

Review of Malware and Techniques for

Combating Zero Day Attacks

Emmah, Victor Thomas Ejiofor, C. I Onyejegbu, Laeticia N.

Department of Computer Science,

Rivers State University, Nigeria

Department of Computer Science,

University of Port Harcourt, Nigeria.

Department of Computer Science,

University of Port Harcourt, Nigeria.

Abstract- Zero-day attacks have become a very important

security issue that should not be overlooked. Malwares are

used to infect computer systems thereby causing malicious

intent. The frightening issue is that software vendors are not

aware of the vulnerability available in the software and as such

no warning is given before the attackers strike. This paper

discusses the different types of malwares that are used for

attacks as well as some of the techniques for combating zero-

day attacks. Finally, machine learning techniques for efficient

and effective detection of malware are also discussed.

Keywords -Machine learning, Malware, Zero-day attacks.

1. BACKGROUND OF STUDY
Today, the internet has become a persistent threat environment for

various types of organisations. The proliferation of newly

developed technologies which are being adopted by different

organisations for their changing business needs, are taken

advantage of by malicious or sneaky sources that lie in wait to

exploit vulnerabilities in them. Zero-day attacks have dominated

the headlines over the years for political, social and monetary

gains. According to Symantec's Internet Security Threat Report of

2014, there is 91% increase in targeted attacks campaigns in 2013,

62% increase in the number of security breaches and 23 zero-day

vulnerabilities were discovered [23]. Large tech companies like

Apple, Facebook, Microsoft, Twitter and others are also being

targeted with same zero-day Java vulnerability that attacks multiple

customers [24].

These facts and figures show that there is a very serious concern in

today’s network security; and the zero day attacks are among the

top security concerns that the modern enterprises face. The reality

today is that every industry and organisation faces zero-day attack.

Every day, companies loose sensitive data because of various

security breaches they encounter.

Malware is a software or computer program used to perform these

malicious actions. The term is a combination of the words

‘MALicious’ and ‘softWARE’. The end goal of most cyber

criminals is to install malware on your computers or mobile

devices. Once installed, these attackers can potentially gain total

control of them. Malware has been misconceived to be a problem

only for Windows computers. While Windows is widely used, and

thus a big target, malware can infect any computing device,

including smartphones and tablets. In fact, the prevalence of

malicious software infecting mobile devices is steadily growing

[28].

 Malware is no longer created by just curious hobbyists or amateur

hackers, but by sophisticated cyber criminals to help them achieve

specific goals. These goals can include stealing confidential data,

harvesting logins and passwords, sending spam emails, launching

denial of service attacks, extortion or identity theft. For example,

malware known as Cryptolocker is used by cyber criminals to

infect and encrypt all of the files on your computer. Once infected

and encrypted, these cyber criminals then demand a ransom in

exchange for decrypting your files [28].

2. TYPES OF MALWARE
There are different types of malicious software which we will

discuss in this section. Each of them gain entrance into the

computer system and attack the system in different ways.

Figure 1. Different types of malware

2.1. Trojans
A Trojan is a hidden threat, much like the famed Trojan horse left

by Odysseus on the shores of Troy. Simply put, a Trojan consists

of two parts—a server side that runs on an attacked host and a

client piece that runs on the attacker’s console. The server code

(usually kept very small in size, no more than a few KBs) is

dispatched to the victim via some malware distribution method. In

a simple setting, the attacker sends the victim a file that contains

the server code (e.g. an image or a PDF large enough in size that

the server size is miniscule when compared to the overall file size).

When the user double-clicks the attacked file, it launches the

“server” program embedded in the infected file. The server usually

runs in stealth mode and is not easily visible to the user and/or to

the file manager [22].

At this stage, the server code in the infected file can establish

contact with the attacker’s client code in one of many ways. One

simple way is through a reverse connection in which the server

code has the IP address from which the attacker wants to control

the victim’s computer. But much more sophisticated reverse

connection methods also exist. Once launched, the server program

contacts the client side code from whose console, the attacker can

now take control of the victim’s program. He can install new

programs on to the victim’s computer (e.g. keyloggers), he can

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

267

read every single file on the victim’s computer (e.g. credit card and

banking information, personal identity information), and more. In

effect, the victim’s computer can be controlled from a remote

location.

An interesting Trojan, Obad.a infects Android devices by first

sending potential victims an infected link (or a spam message).

When the victim clicks the link, he downloads the Trojan server

onto his device which immediately reaches out to his entire contact

list, urging them to click on the link as well. The Trojan spreads in

this way, infecting a large number of people. Unlike most Trojans,

this one uses a botnet to control the spread of the Trojan [24].

2.2. Worms
A worm is a piece of malware that can independently spread

through a network by exploiting vulnerabilities in existing software

to compromise a system [27]. Worms may spread through

networks in a variety of ways. For instance, worms may spread

through a network by using email to infect other computers, or by

using other file transfer protocols to copy themselves onto other

computers. Worms may carry a payload. While some worms may

do nothing other than spread from one computer to another (just

using up bandwidth and slowing down a network), others may do

dangerous things like delete files on a machine and encrypt files

(so that the owner of the file has to pay a ransom in order to be able

to decrypt his files).

Some of the notorious computer worms include stuxnet, conficker,

Mydoom etc.

