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Abstract—Many difficulties are associated with the 

optimization of large-scale problems. The major difficulties 

are multi-modality, dimensionality and differentiability. 

Traditional techniques generally fail to solve such large-scale 

problems especially with nonlinear objective functions. The 

main problem is to solve non-differentiable functions with the 

help of traditional techniques because most of the traditional 

techniques require gradient information and hence it is not 

possible. Moreover, such techniques often fail to solve 

optimization problems that have many local optima. To 

overcome these problems, there is a need to develop more 

powerful optimization techniques. These techniques are 

known as modern optimization technique. In this Paper, the 

theory needed to understand the modern optimization 

techniques are explained. These modern techniques are used 

to solve linear, nonlinear, differential and non-differential 

optimization problems. Although various optimization 

methods have been proposed in recent years, but some more 

popular optimization techniques such as Genetic Algorithm, 

Simulated Annealing Ant colony method, Honey Bee 

Algorithm are presented here. The methods were broadly 

reviewed. 
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I. INTRODUCTION 

Optimization is a technique which is used everywhere, 

from engineering design to financial markets from fashion 

technology to mass communication and also in our daily 

activities. We always intend to maximize or minimize 

something which is simply known is the objective function. 

To determine the optimal solution for objective functions, 

there are various optimization tools like linear 

programming, simplex method, assignment model, 

transportation model, CPM and PERT are playing a vital 

role. Organizations are implementing these techniques to 

maximize their profits, minimizetheir costs,. Even when we 

plan our holidays, we want to maximize our enjoyment 

(objective function) with least cost (or ideally free). In fact, 

we are constantly searching for the optimal solutions to 

every problem we meet, though we are not necessarily able 

to find such solutions. 

The complexity of the problem of interest makes it 
impossible to search every possible solution or 
combination, the aim is to find good, feasible solutions in 
an acceptable timescale. There is no guarantee that the best 
solutions can be found, and we even do not know whether 
an algorithm will work and why if it does work. 

As this paper is mainly about the introduction to 

metaheuristic algorithms, techniques such as Genetic 

Algorithm, Simulated Annealing Ant colony method, 

Honey Bee Algorithm In fact, quite a significant number of 

new algorithms in optimization are primarily 

metaheuristics. 

II. LITERATURE REVIEW 

Alan Turing was probably the first to use heuristic 

algorithms during the Second World War, when he was 

breaking German Enigma ciphers at Bletchley Park, where 

Turing, together with British mathematician Gordon 

Welchman, designed in 1940 a cryptanalytic 

electromechanical machine, the Bombe, to aid their code-

breaking work. The bomb used a heuristic algorithm, as 

Turing called, to search, among about 1022 potential 

combinations, the possibly correct setting coded in an 

Enigma message. Turing called his search method heuristic 

search, as it could be expected, it worked most of the time, 

but there was no guarantee to find the correct solution, but 

it was a tremendous success [3]. 

The next significant step is the development of 

evolutionary algorithms in the 1960s and 1970s. First, John 

Holland and his collaborators at the University of Michigan 

developed the genetic algorithms in the 1960s and 1970s. 

As early as 1962, Holland studied the adaptive system and 

was the first to use crossover and recombination 

manipulations for modeling such systems. His seminal 

book summarizing the development of genetic algorithms 

was published in 1975 [4]. 

The decades of the 1980s and 1990s were the most 

exciting time for metaheuristic algorithms. The next big 

step is the development of simulated annealing (SA) in 

1983, an optimization technique, pioneered by S. 

Kirkpatrick, C. D. Gellat and M. P. Vecchi, inspired by the 

annealing process of metals. It is a trajectory-based search 

algorithm starting with an initial guess solution at a high 

temperature, and gradually cooling down the system. A 

move or new solution is accepted if it is better; otherwise, 

it is accepted with a probability, which makes it possible 

for the system to escape any local optima. It is then 

expected that if the system is cooled slowly enough, the 

global optimal solution can be reached [1]. 

In 1992, Marco Dorigo finished his PhD thesis on 

optimization and natural algorithms, in which he described 

his innovative work on ant colony optimization (ACO). 

This search technique was inspired by the swarm 
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intelligence of social ants using pheromone as a chemical 

messenger [5]. 

