
Review of Modern Optimization Techniques

 Shahbaz Khan Mohammad Asjad Akhlas Ahmad

Mechanical Engineering Mechanical Engineering Mechanical Engineering

Jamia Millia Islamia Jamia Millia Islamia IntegralUniversity

New Delhi (India) New Delhi (India) Lucknow (India)

Abstract—Many difficulties are associated with the

optimization of large-scale problems. The major difficulties

are multi-modality, dimensionality and differentiability.

Traditional techniques generally fail to solve such large-scale

problems especially with nonlinear objective functions. The

main problem is to solve non-differentiable functions with the

help of traditional techniques because most of the traditional

techniques require gradient information and hence it is not

possible. Moreover, such techniques often fail to solve

optimization problems that have many local optima. To

overcome these problems, there is a need to develop more

powerful optimization techniques. These techniques are

known as modern optimization technique. In this Paper, the

theory needed to understand the modern optimization

techniques are explained. These modern techniques are used

to solve linear, nonlinear, differential and non-differential

optimization problems. Although various optimization

methods have been proposed in recent years, but some more

popular optimization techniques such as Genetic Algorithm,

Simulated Annealing Ant colony method, Honey Bee

Algorithm are presented here. The methods were broadly

reviewed.

Keyword: Optimization, non-differentiable, nonlinear,

Genetic Algorithm, Simulated Annealing, Ant colony method,

Honey Bee Algorithm

I. INTRODUCTION

Optimization is a technique which is used everywhere,

from engineering design to financial markets from fashion

technology to mass communication and also in our daily

activities. We always intend to maximize or minimize

something which is simply known is the objective function.

To determine the optimal solution for objective functions,

there are various optimization tools like linear

programming, simplex method, assignment model,

transportation model, CPM and PERT are playing a vital

role. Organizations are implementing these techniques to

maximize their profits, minimizetheir costs,. Even when we

plan our holidays, we want to maximize our enjoyment

(objective function) with least cost (or ideally free). In fact,

we are constantly searching for the optimal solutions to

every problem we meet, though we are not necessarily able

to find such solutions.

The complexity of the problem of interest makes it
impossible to search every possible solution or
combination, the aim is to find good, feasible solutions in
an acceptable timescale. There is no guarantee that the best
solutions can be found, and we even do not know whether
an algorithm will work and why if it does work.

As this paper is mainly about the introduction to

metaheuristic algorithms, techniques such as Genetic

Algorithm, Simulated Annealing Ant colony method,

Honey Bee Algorithm In fact, quite a significant number of

new algorithms in optimization are primarily

metaheuristics.

II. LITERATURE REVIEW

Alan Turing was probably the first to use heuristic

algorithms during the Second World War, when he was

breaking German Enigma ciphers at Bletchley Park, where

Turing, together with British mathematician Gordon

Welchman, designed in 1940 a cryptanalytic

electromechanical machine, the Bombe, to aid their code-

breaking work. The bomb used a heuristic algorithm, as

Turing called, to search, among about 1022 potential

combinations, the possibly correct setting coded in an

Enigma message. Turing called his search method heuristic

search, as it could be expected, it worked most of the time,

but there was no guarantee to find the correct solution, but

it was a tremendous success [3].

The next significant step is the development of

evolutionary algorithms in the 1960s and 1970s. First, John

Holland and his collaborators at the University of Michigan

developed the genetic algorithms in the 1960s and 1970s.

As early as 1962, Holland studied the adaptive system and

was the first to use crossover and recombination

manipulations for modeling such systems. His seminal

book summarizing the development of genetic algorithms

was published in 1975 [4].

The decades of the 1980s and 1990s were the most

exciting time for metaheuristic algorithms. The next big

step is the development of simulated annealing (SA) in

1983, an optimization technique, pioneered by S.

Kirkpatrick, C. D. Gellat and M. P. Vecchi, inspired by the

annealing process of metals. It is a trajectory-based search

algorithm starting with an initial guess solution at a high

temperature, and gradually cooling down the system. A

move or new solution is accepted if it is better; otherwise,

it is accepted with a probability, which makes it possible

for the system to escape any local optima. It is then

expected that if the system is cooled slowly enough, the

global optimal solution can be reached [1].

In 1992, Marco Dorigo finished his PhD thesis on

optimization and natural algorithms, in which he described

his innovative work on ant colony optimization (ACO).

This search technique was inspired by the swarm

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

984

intelligence of social ants using pheromone as a chemical

messenger [5].