2.3. Viruses
Unlike worms, that spread independently, viruses spread by

attaching themselves to another program or to files (e.g. PDF or

image files). For example, a virus embedded in a PDF or JPEG file

may spread when that file is opened [22]. Some viruses also exist

in the boot sector of a computer hard drive, thus executing

automatically when a boot operation takes place. Because

legitimate programs and files have well known sizes, viruses that

attach themselves to such “entities” may take steps to hide any

increase in size. One way to hide is by copying themselves into

unused space in a file or program. Another way to hide is by

intercepting requests to obtain data about the program or file and

returning results that appear normal and obfuscate the presence of

the virus. In order to hide from “signature based” scanners used by

many anti-virus companies (a signature is just a fragment of code),

viruses can mutate, making their code look different. Rates of

mutation vary from one virus to another [22].

It is unfortunate that in common parlance, the word “virus” has

been collectively used to describe all kinds of malware including

worms, Trojans, and viruses as described above.

2.4. Rootkits
Originally, a rootkit was a set of tools installed by a human attacker

on a Unix system, allowing the attacker to gain administrator (root)

access. Today, the term rootkit is used more generally for

concealment routines in a malicious program. Once a malicious

program is installed on a system, it is essential that it stays

concealed, to avoid detection and disinfection. The same is true

when a human attacker breaks into a computer directly [32].

Techniques known as rootkits allow this concealment, by

modifying the host's operating system so that the malware is

hidden from the user. Rootkits can prevent a malicious process

from being visible in the system's list of processes, or keep its files

from being read.

In an attempt to keep the user from stopping a malicious process,

another is sometimes installed to monitor it. When the process is

stopped (killed), another is immediately created. Modern malware

starts a number of processes that monitor and restore one another

as needed. In the event that a user running Microsoft Windows is

infected with such malware (if they wish to manually stop it), they

could use Task Manager's 'processes' tab to find the main process

(the one that spawned the "resurrector process(es)"), and use the

'end process tree' function, which would kill not only the main

process, but the "resurrector(s)" as well, since they were started by

the main process. Some malware programs use other techniques,

such as naming the infected file similar to a legitimate or

trustworthy file (expl0rer.exe VS explorer.exe) to avoid detection

in the process list [32].

2.5. Backdoors
A backdoor is a method of bypassing normal authentication

procedures. Once a system has been compromised (by one of the

above methods, or in some other way), one or more backdoors may

be installed in order to allow easier access in the future. Backdoors

may also be installed prior to malicious software, to allow attackers

entry.

2.6. Spyware
Spyware is a type of malicious software that can be installed on

computers, and which collects small pieces of information about

users without their knowledge. The presence of spyware is

typically hidden from the user, and can be difficult to detect.

Typically, spyware is secretly installed on the user's personal

computer.

While the term spyware suggests software that secretly monitors

the user's computing, the functions of spyware extend well beyond

simple monitoring. Spyware programs can collect various types of

personal information, such as Internet surfing habits and sites that

have been visited, but can also interfere with user control of the

computer in other ways, such as installing additional software and

redirecting Web browser activity. Spyware is known to change

computer settings, resulting in slow connection speeds, different

home pages, and/or loss of Internet connection or functionality of

other programs. In an attempt to increase the understanding of

spyware, a more formal classification of its included software types

is provided by the term privacy-invasive software. [32].

Classification of code as spyware (or sometimes browser cookies

as "tracking" cookies) can be controversial. Often the software is

installed by the user knowing that some amount of monitoring will

take place. (Users generally agree to this activity to get free

software and it is often associated with music and video sharing.)

Some such software allows the user to turn off the monitoring,

assuming they are aware of it and can find instructions for

disabling it. Anti-spyware is usually part of anti-virus programs;

scan using at least two different AV packages. Spybot Search and

Destroy is a good freeware program for looking for spyware (but it

is not an Anti-Virus program) [32].

2.7. Loggers
Keystroke logging (often called keylogging) is the action of

tracking (or logging) the keys struck on a keyboard, typically in a

covert manner so that the person using the keyboard is unaware

that their actions are being monitored. It is a hardware device or a

software program that records the real time activity of a computer

user including the keyboard keys they press. A keylogger, when

installed, can generally do the following [14]:

 capture any passwords entered by users on the device

 take screen captures of the device at periodic intervals

 record the URLs that were visited via Web browsers, and

possibly also take screen captures of the Web pages viewed

 record a list of the applications run by users on the device

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

268

 capture logs of all instant messaging (IM) sessions

 capture copies of sent emails

 automatically send the reports containing stored logs and
emails to a remote location (by email, FTP or HTTP).

 There are numerous keylogging methods, ranging from hardware

and software-based approaches to electromagnetic and acoustic

analysis. Key logging is often used by law enforcement, parents,

and jealous or suspicious spouses (lovers). The most common use,

however, is in the workplace, where your employer is monitoring

your use of the computer. Unfortunately, all of these activities are

legal [32].

2.8. Adware
Adware, or advertising-supported software, is any software

package which automatically plays, displays, or downloads

advertisements to a computer. These advertisements can be in the

form of a pop-up. The goal of the Adware is to generate revenue

for its author. Adware, by itself, is harmless; however, some

adware may come with integrated spyware such as keyloggers and

other privacy-invasive software. Advertising functions are

integrated into or bundled with the software, which is often

designed to note what Internet sites the user visits and to present

advertising pertinent to the types of goods or services featured

there. Adware is usually seen by the developer as a way to recover

development costs, and in some cases it may allow the software to

be provided to the user free of charge or at a reduced price. The

income derived from presenting advertisements to the user may

allow or motivate the developer to continue to develop, maintain

and upgrade the software product. Conversely, the advertisements

may be seen by the user as interruptions or annoyances, or as

distractions from the task at hand.

