
Review of Clone Detection in Models

Jyoti Khanna

 CSE Department,

DeenBandhuChhotu Ram

University of Science and

Technology,

 Murthal, Haryana, India

Rajvir Singh

CSE Department,

DeenBandhuChhotu Ram

University of Science and

Technology,

 Murthal, Haryana, India

Ritu Garg
 CSE Department,

DeenBandhuChhotu Ram

University of Science and

Technology,

 Murthal, Haryana, India

Abstract:- Nowadays Model based methodology is used for

development. Models are designed before coding. As clones

exist in the source code, similarly clones exist in the models. It

affects the quality of software and increase maintenance cost.

Many solutions have been proposed for code clones, but a

little work has been done on model clones. In this paper

techniques for model clone detection have been discussed.

Keywords:- Code clones, Model clones, UML model,

Matlab/Simulink, Graph.

I. INTRODUCTION

 Copy and Paste of fragments has been used in

software development. This strategy is known as cloning.

Cloning can be either at designing level or at

implementation level. At implementation level clones exist

in the source code and during designing clones exist in the

models. Clones increase redundancy in the software which

cause problem in software maintenance. And cloning also

increase probability of bugs and maintenance cost. So

clones need to get removed. Many Solutions have been

proposed to remove clones. Many strategies have been

applied for code clones, but a few solutions are proposed

for model clones. There are many challenges in identifying

model clones. Strategies of Model Clones are discussed in

next section.

A. Type of Model Clones [1]:

 Till now there is no proper definition for model

clones. There is no proper classification of Model clones,

still these are classified based on some criteria and given

below.

1) Type 1 (exact model clones): In this type, model

fragments may vary in visual presentation, layout and

formatting otherwise they are identical to each other.

2) Type 2 (renamed model clones): These model fragments

are structurally identical and these may be varied in labels,

values, types, visual presentation, layout and formatting.

3) Type 3 (near-miss model clones): Model fragments may

vary in position or connection and there may be additions

or removals of blocks or lines in addition to variations as in

Type-1 and Type-2.

II. LITERATURE REVIEW

Dhavleesh Rattan et al. [2] has proposed a technique to

detect clones in UML class diagram. The graphical Unified

Modeling Language (UML) is increasingly replacing

conventional programming languages for developing

software systems [3]. In UML model’s graph the nodes are

the classes and the edges are the relationship of two

classes. Nodes of UML model are heavy and dense because

they contain information. Because of this, detecting clone

in UML diagram give better results. Nodes of

Matlab/Simulink models are light weighted. So isomorphic

graph comparison are applied in Simulink, but can’t be

applied in UML models. Reference [2] has used following

steps to detect clones in UML class diagram as shown in

figure 1:

1) Model is created using any tool.

2) The model is exported to XMI (XML Metadata

Interchange) file format. Since XMI is a standard

given by OMG, it is built in most of the modeling

tools.

3) XMI file is preprocessed and is stored in the form

of tree using DOM API’s and XML parsing.

4) Sub-trees are compared and similarity is reported

in the form of model clones.

2500

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042180

International Journal of Engineering Research & Technology (IJERT)

Fig. 1: Block Diagram of clone detection [2]

 In [4] UML diagrams are encoded in XMI files to find out

differences between these diagram. This technique has

been explored to detect clones. The elements of diagram

element are compared and similarities are measured

between those elements. Based on the values of similarities

these elements are reported as clones. In [4] comparison is

done on the basis of Id but here comparison is done on

trees of XMI trees. Every subtree is compared with other

subtree. This Technique is scalable. In this technique

comparison is done on trees which are better than textual

clone detection in XMI file. It avoids irrelevant repetitions.

This technique is implemented in java. UML model’s

nodes are loosely connected and heavy so better results are

obtained.

Manar H. Alalfi et al. [1] has introduced SIMONE.

SIMONE uses text based clone detector NICAD [5] to

detect near miss clones in the Matlab/Simulink model.

Simulink stores textual representation of models on disk.

This representation is given as input to SIMONE.

Following steps are used in this technique:

1) Simulink TXL grammar

2) Extractor Plug in

3) Filtering

4) Sorting

5) Renaming

In the first step Simulinks are converted into TXL

grammar. NICAD is language sensitive clone detectors. It

uses TXL parser [6]. So it needs to convert Simulink in

TXL grammar. Grammar inference techniques are used for

this. This grammar

identifies all simulink constructs, including models,

systems, block, lines, ports etc.