In 1997, the publication of the 'no free lunch theorems

for optimization' by D. H. Wolpert and W. G. Macready

sent out a shock wave to the optimization community.

Researchers have always been trying to find better

algorithms, or even universally robust algorithms, for

optimization, especially for tough NPhard optimization

problems. However, these theorems state that if algorithm

A performs better than algorithm B for some optimization

functions, then B will outperform A for other functions.

That is to say, if averaged over all possible function space,

both algorithms A and B will perform on average equally

well. Alternatively, there is no universally better algorithms

exist [2].

III. OPTIMIZATION TECHNIQUES

There are different optimization techniques for diverse

troubleshoots or bottlenecks that we face in industries or in

our daily life. For these optimization techniques, there are

always a best suited solution in case of various assorted

intermingled issues.

Metaheuristics

Most metaheuristic algorithms are nature-inspired as

they have been developed based on some abstraction of

nature. Nature has evolved over millions of years and has

found perfect solutions to almost all the problems she met.‖

No one manufactures a lock without a key, thus it is

learning process of success of problem-solving from

nature and develop naturally-inspired heuristic and/or

metaheuristic algorithms. More specifically, some nature-

inspired algorithms are inspired by Darwin's evolutionary

theory. Consequently, they are said to be biologically-

inspired or simply bio-inspired [6].

Two major components of any metaheuristic algorithms

are: selection of the best solutions and randomization. The

selection of the best ensures that the solutions will lead to

the optimality, while the randomization ignores local

optimal solution and enhances the diversity of the

solutions. Effective utilization of these two components

will usually ensure that the global optimality is achievable.

A. Simulated annealing (SA)

Simulated annealing (SA) is a random search technique

for global optimization problems, and it reveals the

annealing process in material processing when a metal

cools and freezes into a crystalline state with the minimum

energy and larger crystal size so as to reduce the defects in

metallic micro structures. The annealing process involves

the strict control of temperature and cooling rate called

annealing schedule [7].

Metaphorically speaking, this is similar to dropping

some bouncing balls over a landscape, and as the balls

bounce and lose energy, they settle down to some local

minima. If the balls are allowed to bounce enough times

and lose energy slowly enough, some of the balls will

eventually fall into the globally lowest locations; hence, the

global minimum will be reached.

The basic idea of the simulated annealing algorithm is

to use random search in terms of a Markov chain, which

not only permits changes that improve the objective

function, but also keeps some changes that are not suitable.

In a minimization problem, for example, any better moves

or changes that decrease the value of the objective function

/ will be permitted ; however, some changes that

enhancement will also be accepted with a probability p.

This probability p, also called the transition probability, is

determined by

P{accept ω’ as next solution} =

exp −

𝑓 𝜔 ′ −𝑓 𝜔

𝑡𝑘
 𝑖𝑓 𝑓 𝜔′ − 𝑓 𝜔 > 0

1 𝑖𝑓 𝑓 𝜔′ − 𝑓 𝜔 ≤ 0

Where

ω = initial solution

ω’ = neighboring solution

tk = as the temperature parameter at iteration k

The working procedure of SA is easily understand by

following steps

Step 1: Initialize – Start with a random initial

placement. Initialize a very high ―temperature‖.

Step 2: Move – Perturb the placement through a

defined move.

Step 3: Calculate score – calculate the change in the

score due to the move made.

Step 4: Choose – Depending on the change in score,

accept or reject the move. The probe of acceptance

depending on the current ―temperature‖.

Step 5: Update and repeat– Update the temperature

value by lowering the temperature. Go back to Step 2.

The process is done until ―stop condition‖ is reached.

There are several stop condition of the algorithm. Some

examples are:

a) Maximum number of iterations;

b) Minimum temperature value;

c) Minimum value of objective function;

d) Minimum value of acceptance rate.