Some adware is also shareware, and so the word may be used as a

term of distinction to differentiate between types of shareware

software. What differentiates adware from other shareware is that it

is primarily advertising-supported, like many free smartphone

apps. Users may also be given the option to pay for a "registered"

or "licensed" copy to do away with the advertisements. Pandora

Radio offers both a free version (with ads) and a paid subscription

(without ads) [32].

Figure 2. An adware poping up from a webpage

There is a group of software (Alexa toolbar, Google toolbar,

Eclipse data usage collector, etc.) that send data to a central server

about which pages have been visited or which features of the

software have been used. However differently from "classic"

malware these tools document activities and only send data with

the user's approval. The user may opt in to share the data in

exchange to the additional features and services, or (in case of

Eclipse) as the form of voluntary support for the project. Some

security tools report such loggers as malware while others do not.

The status of the group is questionable. Some tools like PDF

Creator are more on the boundary than others because opting out

has been made more complex than it could be (during the

installation, the user needs to uncheck two check boxes rather than

one). However, PDF Creator is only sometimes mentioned as

malware and is still subject of discussions [32].

These malwares can however be distributed through different

methods in order to harm the system or device and thus cause zero-

day attacks. The distribution methods can be Drive-by-Downloads

which involves the user unknowingly downloading a malicious file

from the internet or emails, network intrusion where attackers run

programs on victim’s computers and manipulate data packages to

exploit vulnerabilities, or through social engineering techniques

where attackers exploit human weaknesses by manipulating users

into running malicious binaries [18][22].

3. ANALYZING AND COMBATING MALWARE
An integral component in security breaches are malicious software

or malware; therefore analysing malware by dissecting it to

understand how it works, how to identify it, and how to defeat and

eliminate it is important [20]. Malware analysis is a critical task for

responding to computer or network security incidents as it allows

better assessments of the nature of a security incident and may

even help to prevent further infections [9]. Malware analysis can

also be used to develop host-based signatures to identify files or

registry keys on a victim computer that indicate an infection; or

network-based signatures by analysing network traffic [5]. The

goal of malware analysis is to gain an understanding of how a

specific piece of malware functions so as to build defences to

protect an organisation’s network [10]. Malware analysis can either

be done statically or dynamically.

3.1. Static Malware Analysis:
 In static analysis, the capabilities of the malware are

learned by examining the code from which the program is

compromised. Static or Code Analysis is usually performed by

dissecting the different resources of the binary file without

executing it and studying each component [29]. The binary file can

also be disassembled (or reverse engineered) using a disassembler

such as IDA. If the source code is available, information such as

variables, data structures, used functions and call graphs can be

extracted. The machine code can sometimes be translated into

assembly code which can be read and understood by humans: the

malware analyst can then make sense of the assembly instructions

and have an image of what the program is supposed to perform.

Some modern malware is authored using evasive techniques to

defeat this type of analysis, for example by embedding syntactic

code errors that will confuse disassemblers but that will still

function during actual execution [20].

Static analysis can therefore include the following techniques:

i. File Format Inspection: File metadata can provide useful

information. For example, Windows PE (portable executable) files

can provide much information on compile time, imported and

exported functions, etc.

ii. String Extraction: This refers to the examination of the software

output (e.g. status or error messages) and inferring information

about the malware operation.

iii. Fingerprinting: This includes cryptographic hash computation,

finding the environmental artifacts, such as hardcoded username,

filename, registry strings.

iv. AV scanning: If the inspected file is a well-known malware, most

likely all anti-virus scanners will be able to detect it. Although it

might seem irrelevant, this way of detection is often used by AV

vendors or sandboxes to “confirm” their results.

v. Disassembly: This refers to reversing the machine code to

assembly language and inferring the software logic and intentions.

This is the most common and reliable method of static analysis.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

269

 The main advantage of static analysis is the ability to discover all

possible behavioral scenarios. Researching the code itself allows

the researcher to see all ways of malware execution that are not

limited to the current situation. This type of analysis is safer, since

the file is not executed and it cannot result in bad consequences for

the system. Because of these reasons it is not usually used in real-

world dynamic environments, such as anti-virus systems, but is

often used for research purposes, e.g. when developing signatures

for zero-day malware

[17].

 Static analysis also offers a significant improvement in malware

detection accuracy; but its main weakness lies in the difficulty to

handle obfuscated and self-modifying code and it is time-

consuming. This problem is addressed with the use of a dynamic

analysis approach.

3.2.

Dynamic

Malware

Analysis:

 Dynamic or Behavioral analysis is performed by observing the

behavior of the malware while it is actually running on a host

system. This form of analysis is often performed in a sandbox

environment

to prevent the malware from actually infecting

production systems; many such sandboxes are virtual systems that

can easily be rolled back to a clean state after the analysis is

complete [29].

The malware may also be debugged while running

using a debugger

such as GDB

or WinDbg

to watch the behavior

and effects on the host system of the malware step by step while its

instructions are being processed. Modern malware can exhibit a

wide variety of evasive techniques designed to defeat dynamic

analysis including testing for virtual environments or active

debuggers, delaying execution of malicious payloads, or requiring

some form of interactive user input [29].
 Generally, there are two main approaches for dynamic malware

analysis.
 i.