In 1997, the publication of the 'no free lunch theorems 

for optimization' by D. H. Wolpert and W. G. Macready 

sent out a shock wave to the optimization community. 

Researchers have always been trying to find better 

algorithms, or even universally robust algorithms, for 

optimization, especially for tough NPhard optimization 

problems. However, these theorems state that if algorithm 

A performs better than algorithm B for some optimization 

functions, then B will outperform A for other functions. 

That is to say, if averaged over all possible function space, 

both algorithms A and B will perform on average equally 

well. Alternatively, there is no universally better algorithms 

exist [2]. 

III. OPTIMIZATION TECHNIQUES 

There are different optimization techniques for diverse 

troubleshoots or bottlenecks that we face in industries or in 

our daily life. For these optimization techniques, there are 

always a best suited solution in case of various assorted 

intermingled issues. 

Metaheuristics 

Most metaheuristic algorithms are nature-inspired as 

they have been developed based on some abstraction of 

nature. Nature has evolved over millions of years and has 

found perfect solutions to almost all the problems she met.‖ 

No one manufactures a lock without a key, thus it is 

learning process of   success of problem-solving from 

nature and develop naturally-inspired heuristic and/or 

metaheuristic algorithms. More specifically, some nature-

inspired algorithms are inspired by Darwin's evolutionary 

theory. Consequently, they are said to be biologically-

inspired or simply bio-inspired [6]. 

Two major components of any metaheuristic algorithms 

are: selection of the best solutions and randomization. The 

selection of the best ensures that the solutions will lead to 

the optimality, while the randomization ignores local 

optimal solution and enhances the diversity of the 

solutions. Effective utilization of these two components 

will usually ensure that the global optimality is achievable. 

A. Simulated annealing (SA) 

Simulated annealing (SA) is a random search technique 

for global optimization problems, and it reveals the 

annealing process in material processing when a metal 

cools and freezes into a crystalline state with the minimum 

energy and larger crystal size so as to reduce the defects in 

metallic micro structures. The annealing process involves 

the strict control of temperature and cooling rate called 

annealing schedule [7]. 

Metaphorically speaking, this is similar to dropping 

some bouncing balls over a landscape, and as the balls 

bounce and lose energy, they settle down to some local 

minima. If the balls are allowed to bounce enough times 

and lose energy slowly enough, some of the balls will 

eventually fall into the globally lowest locations; hence, the 

global minimum will be reached. 

The basic idea of the simulated annealing algorithm is 

to use random search in terms of a Markov chain, which 

not only permits changes that improve the objective 

function, but also keeps some changes that are not suitable. 

In a minimization problem, for example, any better moves 

or changes that decrease the value of the objective function 

/ will be permitted ; however, some changes that 

enhancement will also be accepted with a probability p. 

This probability p, also called the transition probability, is 

determined by 

    

P{accept ω’ as next solution} =  

 
exp  −

𝑓 𝜔 ′  −𝑓 𝜔 

𝑡𝑘
  𝑖𝑓 𝑓 𝜔′ − 𝑓 𝜔 > 0

1                                𝑖𝑓 𝑓 𝜔′ − 𝑓 𝜔 ≤ 0

  

Where 

ω = initial solution 

ω’ = neighboring solution 

tk = as the temperature parameter at iteration k 

The working procedure of SA is easily understand by 

following steps 

Step 1: Initialize – Start with a random initial 

placement. Initialize a very high ―temperature‖.  

Step 2: Move – Perturb the placement through a 

defined move. 

Step 3: Calculate score – calculate the change in the 

score due to the move made. 

Step 4: Choose – Depending on the change in score, 

accept or reject the move. The probe of acceptance 

depending on the current ―temperature‖.  

Step 5: Update and repeat– Update the temperature 

value by lowering the temperature. Go back to Step 2.  

The process is done until ―stop condition‖ is reached. 

There are several stop condition of the algorithm. Some 

examples are: 

a) Maximum number of iterations; 

b) Minimum temperature value; 

c) Minimum value of objective function; 

d) Minimum value of acceptance rate. 