Pseudo code

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑝)𝑇

Initialize initial temperature 𝑇𝑂 and initial guess 𝑥(0)

Set final temperature 𝑇𝑓and max number of iterations N

Define cooling schedule T → αT, (0 <a <1)

while(T >𝑇𝑓and n< N)

 Move randomly to new locations: 𝑥𝑛+1 = 𝑥𝑛+ randn

 Calculate ∆f = 𝑓𝑥+1 𝑥𝑛+1 − 𝑓𝑛(𝑥𝑛)

 Accept the new solution if better

 if not improved

 Generate a random number r

 Accept if p= exp [-∆f/T]>r

 endif

 Update the best 𝑥∗ and 𝑓∗
 n = n+ 1

end while

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

985

B.Genetic Algorithm

Holland was first presented systematically Genetic

Algorithm [7], the basic ideas of analysis and design based

on the concepts of biological evolution can be found in the

work of Rechenberg [8]. Philosophically, GAs are based on

Darwin’s theory of survival of the fittest. Genetic

algorithms are based on the principles of natural genetics

and natural selection. The basic elements of natural

genetics reproduction, crossover, and mutation—are used

in the procedure of genetic algorithm.

The solution of an optimization problem by GAs

commences with a population of random strings denoting

different (population of) design vectors. The population

size in GAs (n) is generally fixed. Each string (or design

vector) is evaluated to find its fitness value. The population

is operated by three operators—reproduction, crossover,

and mutation—to produce a new population of points. The

new population is further evaluated to find the fitness

values and examined for the convergence of the process.

One cycle of reproduction, crossover, and mutation and the

evaluation of the fitness values is known as a generation in

GAs. If the convergence criterion is not satisfied, the

population is iteratively operated by the three operators and

the resulting new population is evaluated for the fitness

values. The procedure is continued through different

generations until the convergence criterion is satisfied and

the process is terminated. The details of the three

operations of GAs are given below.

Reproduction It is the first operation applied to the

population to select good strings (designs) of the

population to form a mating pool. The reproduction

operator is also called the selection operator because it opts

good strings of the population. The reproduction operator is

used to choose above-average strings from the recent

population and apply their numerous copies in the mating

pool based on a probabilistic procedure. In a commonly

used reproduction operator, a string is chosen from the

mating pool with a probability proportional to its fitness

[10].

CrossoverAfter reproduction, the crossover operator is

implemented. The aim of crossover is to form new strings

by exchanging information among the strings of the mating

pool. Numerous crossover operators have been used in the

literature of GAs. In most crossover operators, two

individual strings (designs) are chosen (or selected) at

random from the mating pool generated by the

reproduction operator and some part of the string are

interchanged between the strings. In the commonly used

process, known as a single-point crossover operator, a

crossover site is selected at random along the string length,

and the binary digits (alleles) lying on the right side of the

crossover site are swapped (exchanged) between the two

strings. The two strings involve in the crossover operators

are known as parent strings and the strings generated by the

crossover operator are known as child strings [10].

For example, if two design vectors (parents), each with

a string length of 10, are given by

(Parent 1) X1 = {1 1 0 | 1 0 1 0 0 1 1}

(Parent 2) X2 = {0 0 1 | 0 1 0 1 1 0 1}

The result of crossover, when the crossover site is is

given by

(Offspring 1) X3 = {1 1 0 | 0 1 0 1 1 0 1}

(Offspring 2) X4 = {0 0 1 | 1 0 1 0 0 1 1}

Since the crossover operator combines substrings from

parent strings (which have good fitness values), the

resulting child strings created are expected to have better

fitness values provided an appropriate (suitable) crossover

site is selected

MutationThe crossover is the important operator by

which new strings with better fitness values are created for

the new generations. The mutation operator is used in the

new strings with a particular small mutation probability,

pm. The mutation operator changes the binary digit

(allele’s value) 1 to 0 and vice versa. Different methods can

be utilized for implementing the mutation operator. In the

single-point mutation, a mutation site is selected at random

along the string length and the binary digit at that site is

then changed from 1 to 0 or 0 to 1 with a probability of pm.

In the bit-wise mutation, each bit (binary digit) in the string

is considered one at a time in sequence, and the digit is

changed from 1 to 0 or 0 to 1 with a probability

Pm Numerically, the process can be implemented as

follows. A random number between 0 and 1 is

generated/chosen. If the random number is smaller than

pm, then the binary digit is changed. Otherwise, the binary

digit is not changed. The Aim of mutation is (1) to generate

a string (design point) in the adjacent of the current string,

therefore accomplishing a local search around the current

solution, (2) to prevent against a pre-mature loss of

important genetic material at a particular position, and (3)

to maintain diversity in the population [10].