Analysing the difference between defined states:

In this

approach a given malware is executed for a particular time

period and later on, the modifications made to the system are

analysed by comparing the current system state to the initial

system state. The report from the comparison can be used to

identify the behaviour of the malware [9].
 ii.

Observing run-time behaviour: This approach uses a

specialised tool to monitor the malicious activities initiated by

the malware during execution [6].

 4.

DETECTION TECHNIQUES FOR ZERO-DAY

ATTACKS
 The research community has proposed several techniques in the

defence against zero-day attacks. These detection techniques can

be classified as either host-based or network-based. Host-based

systems detect the attack at the system level once the attack reaches

the vulnerable application and was processed. The network-based

systems detect attack at the network level as the attack data travel

across the network in the form of packets.

These zero-day attacks can take the form of polymorphic worms,

viruses, Trojans, and other malware. According to [8],

the most

effective attacks that avoid detection are polymorphic worms

which show distinct behaviors. “This includes: complex mutation

to evade defenses, multi-vulnerability scanning to identify potential

targets, targeted exploitation that launches directed attacks against

vulnerable hosts, remote shells

that open arbitrary ports on

compromised hosts to connect to at a later time, malware drops in

which malicious code is downloaded from an external source to

continue propagation” [8].

The host-based detection installs software on the machine to be

monitored and because it runs on the machine itself, the level

analysis is deeper compared to the network-based. The network-

based detection systems on the other hand, can monitor multiple

systems and are able to detect and contain the attacks in their early

stage because initially the number of machines compromised is

limited. Hence, it is unlikely that a host will see the early attack

packets and be able to respond in the early critical period of attack

[12].

Most widely deployed intrusion detection systems are network-

based due to their simplicity and the ability to operate in real time.

The network-based zero-day attack detection techniques that this

research focuses on can be broadly classified into: Statistical-

based, signature-based, behaviour-based and hybrid-based

techniques.

4.1. Statistical-Based Detection Technique
The concept of statistical-based detection is to determine normal

network activity and to flag out activities that are not normal or that

falls outside its scope. It relies on attack profiles built off of

historical data. This means that it relies on attack profiles from past

exploits that are now publicly known. From those known exploits,

this defence technique adjusts the historical exploit’s profile

parameters to detect new attacks. This approach however does not

usually adapt well to changes in zero-day exploit data patterns.

Any changes in a zero-day exploit’s pattern would require a new

profile to be learned by the system [8].

The quality of the detection is directly related to threshold limits

set by the vendor or security professional using this technique.

Therefore setting the limit (or detection parameters) for judging

new observations is a critical step in designing a detection

approach since it has a dramatic effect on the quality of the

detection. This technique determines what normal activity is and

anything outside of normal is blocked or flagged. The longer the

system that is utilizing this technique is online, the more accurate

the system is at learning or determining what normal is. The

detections may frequently result in high rate of false positive or

false negatives depending on whether the threshold value is very

narrow or wide.

4.2. Signature-Based Detection Technique
Signature-based detection is often used by virus software vendors

who will compile a library of different malware signatures. They

will cross reference these signatures with local files, network files,

email or web downloads depending on settings chosen by the user.

These libraries are constantly being updated for new signatures that

often represent the signatures of new exploited vulnerabilities. The

technique is often one step behind a zero-day exploit because this

technique requires a signature to be in the signature library for

detection. This is the reason virus software vendors are frequently

updating their virus definitions (Hammarberg, 2014).

 The signature-based detection techniques mainly focus on zero-

day polymorphic worms. Polymorphic worm is a type of worm

which changes itself after each step of its propagation keeping its

semantics intact. Like other worms, they have the characteristic

that it has some invariant byte stream but the sequence of these

bytes is highly random. With every exploit, the worms tend to

change the byte stream by removing some code portion, inserting

some byte sequence or modifying certain bytes. This characteristic

of polymorphic worms poses a great challenge to the security

professionals leading to the development of new systems. Several

polymorphic worm signature generation schemes are surveyed.

Based on their characteristics, the signatures are classified into four

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

270

categories namely: content-based, flexible content-based, semantic-

based and vulnerability-driven signatures [9].

4.3. Behaviour-Based Detection Technique
The activity of a program can be viewed as malicious or benign

based on the requirements of the code. “Behavior-based techniques

look for the essential characteristics of worms which do not require

the examination of payload byte patterns” [8]. The goal of such

techniques is to predict the future behaviour of a web server, server

or victim machine in order to deny any behaviors that are not

expected. Those behaviors are learned by the current and past

interactions with the web server, server or victim machine [1]. The

technique focuses on the actual dynamics of the malware execution

to detect them. It monitors the dynamic behaviour of malicious

activity rather than its static characteristics because no matter what,

a piece of malware will behave badly while running. This

technique relies on the ability to predict the flow of network traffic.

Unlike anomaly detection, a program or file is not previously

classified as “good” or “bad”. The executing processes are

monitored to analyse their behaviour in a controlled simulated

environment. It is an effective way to detect new threats without

waiting for them to any harm. Some of the research works carried

out on behaviour-based detection are outlined below.

Network-Level Emulation [19] is a heuristic detection method to

scan network traffic streams for the presence of previously

unknown polymorphic shellcode. Their approach relies on a NIDS-

embedded CPU emulator that executes every potential instruction

sequence in the inspected traffic, aiming to identify the execution

behavior of polymorphic shellcode. The proposed approach is

robust to obfuscation techniques like self- modifications and non-

self-contained polymorphic shellcodes.