Pseudo code 

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑝)𝑇  

Initialize initial temperature 𝑇𝑂  and initial guess 𝑥(0) 

Set final temperature 𝑇𝑓and max number of iterations N 

Define cooling schedule T → αT, (0 <a <1) 

while( T >𝑇𝑓and n< N ) 

 Move randomly to new locations: 𝑥𝑛+1 = 𝑥𝑛+ randn 

 Calculate ∆f = 𝑓𝑥+1 𝑥𝑛+1 − 𝑓𝑛(𝑥𝑛) 

 Accept the new solution if better 

 if not improved 

  Generate a random number r 

  Accept if p= exp [-∆f/T]>r 

 endif 

 Update the best 𝑥∗ and 𝑓∗ 
 n = n+ 1 

end while 
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B.Genetic Algorithm 

Holland was first presented systematically Genetic 

Algorithm [7], the basic ideas of analysis and design based 

on the concepts of biological evolution can be found in the 

work of Rechenberg [8]. Philosophically, GAs are based on 

Darwin’s theory of survival of the fittest. Genetic 

algorithms are based on the principles of natural genetics 

and natural selection. The basic elements of natural 

genetics reproduction, crossover, and mutation—are used 

in the procedure of genetic algorithm. 

The solution of an optimization problem by GAs 

commences with a population of random strings denoting 

different (population of) design vectors. The population 

size in GAs (n) is generally fixed. Each string (or design 

vector) is evaluated to find its fitness value. The population 

is operated by three operators—reproduction, crossover, 

and mutation—to produce a new population of points. The 

new population is further evaluated to find the fitness 

values and examined for the convergence of the process. 

One cycle of reproduction, crossover, and mutation and the 

evaluation of the fitness values is known as a generation in 

GAs. If the convergence criterion is not satisfied, the 

population is iteratively operated by the three operators and 

the resulting new population is evaluated for the fitness 

values. The procedure is continued through different 

generations until the convergence criterion is satisfied and 

the process is terminated. The details of the three 

operations of GAs are given below. 

Reproduction It is the first operation applied to the 

population to select good strings (designs) of the 

population to form a mating pool. The reproduction 

operator is also called the selection operator because it opts 

good strings of the population. The reproduction operator is 

used to choose above-average strings from the recent 

population and apply their numerous copies in the mating 

pool based on a probabilistic procedure. In a commonly 

used reproduction operator, a string is chosen from the 

mating pool with a probability proportional to its fitness 

[10]. 

CrossoverAfter reproduction, the crossover operator is 

implemented. The aim of crossover is to form new strings 

by exchanging information among the strings of the mating 

pool. Numerous crossover operators have been used in the 

literature of GAs. In most crossover operators, two 

individual strings (designs) are chosen (or selected) at 

random from the mating pool generated by the 

reproduction operator and some part of the string are 

interchanged between the strings. In the commonly used 

process, known as a single-point crossover operator, a 

crossover site is selected at random along the string length, 

and the binary digits (alleles) lying on the right side of the 

crossover site are swapped (exchanged) between the two 

strings. The two strings involve in the crossover operators 

are known as parent strings and the strings generated by the 

crossover operator are known as child strings [10].  

For example, if two design vectors (parents), each with 

a string length of 10, are given by 

(Parent 1) X1 = {1 1 0 | 1 0 1 0 0 1 1}  

(Parent 2) X2 = {0 0 1 | 0 1 0 1 1 0 1}  

The result of crossover, when the crossover site is  is 

given by  

(Offspring 1) X3 = {1 1 0 | 0 1 0 1 1 0 1}  

(Offspring 2) X4 = {0 0 1 | 1 0 1 0 0 1 1} 

Since the crossover operator combines substrings from 

parent strings (which have good fitness values), the 

resulting child strings created are expected to have better 

fitness values provided an appropriate (suitable) crossover 

site is selected 

MutationThe crossover is the important operator by 

which new strings with better fitness values are created for 

the new generations. The mutation operator is used in the 

new strings with a particular small mutation probability, 

pm. The mutation operator changes the binary digit 

(allele’s value) 1 to 0 and vice versa. Different methods can 

be utilized for implementing the mutation operator. In the 

single-point mutation, a mutation site is selected at random 

along the string length and the binary digit at that site is 

then changed from 1 to 0 or 0 to 1 with a probability of pm. 