Pseudo code

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑛)𝑇

Encode the solution into binary strings (chromosomes)

Define fitness F (eg, F α f(x) for maximization)

Generate the initial population

Initial probabilities of crossover (𝑃𝑐) and mutation (𝑃𝑚)

 While(t<Max number of generations)

Generate new solution by crossover and mutation

if𝑃𝑐>rand, Crossover; end if

if𝑃𝑚>rand, Mutate; end if

 Accept the new solutions if their fitness increase

 Select the current best for new generation

 end while

Decode the results and visualization

C. Ant Colony Method

In this, we will discuss the nature-inspired ant colony

optimization (ACO), which is a metaheuristic method. Ants

are social insects in habit and they hold out together in

organized colonies whose population size can range from

around 2 to 25 million. When foraging, a swarm of ants or

mobile agents interact or communicate with their local

surroundings. Each ant can lay scent chemicals or

pheromone so as to communicate with others, and each

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

986

unit is likewise able to travel along the road marked with

pheromone laid by other ants. When ants find a food

source, they will mark it with pheromone and also mark the

trails to and from it [11]. From the initial random foraging

route, the pheromone concentration varies and the ants

follow the route with higher pheromone concentration, and

the pheromone is enhanced by the increasing number of

ants. As more and more ants follow the same route, it

becomes the favored path. Thus, some favorite routes

emerge, often the shortest or more efficient. This is a

positive feedback mechanism.

Based on these characteristics of ant behavior, scientists

have developed a number of powerful ant colony

algorithms with important progress made in recent years.

Marco Dorigo pioneered the research in this area in 1992

[12]. Many different variants have appeared since then.

If we just apply some of the foraging behavior of ants

and add some new features, we can organize a category of

new algorithms. Two significant issues here: the

probability of choosing a route, and the dehydration rate of

pheromone [13]. There are a few ways of solving these

problems, although it is still an area of active research.

Here we introduce the current best method.

For a network routing problem, the probability of ants

at a particular node to choose the route from node to node j,

among n<j nodes, is given by

𝑝𝑖𝑗 =
𝛷𝑖𝑗

𝛼 𝑑𝑖𝑗
𝛽

 𝛷𝑖𝑗
𝛼 𝑑𝑖𝑗

𝛽𝑛𝑑
𝑖 ,𝑗=1

 (a)

Whereα >0 and β > 0 are the influence parameters

Ф = pheromone concentration

The pheromone concentration can change with time due

to the evaporation of pheromone. Furthermore, the

advantage of pheromone evaporation is that the system

could avoid being trapped in local optima. If there is no

evaporation, then the path randomly chosen by the first

ants will become the preferred path as the attraction of

other ants by their pheromone. For a constant rate 𝛾 of

pheromone decay or evaporation, the pheromone

concentration usually varies with time exponentially

Ф(𝑡) = Ф0𝑒
−𝛾𝑡

WhereФ0the initial concentration of pheromone and t Is

time. If 𝛾𝑡 ≪ 1 then we have Ф(t)≈ (1 − 𝛾𝑡)Ф𝑜· For the

unitary time increment ∆t = 1, the evaporation can be

approximated by 𝛷𝑡+1 ← (1 − 𝛾)𝛷𝑡 . Therefore, we have

the simplified pheromone update formula:

𝛷𝑖𝑗
𝑡+1 = (1 − 𝛾)𝛷𝑖𝑗

𝑡 𝛷𝑖𝑗
𝑡

𝛾 Pheromone decay or evaporation

The increment δ𝛷𝑖𝑗
𝑡 is the amount of pheromone deposited

at time t along route ito j

Pseudo code

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑛)𝑇

 [orf(𝑥𝑖𝑗) for routing problem where (I,j) ϵ {1 .,n}]

Define pheromone evaporation rate 𝛾

While(criterion)

 for loop over all n dimensions (or nodes)

 Generate new solutions

 Evaluate the new solutions

 Mark better locations/routes with pheromone

 δФ𝑖𝑗

 Update pheromone: Ф𝑖𝑗 = (1 − 𝛾)Ф𝑖𝑗 + δФ𝑖𝑗

 end for

 Daemon actions such as finding the current

 best

end while

Output the best results and pheromone distribution

D. Honey Bee Algorithms.

Bee algorithms form another class of algorithms which

are closely related to the ant colony optimization. Bee

algorithms are inspired by the foraging behavior of honey

bees. Honey bees live in a colony and they forage and store

honey in their constructed colony. Honey bees can

communicate by pheromone and 'waggle dance'. For

example, an alarming bee may release a chemical message

(pheromone) to stimulate an attack response in other bees.