SGNET [11] is a distributed framework to collect rich information

and download malware for zero-day attacks. It automatically

generates approximations of the protocol behavior in form of Finite

State Machines (FSMs). Whenever the network interaction falls

outside the FSM knowledge (newly observed activity), SGNET

takes advantage of a real host to continue the network interaction

with the attacker. In that case, the honeypot acts as a proxy for the

real host. This allows building samples of network conversation for

the new activity that are then used to refine the current FSM

knowledge.

ENDMal [26] is an anti-obfuscation, scalable and collaborative

malware detection system. It consists of multiple monitors where

each monitor takes charge of a network area and receives

suspicious programs from end-host. Each monitor uses Iterative

Sequence Alignment (ISA) method to defeat malware obfuscation

and utilizes Handle dependences and Probabilistic Ordering

Dependence (HPOD) technology to represent the program

behaviors. All the monitors collaboratively identify the malicious

program families by sharing HPOD-based behaviors via

RENdezvous-based Sharing infrastructure (RENShare), based on

Distributed Hash Tables (DHT).

4.4. Hybrid Techniques
This is a combination of heuristics of two or more techniques to

form a more sophisticated system for the detection of malwares to

fight zero-day attacks. Statistical, signature-based and behaviour-

based techniques are combined to form a hybrid system.

[9] proposed a real-time zero-day attack detection and analysis

system which combines anomaly-based detection, behavior-based

detection and signature-based detection techniques. The proposed

system tries to provide a solution to the problem of zero-day

attacks. It does so by a layered designed where each layer is

dedicated to a single functionality and works in parallel to improve

performance.

Honeyfarm [7], a hybrid scheme combines anomaly and signature

detection with honeypots. This system takes advantage of existing

detection approaches to develop an effective defense against

Internet worms. The system works on three levels. At first level,

signature based detection is used to filter known worm attacks. At

second level, an anomaly detector is set up to detect any deviation

from the normal behavior. In the last level, honeypots are deployed

to detect zero day attacks. Low interaction honeypots track attacker

activities while high interaction honeypots analyze new attacks and

vulnerabilities.

[4] presented machine learning methods for malware detection and

classification. The purpose was to determine the best feature

extraction, feature representation, and classification methods that

result in the best accuracy when used on the top of Cuckoo

Sandbox. Different classifiers were evaluated with 1156 malware

file of 9 families of different types and 984 benign files of various

formats. From the author’s result, Random Forest method was

recommended to implement the classification for multi-class

classification, as it resulted in the best accuracy and high

performance.

Comar et al (2013) combined supervised and unsupervised learning

for Zero-day Malware detection. In their work, they presented a

novel machine learning based framework to detect known and

newly emerging malware at a high precision using layer 3 and

layer 4 network traffic features. Their framework leverages the

accuracy of supervised classification in detecting known classes

with the adaptability of unsupervised learning in detecting new

classes. They proposed an architecture which consist of six major

components namely, (i) Data capture, (ii) An intrusion

detection/prevention system, (iii) Information storage, (iv) feature

extraction and transformation, (v) Supervised classifier, and (vi) a

UI portal.

5. MACHINE LEARNING TECHNIQUES
Data mining techniques and methods have developed rapidly

thereby giving rise to Machine learning which forms a separate

field of Computer Science. Machine learning can be viewed as a

subclass of Artificial Intelligence, where the main idea is the ability

of a system (computer program, algorithm, etc) to learn from its

actions. It was firstly referred to as "field of study that gives

computers the ability to learn without being explicitly

programmed" by Arthur Samuel in 1959. A more formal definition

is given by T. Mitchell in 1997: "A computer program is said to

learn from experience E with respect to some class of tasks T and

performance measure P if its performance at tasks in T, as

measured by P, improves with experience E."

The basic idea of any machine learning task is to train the model,

based on some algorithm, to perform a certain task: classification,

clusterization, regression, etc. Training is done based on the input

dataset, and the model that is built is subsequently used to make

predictions. The output of such model depends on the initial task

and the implementation.

Two of the most widely adopted machine learning methods are

supervised and unsupervised learning

5.1. Supervised Learning
In supervised learning, algorithms are trained using labelled

examples, such as an input where the desired output is known. The

learning algorithm receives a set of inputs along with the

corresponding correct outputs, and the algorithm learns by

comparing its actual output with correct outputs to find errors. It

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

271

then modifies the model accordingly. Examples of supervised

learning are regression and classification problems:

i. Regression

Predict the value based on previous observations, i.e. values of

the samples from the training set. Usually, we can say that if

the output is a real number and is continuous, then it is a

regression problem.

ii. Classification

Based on the set of labeled data, where each label defines a

class, that the sample belongs to, we want to predict the class

for the previously unknown sample. The set of possible outputs

is finite and usually small. Generally, we can say that if the

output is a discrete/categorical variable, then it is a

classification problem. [4].

5.2. Unsupervised Learning
Unsupervised Learning is used against data that has no historical

labels. In contrast to Supervised Learning, in Unsupervised

learning, there is no initial labelling of data. Here the goal is to find

some pattern in the set of unsorted data, instead of predicting some

value. Only the input pattern is given; the network tries on its own

to identify similar patterns and to classify them into similar

categories A common subclass of unsupervised learning is

Clustering

iii. Clustering

Find the hidden patterns in the unlabeled data and separate it into

clusters according to similarity. An example can be the discovery

of different customer groups inside the customer base of the online

shop [4].

