case(ii) 

a1 0.68 - 0.5576 

a2 1 - 0.9647 

a3 0.0195 0.0182 0.198 

 

TABLE 2: Cost function for case (i) and case (ii) 

No. Of cases Without norms With norms 

Case(i) 0.207 0.109 

Case (ii) 0.187 0.052 
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