Furthermore, when bees find a good food source and bring

some nectar back to the hive, they will communicate the

location of the food source by performing the so-called

waggle dances as a signal system. Such signaling dances

vary from species to species, however, they will try to

recruit more bees by using directional dancing with varying

strength so as to communicate the direction and distance of

the found food resource.

From the literature survey, it seems that the Honey Bee

Algorithm (HBA) was first formulated in around 2004 by

Craig A Tovey at Georgia Tech in collaboration with Sunil

Nakrani then at Oxford University to study a method to

allocate computers among different clients and web-

hosting servers [14]. In the honey bee algorithm, forager

bees are allocated to different food sources (or flower

patches) so as to maximize the total nectar intake. The

colony has to 'optimize' the overall efficiency of nectar

collection; the allocation of the bees is thus depending on

many factors such as the nectar richness and the proximity

to the hive. The probability of an observer bee following

the dancing bee to forage can be determined in many ways

depending on the actual variant of algorithms. A simple

way is given by Guijano and Passino

 𝑝𝑖 =
𝑤𝑖

𝑗

 𝑤
𝑖
𝑗𝑛𝑓

𝑖=1

Where 𝑤𝑖
𝑗
be the strength of the waggle dance of bee iat

time step t = j,

𝑛𝑓 is the number of bees

In addition, the rating of each route is ranked

dynamically and the path with the highest number of bees

become the preferred path. For a routing problem, the

probability of selecting a path between any two nodes can

hold the frame similar to the equation (a).

It is really effective in dealing with discrete

optimization problems such as routing and scheduling.

When dealing with continuous optimization problems, it is

not straightforward, and some modifications are needed.

They possess the advantages over genetic algorithms and

simulated annealing in dealing with dynamical network

routing and task scheduling problems.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

987

Pseudo code

Objective function f(x), x = (𝑥1 , 𝑥2 , …………… . . 𝑥𝑛)𝑇

Encode f(x) into virtual nectar levels

Define dance routine (strength, direction) or protocol

while (criterion)
 for loop over all n dimensions

 (or nodes for routing and scheduling

 problems)

 Generate new solutions

 Evaluate the new solutions

 end for
 Communicate and update the optimal

 solution set

end while
Decode and output the best results.

IV.CONCLUSIONS

In this paper modern optimization techniques are

explained in detail. These include: Genetic Algorithm

(GA), Simulated Annealing (SA), Ant Colony optimization

(ACO) and Honey Bee Algorithm (HBO). A brief

description of each method is presented along with a

pseudo code to facilitate their implementation. Modern

optimization technique is used to solve Non Linear and

non-differentiable optimization problems which are not

possible to solve by traditional optimization methods.

REFERENCES

(1) S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by

simulated annealing", Science, 220 (4598), 671- 680

(1983).

(2) D. H. Owlet and W. G. Macready, "No free lunch theorems for
optimizaiton", IEEE Transaction on Evolutionary Computation, 1,

67- 82 (1997).

(3) B. J. Copeland, Alan Turing's Automatic Computing Engine, Oxford
University Press, 2005.

(4) K. De Jong, Analysis of the Behaviour of a Class of Genetic

Adaptive Systems, PhD thesis, University of Michigan, Ann
Anbor, 1975.

(5) M. Dorigo, Optimization, Learning and Natural Algorithms,

PhD thesis, Politecnicodi Milano, Italy, 1992
(6) X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver

Press, 2008

(7) G. W. Flake, The Computational Beauty of Nature: Computer
Explorations of Fractals, Chaos, Complex Systems, and Adaptation,

Cambridge, Mass.: MITPress, 1998.

(8) J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI, 1975.

(9) I. Rechenberg, Cybernetic Solution Path of an Experimental

Problem, Library Translation1122, Royal Aircraft
Establishment, Farnborough, Hampshire, UK, 1965.

(10) Engineering Optimization: Theory and Practice, Fourth Edition
by Singiresu S. Rao697-699, 2009.

(11) C. Blum, "Ant colony optimization: introduction and recent

trends", Physics of Life Review, 2, 353- 373 (2005).
(12) M. Dorigo, Optimization, Learning and Natural Algorithms,

PhD thesis, Politencnicodi Milano, Italy, 1992.

(13) M. Dorigo and T. Stiitzle, Ant Colony Optimization, MIT Press,
Cambridge, 2004.

(14) S. Nakrani and C. Tovey, "On honey bees and dynamic server

allocation in Internet hosting centers", Adaptive Behaviour, 12, 223-
240 (2004).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041129

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

988