6. CLASSIFICATION METHODS
From machine learning perspective, the detection of malware can

be done either by classification or clusterization: unknown malware

types should be clusterized into several groups, based on certain

properties, identified by the algorithm. On the other hand, having

trained a model on the wide dataset of malicious and benign files,

we can reduce this problem to classification. For known malware

families, this problem can be narrowed down to classification only

– having a limited set of classes, to one of which malware sample

certainly belongs, it is easier to identify the proper class, and the

result would be more accurate than with clusterization algorithms

[4]. In this section, we give the theoretical background of some of

the malware classification methods.

6.1. K-Nearest Neighbours (KNN)
K-Nearest Neighbors (KNN) is one of the simplest, though,

accurate machine learning algorithms. KNN is a non-parametric

algorithm, meaning that it does not make any assumptions about

the data structure. In real world problems, data rarely obeys the

general theoretical assumptions, making non-parametric algorithms

a good solution for such problems. KNN model representation is as

simple as the dataset – there is no learning required, the entire

training set is stored.

KNN can be used for both classification and regression problems.

In both problems, the prediction is based on the k training instances

that are closest to the input instance. In the KNN classification

problem, the output would be a class, to which the input instance

belongs, predicted by the majority vote of the k closest neighbors.

In the regression problem, the output would be the property value,

which is generally a mean value of the k nearest neighbours [4].

Figure 3 and Figure 4 shows how the k-Nearest neighbours

algorithm works

Figure 3. Representation for KNN algorithm (Srivastava, 2014)

You intend to find out the class of the blue star (BS). BS can either

be Red Circle (RC) or Green Square (GS) and nothing else. The

“K” is KNN algorithm is the nearest neighbors we wish to take

vote from. Let’s say K = 3. Hence, we will now make a circle with

BS as center just as big as to enclose only three datapoints on the

plane. Refer to Figure 2.7b diagram for more details:

Figure 4. Making a decision with KNN algorithm (Srivastava,

2014)

The three closest points to BS is all RC. Hence, with good

confidence level we can say that the BS should belong to the class

RC. Here, the choice became very obvious as all three votes from

the closest neighbor went to RC. The choice of the parameter K is

very crucial in this algorithm [21]. In classifying objects based on

closest training instants in the feature space, the object is classified

based on a majority vote of its k nearest neighbours at closest
distant from the object.

6.2. Naive Bayes
Naive Bayes is the classification machine learning algorithm that

relies on the Bayes Theorem. It can be used for both binary and

multi-class classification problems. The main point relies on the

idea of treating each feature independently. Naive Bayes method

evaluates the probability of each feature independently, regardless

of any correlations, and makes the prediction based on the Bayes

Theorem. That is why this method is called “naive” – in real-world

problems features often have some level of correlation between

each other [4].

To understand the algorithm of Naive Bayes, the concepts of class

probabilities and conditional probabilities should be introduced

first.

1. Class probability is calculated simply as the number of samples

in the class divided by the total number of samples:

𝑷(𝑪) =
𝒄𝒐𝒖𝒏𝒕 (𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒊𝒏 𝑪)

𝒄𝒐𝒖𝒏𝒕 (𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒊𝒏 𝑵𝒕𝒐𝒕𝒂𝒍)
 (1)

2. Conditional probabilities are calculated as the frequency of

each attribute value divided by the frequency of instances of

that class.

𝑷(𝑽|𝑪) =
𝒄𝒐𝒖𝒏𝒕 (𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒊𝒏 𝑽 𝒂𝒏𝒅 𝑪

𝒄𝒐𝒖𝒏𝒕 (𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒊𝒏 𝑽)
 (2)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

272

3. Given the probabilities, we can calculate the probability of the

instance belonging to a class and therefore make decisions

using the Bayes Theorem:

𝑷(𝑨|𝑩) =
𝑷(𝑩|𝑨)𝑷(𝑨)

𝑷(𝑩)
 (3)

4. Probabilities of the item belonging to all classes are compared

and the class with the highest probability if selected as a result.

6.3. J48 Decision Tree
As it implies from the name, decision trees are data structures that

have a structure of the tree. The training dataset is used for the

creation of the tree, which is subsequently used for making

predictions on the test data. In this algorithm, the goal is to achieve

the most accurate result with the least number of the decisions that

must be made. Decision trees can be used for both classification

and regression problems [4]. An example can be seen in Table 1:

Table 1: Decision tree example dataset (Chumachenko, 2017).
Predictions Target

Outlook Temperature Humidity Windy Play

Tennis

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Overcast Cool High True No

Rainy Cool High True Yes

Rainy Mild High False No

Sunny Cool Normal False Yes

Figure 5. Decision Tree Example (Chumachenko, 2017)

As it can be seen in Figure 2.8, the model was trained based on the

dataset and can now classify the tennis playing decision to “yes” or

“no”. Here, the tree consists of the decision nodes and leaf nodes.

Decision nodes have several branches leading to leaf nodes. Leaf

nodes represent the decisions or classifications. The topmost initial

node is referred to as root node.

6.4. Random Forest
Random Forest is one of the most popular machine learning

algorithms. It requires almost no data preparation and modelling

but usually results in accurate results. Random Forests are based on

the decision trees described in the previous section. More

specifically, Random Forests are the collections of decision trees,

producing better prediction accuracy. That is why it is called a

’forest’ – it is basically a set of decision trees. The basic idea is to

grow multiple decision trees based on the independent subsets of

the dataset. At each node, n variables out of the feature set are

selected randomly, and the best split on these variables is found.