In the bit-wise mutation, each bit (binary digit) in the string 

is considered one at a time in sequence, and the digit is 

changed from 1 to 0 or 0 to 1 with a probability 

Pm Numerically, the process can be implemented as 

follows. A random number between 0 and 1 is 

generated/chosen. If the random number is smaller than 

pm, then the binary digit is changed. Otherwise, the binary 

digit is not changed. The Aim of mutation is (1) to generate 

a string (design point) in the adjacent of the current string, 

therefore accomplishing a local search around the current 

solution, (2) to prevent against a pre-mature loss of 

important genetic material at a particular position, and (3) 

to maintain diversity in the population [10]. 

Pseudo code 

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑛)𝑇  

Encode the solution into binary strings (chromosomes) 

Define fitness F (eg, F α f(x ) for maximization) 

Generate the initial population 

Initial probabilities of crossover (𝑃𝑐 ) and mutation (𝑃𝑚 ) 

 While(t<Max number of generations) 

Generate new solution by crossover and mutation 

if𝑃𝑐>rand, Crossover; end if 

if𝑃𝑚>rand, Mutate; end if 

  Accept the new solutions if their fitness increase 

  Select the current best for new generation  

 end while 

Decode the results and visualization 

C. Ant Colony Method 

In this, we will discuss the nature-inspired ant colony 

optimization (ACO), which is a metaheuristic method. Ants 

are social insects in habit and they hold out together in 

organized colonies whose population size can range from 

around 2 to 25 million. When foraging, a swarm of ants or 

mobile agents interact or communicate with their local 

surroundings. Each ant can lay scent chemicals or 

pheromone so as to communicate with others, and each 
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unit is likewise able to travel along the road marked with 

pheromone laid by other ants. When ants find a food 

source, they will mark it with pheromone and also mark the 

trails to and from it [11]. From the initial random foraging 

route, the pheromone concentration varies and the ants 

follow the route with higher pheromone concentration, and 

the pheromone is enhanced by the increasing number of 

ants. As more and more ants follow the same route, it 

becomes the favored path. Thus, some favorite routes 

emerge, often the shortest or more efficient. This is a 

positive feedback mechanism. 

Based on these characteristics of ant behavior, scientists 

have developed a number of powerful ant colony 

algorithms with important progress made in recent years. 

Marco Dorigo pioneered the research in this area in 1992 

[12]. Many different variants have appeared since then. 

If we just apply some of the foraging behavior of ants 

and add some new features, we can organize a category of 

new algorithms. Two significant issues here: the 

probability of choosing a route, and the dehydration rate of 

pheromone [13]. There are a few ways of solving these 

problems, although it is still an area of active research. 

Here we introduce the current best method. 

For a network routing problem, the probability of ants 

at a particular node to choose the route from node to node j, 

among n<j nodes, is given by 

𝑝𝑖𝑗 =  
𝛷𝑖𝑗

𝛼  𝑑𝑖𝑗
𝛽

 

 𝛷𝑖𝑗
𝛼  𝑑𝑖𝑗

𝛽𝑛𝑑
𝑖 ,𝑗=1

      (a) 

Whereα >0 and β > 0 are the influence parameters 

Ф = pheromone concentration 

The pheromone concentration can change with time due 

to the evaporation of pheromone. Furthermore, the 

advantage of pheromone evaporation is that the system 

could avoid being trapped in local optima. If there is no 

evaporation, then the path randomly chosen by the first 

ants will become the preferred path as the attraction of 

other ants by their pheromone. For a constant rate 𝛾 of 

pheromone decay or evaporation, the pheromone 

concentration usually varies with time exponentially 

Ф(𝑡) = Ф0𝑒
−𝛾𝑡  

WhereФ0the initial concentration of pheromone and t Is 

time. If 𝛾𝑡 ≪ 1 then we have Ф(t)≈ (1 − 𝛾𝑡)Ф𝑜· For the 

unitary time increment ∆t = 1, the evaporation can be 

approximated by 𝛷𝑡+1 ← (1 − 𝛾)𝛷𝑡 . Therefore, we have 

the simplified pheromone update formula: 