According to [3], the algorithm can be described as follows:

i. Multiple trees are built roughly on the two third of the training

data (62.3%). Data is chosen randomly.

ii. Several predictor variables are randomly selected out of all the

predictor variables. Then, the best split on these selected

variables is used to split the node. By default, the amount of the

selected variables is the square root of the total number of all

predictors for classification, and it is constant for all trees.

iii. Using the rest of the data, the misclassification rate is

calculated. The total error rate is calculated as the overall out-

of-bag error rate.

iv. Each trained tree gives its own classification result, giving its

own “vote”. The class that received the most “votes” is chosen

as the result.

The scheme of the algorithm is seen in Figure below:

Figure 6 Random forest Scheme (Chumachenko, 2017)

As in the decision trees, this algorithm removes the need for feature

selection for removing irrelevant features – they will not be taken

into account in any case. The only need for any feature selection

with the random forest algorithms arises when there is a need for

dimensionality reduction. Moreover, the out-of-bag error rate,

which was mentioned earlier, can be considered the algorithm’s

own cross-validation method. This removes the need for tedious

cross-validation measures that would have to be taken otherwise.

(Mitchell 1997).

Random forests inherit many of the advantages of the decision

trees algorithms. They are applicable to both regression and

classification problems; they are easy to compute and quick to fit.

They also usually result in the better accuracy. However, unlike

decision trees, it is not very easy to interpret the results. In decision

trees, by examining the resulting tree, we can gain valuable

information about which variables are important and how they

affect the result. This is not possible with random forests. It can

also be described as a more stable algorithm than the decision trees

– if we modify the data a little bit, decision trees will change, most

likely reducing the accuracy. This will not happen in the random

forest algorithms – since it is the combination of many decision

trees, the random forest will remain stable [13].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

273

7. CLUSTERING TECHNIQUES
Clustering is a widely used classification mechanism that is

designed to categorize data. Such techniques are often used in a

data exploration mode, where we are trying to learn something

from data that is poorly understood [2]. Cluster Analysis can be

done using different algorithms which vary in the methods for

determining what belongs to a particular cluster and how

proficiently it can find those clusters. Clustering techniques can be

performed using raw data, that is, where the class labels for the

data are missing and we don’t have any information about the data.

This can be considered as unsupervised learning. Some clustering

techniques are k-means algorithm and Expectation-Maximization

clustering.

7.1.

K-Means

Algorithm

K-means is undoubtedly the most popular clustering technique in

use today. Given a set of m data points, the algorithm partitions the

data into a specified number of mutually exclusive clusters

(Alsabti, et.al 1997). In K-means, we are given k, the number of

clusters, and m data points x1, x2, . . . , xm. Then we specify one

“centroid”

for each cluster. Intuitively, a centroid will converge to

the center

of mass of its cluster. The main goal is to assign a cluster

to each of the data point. This method aims to find the means of the

clusters such that the distance between the data point to the cluster

is minimized. Hence, the problem that we want to solve can be

stated as

Given: 𝐾

and data points 𝑥1, 𝑥2, ..., 𝑥𝑚

Minimize: distortionk

= ∑ 𝑑(𝑥𝑖, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥𝑖))𝑚
𝑖=1

(4)

where centroid(xi) is the centroid to which the data point xi

belongs. Minimizing the distortion is computationally infeasible,

but a simple (and efficient) iterative process often yields

a good

approximation.

𝐾-means algorithm is an iterative process that

alternates between two important

steps [16].

The two basic steps in

this algorithm are as follows:

Step 1: Assign each data point to its nearest cluster.

Step 2: Compute the centroids/means of the cluster based on the

points belonging to the cluster.

The above two alternating steps

form an iterative process that generate a series of solutions that

improve as the algorithm proceeds through the iterations.

The algorithm for K-means can be given as follows:

1.

Given k, the data points x1, x2, . . . , xm, and a distance

function:

2.

Initialize the k centroids.

3.

For each data point, calculate the distance between that point

and each centroid and assign the data point to the cluster

corresponding to the nearest centroid.

4.

Re-compute the centroids to be the center of each cluster.

5.

Goto 3, until there is no (or negligible) change in the clusters

[16].

7.2.

Expectation

–Maximization

(EM) Clustering

Expectation-Maximization (EM) clustering is an unsupervised

learning technique. EM clustering technique uses Gaussian mixture

models and mixture likelihood approach to find a structure in

datasets. It follows an iterative approach, which tries to find the

parameters of the probability distribution that has the maximum

likelihood of its attributes. It consists of two steps: Expectation step

(E-step) and Maximization step (M-step).

In EM clustering, we initialize the parameters (i.e., mean and

variance) for k probability distributions. Then we alternate between

the following E step and M step. For each of the iteration, the

algorithm first executes the E-step followed by the M –

step thus:

•

E-Step—Compute the probabilities needed in the M-step,

based on our current estimates of the distribution parameters.

•

M-Step—Use the probabilities from the E step to recomputed

the distribution parameters, based on maximum likelihood

estimators.

The algorithm terminates when the parameters

converges or the algorithm reaches the maximum number of

iterations [15].

REFERENCES

[1]

Alosefer, Y.; Rana, O.F., (2011); "Predicting client-side attacks

via behavior

analysis using honeypot data," Next Generation
th

International

pp.31,36.

[2] Babu, A.R., Markandeyulu, M., Nagarjuna, B.V. (2012);

Pattern clustering with similarity measures. Int.

J.Comput.Technol.Appl. 3(1), 365–369.

[3] Biau, G. (2013); “Analysis of a Random Forests Model”.

Journal of Machine Learning Research, 1063-1095.

[4] Chumachenko, K. (2017); Machine Learning Methods for

Malware Detection and Classification

[5] Distler, D. (2007); Malware Analysis: An Introduction; SANS

Institute InfoSec Reading Room

[6] Holz, T. (2009): “Tracking and Mitigation of Malicious

Remote Control Network”. PhD Thesis, University of

Mannheim,

[7] Jain, P., and Sardana, A. (2012); “Defending against Internet

Worms using Honeyfarm”, Proc. CUBE International

Information Technology Conference (CUBE’12), Pune, India,

pp. 795-800.

[8] Kaur, R. and Singh, M. (2014); "Efficient hybrid technique for

detecting zero-day polymorphic worms," Advance Computing

Conference (IACC), 2014 IEEE International , pp.95,100.

[9] Kaur, R. (2016); Efficient Zero-day Attacks Detection

Techniques; Computer Science and Engineering department,

Thapar Univeristy, Patiala, India

[10]Kendall, K. and McMillan, C. (2007); Practical Malware

Analysis. Black Hat USA – Briefing and Training.

[11]Leita, C. and Dacier, M. (2007); SGNET: A Distributed

Infrastructure to Handle Zero-day Exploits, Technical Report

EURECOM+2164, EURECOM institute, France

[12]Li, Z., Sanghi, M., Chen, Y., Kao, M. Y., and Chavez, B.,

(2006); “Hamsa: Fast Signature Generation for Zero-day

Polymorphic Worms with Provable Attack Resilience”, Proc.

of the IEEE Symposium on Security and Privacy (S&P’06),

Berkeley/Oakland, CA, pp. 15-47.

[13] Louppe, G. (2014). Understanding Random Forests.

[14]Mitchel, B. (2017); What is a keylogger and keylogging

software? Retrieved from https://www.lifewire.com/definition-

of-keylogger-817998 29th September, 2017

[15]Pai, S. (2015): A Comparison of Clustering Techniques for

Malware Analysis. A publication of San Jose State University

(SJSC) ScholarWorks

[16]Pai, S., Troia, F. D., Visaggio, C. A., Austin, T., Mark Stamp

(2016): “Clustering for malware classification”. Springer

publication

[17]Prasad, B. J., Haritha, A., and Krishna S. P. (2016). “Basic

static malware analysis using open source tools”.

Conference on Next Generation Web Services Practices,

Web Services Practices (NWeSP), 2011 7

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

274

[18]Provos, N., McNamee, D., Mavrommatis, P., Wang, K.,

Modadugu, N. (2007) “The ghost in the browser: Analysis of

web-based malware”. Proceedings of the 1stWorkshop on Hot

Topics in Understanding Botnets (HotBots)

[19]Polychronakis, M., Anagnostakis, K. G. and Markatos, E. P.

(2006); “Network-level Polymorphic Shellcode Detection

using Emulation”, in Journal in Computer Virology, vol. 2, no.

4, pp. 257-274.

[20]Sikorski, M., and Hoing, A. (2013); Practical Malware

Analysis – The Hands-on guide to Dissecting Malicious

Software. No Starch Press Publication. 1st Edition

[21] Srivastava, T. (2014); Introduction to K-nearest neigbors:

Simplified. www.analyticsvidhya.com/blog/2014/10/

[22]Subrahmanian, V. S., Ovelgonne, M., Dumitras, T., Prakash,

B. A., (2015); Types of Malware and Malware Distribution

Strategies. “The Global Cyber-Vulnerability Report: Springer

publications”.

[23]Symantec (2014); “Internet Security Threat Report,” Security

Response Publications. vol.19.

http://www.symantec.com/content/en/us/enterprise/other_resou

rces/bistr_main_report_v19_21291018.en-us.pdf.

[24] Sophos (2014); “Security Threat Report: Smarter, Shadier,

Stealthier Malware” Sophos Publications.

[25] Unuchek R (2013); The Most Sophisticated Android Trojan,

June 6 2013, http://securelist.com/blog/research/35929/the-

most-sophisticated-android-trojan/

[26] Wang, X., Lu, H. Zhao, B., Wang, F., and Su, J. (2013);

“ENDMal: An anti-obfuscation and collaborative malware

detection system using syscall sequences”, in Mathematical

and Computer Modelling, vol. 58, no. 5, pp. 1140–1154.

[27] Weaver, N, Paxson V, Staniford S, Cunningham R (2003) A

taxonomy of computer worms. Proceedings of the 2003 ACM

Workshop on Rapid Malcode, WORM’03, pp 11–18, NY,

USA

[28] Zeltser, L (2014); What is malware? The SANS institute

publication www.securingthehuman.org/ouch

[29] https://en.wikipedia.org/wiki/Malware_analysis. (updated 10th

may 2017)

[30]http://resources.infosecinstitute.com/common-social-

engineering-attacks/#gref

[31]http://searchsecurity.techtarget.com/definition/metamorphic-

and-polymorphic-malware (retrieved 22nd August 2017)

[32]http://cs.sru.edu/~mullins/cpsc100book/module05_SoftwareAn

dAdmin.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110129
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

275