𝛷𝑖𝑗
𝑡+1 = (1 − 𝛾)𝛷𝑖𝑗

𝑡 𝛷𝑖𝑗
𝑡 

𝛾 Pheromone decay or evaporation 

The increment δ𝛷𝑖𝑗
𝑡   is the amount of pheromone deposited 

at time t along route ito j 

Pseudo code 

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑛)𝑇  

 [orf(𝑥𝑖𝑗 ) for routing problem where (I,j) ϵ {1 .,n}] 

Define pheromone evaporation rate 𝛾 

While(criterion) 

 for loop over all n dimensions (or nodes) 

 Generate new solutions 

 Evaluate the new solutions 

 Mark better locations/routes with pheromone   

 δФ𝑖𝑗  

 Update pheromone: Ф𝑖𝑗 = (1 − 𝛾)Ф𝑖𝑗  + δФ𝑖𝑗  

 end for 

 Daemon actions such as finding the current   

 best 

end while 

Output the best results and pheromone distribution 

D. Honey Bee Algorithms. 

Bee algorithms form another class of algorithms which 

are closely related to the ant colony optimization. Bee 

algorithms are inspired by the foraging behavior of honey 

bees. Honey bees live in a colony and they forage and store 

honey in their constructed colony. Honey bees can 

communicate by pheromone and 'waggle dance'. For 

example, an alarming bee may release a chemical message 

(pheromone) to stimulate an attack response in other bees. 

Furthermore, when bees find a good food source and bring 

some nectar back to the hive, they will communicate the 

location of the food source by performing the so-called 

waggle dances as a signal system. Such signaling dances 

vary from species to species, however, they will try to 

recruit more bees by using directional dancing with varying 

strength so as to communicate the direction and distance of 

the found food resource. 

From the literature survey, it seems that the Honey Bee 

Algorithm (HBA) was first formulated in around 2004 by 

Craig A Tovey at Georgia Tech in collaboration with Sunil 

Nakrani then at Oxford University to study a method to 

allocate computers among different clients and web-

hosting servers [14]. In the honey bee algorithm, forager 

bees are allocated to different food sources (or flower 

patches) so as to maximize the total nectar intake. The 

colony has to 'optimize' the overall efficiency of nectar 

collection; the allocation of the bees is thus depending on 

many factors such as the nectar richness and the proximity 

to the hive. The probability of an observer bee following 

the dancing bee to forage can be determined in many ways 

depending on the actual variant of algorithms. A simple 

way is given by Guijano and Passino 

  𝑝𝑖 =
𝑤𝑖

𝑗

 𝑤
𝑖
𝑗𝑛𝑓

𝑖=1

 

Where 𝑤𝑖
𝑗
be the strength of the waggle dance of bee iat 

time step t = j, 

𝑛𝑓  is the number of bees 

In addition, the rating of each route is ranked 

dynamically and the path with the highest number of bees 

become the preferred path. For a routing problem, the 

probability of selecting a path between any two nodes can 

hold the frame similar to the equation (a). 

It is really effective in dealing with discrete 

optimization problems such as routing and scheduling. 

When dealing with continuous optimization problems, it is 

not straightforward, and some modifications are needed. 

They possess the advantages over genetic algorithms and 

simulated annealing in dealing with dynamical network 

routing and task scheduling problems. 
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Pseudo code 

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑛)𝑇  

Encode f(x) into virtual nectar levels 

Define dance routine (strength, direction) or protocol 

while ( criterion ) 
 for loop over all n dimensions 

  (or nodes for routing and scheduling     

 problems) 

 Generate new solutions 

 Evaluate the new solutions 

 end for 
 Communicate and update the optimal     

 solution set 

end while 
Decode and output the best results. 

IV.CONCLUSIONS 

 

In this paper modern optimization techniques are 

explained in detail. These include: Genetic Algorithm 

(GA), Simulated Annealing (SA), Ant Colony optimization 

(ACO) and Honey Bee Algorithm (HBO). A brief 

description of each method is presented along with a 

pseudo code to facilitate their implementation. Modern 

optimization technique is used to solve Non Linear and 

non-differentiable optimization problems which are not 

possible to solve by traditional optimization methods. 
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