In the second step Extractor Plug in are used to extract

potential clones. Potential Clones are result of extraction

and normalization of instances. NICAD identifies

structurally meaningful clones i.e. classes, method, blocks

and lines. NICAD uses relaxed textual comparison on those

clones. Modeling languages are hierarchical. Three levels

are there in Simulinks:

1) Model Granularity: Entire Simulink models as clones.

Simulink models consist of (sub-) systems, which

themselves are built up from blocks and lines.

2) System Granularity: On the Simulink “system”

(subsystem) level, clones are identified in two dimensions.

 Exact subsystem clones across two different

models,

 Near-miss subsystem clones within a single mode

3) Block Granularity: Blocks represent a group of parts that

work together for a specific functionality.

Simulinks are different than programming languages. So

extractor plug in are designed in a different way.

In the third step filtering is done. When simulinks are

converted into textual form, meaning of models is changed.

And a little change in attributes such as color and fonts will

not identify identical clones. So filter plug-ins are designed

to remove these irrelevant differences. Recalling is

improved by filtering.

In the fourth step Sorting is done. Even after filtering some

clones are not detected, because when simulinks are

converted into textual form then order of block, lines,

branches and ports will be changed in textual form. So

canonical sorting is implemented on models. Sorting plug-

ins sort Blocks by Type Name, Sort Lines by Source

Block, Sort Ports by Port Name and Sort Branches by

Destination Block.

In the fifth step sophisticated blind renaming plug-ins are

used for Simulink. Problems of linear representation are

resolved by sorting. SIMONE can find out exact and near-

miss exact subsystem clones. But to find all type 2 i.e.

renamed subsystem clones renaming is required. The

generic renaming algorithm provided with NICAD to

rename identifiers in other programming languages. This

algorithm cannot be used for Simulink. In Simulink model

texts are represented as quoted strings. And some texts like

2501

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042180

International Journal of Engineering Research & Technology (IJERT)

block types and line types are not renamed. To rename,

TXL agile parsing techniques are used to distinguish

elements grammatically which has to be renamed and

which need not to be renamed. This transformation is

installed as a renaming plug-in for Simulink. The plug-in

anonymize all names and values associated with elements

and blocks, preserving only Block Type and Line Type

elements for comparison, allowing for detection of near-

miss type 2 subsystem clones in Simulink models.

This technique does not report false positive. Recall of this

technique is very good.

Florian Deissenboeck et al. [7] has used graph based theory

to detect clones. This technique works on Matlab/Simulink

models. This approach consists of three steps: In the first

preprocessing is done then at second level Simulinks are

normalized and clone pairs are extracted. And in the last

step pairs are clustered to find substructure used more than

twice in the model.

In the preprocessing phase models are read and flatten

them. Unconnected lines are removed. In the normalization

step label is assigned to block and line. Label may consists

of some attributes which are relevant for differentiate

between them. If two blocks have same label they are

considered as equivalent. Some information is also

included to labels which depend upon type of class to be

detected. For example if relation operator block is used,

then type of operator like less than and greater than is also

included. In case of lines, indices of the source and

destination of ports are stored in the label. This graph will

be multi-graph because a simulate block may have multiple

ports and each will be connected to a line. Nodes are

processed in breadth-first-search manner. Three sets C, S

and D of current nodes, seen nodes and done nodes are

managed respectively. If a node is currently built, no

processing is done on the node. If current node exists in

seen node, it is considered as clone for corresponding node.

A node pair is considered a clone pair if it follows a

mapping P. All block pairs of P follow two conditions:

 L(x) = L(y) (1)

 (u, x), (v, y) £ E and L((u, x)) = L((v, y))

 Or (2)

(x, u), (y, v) £ E and L((x, u)) = L((y, v))

If a sub-graph exists in the graph n times then above

method would report n*n-1/2 clone pairs. In this phase we

connect them into single class. This algorithm can be

applied to real world models.

Problem with this algorithm is that it report large number

of false positives.

Pham et al. [8] proposed a tool ModelCD. It uses two

algorithms escan and ascan which detect efficiently and

accurately exactly matched and approximate model clones

respectively in Matlab/Simulink. A Simulink model is

represented as a sparse, labeled directed graph. Clones in

that model are considered as its weakly connected and non-

overlapping sub-graphs. Clones are detected into three

steps: generating, grouping, and filtering.

In the first phase blocks are combined to form composite

blocks as in ConQAT [9]. Basically, it consists of three

tasks: parsing, flattening and labeling. This phase results a

labeled, directed graph G in which the set of nodes V

represents Simulink blocks, the set of directed edges E

represents the signal lines and the labeling function T

assigns the labels to nodes and edges. There are multiple

signal connections between two blocks, which causes G to

be a multi-graph.

In second phase, isomorphic graphs are grouped to

generate larger isomorphic candidates with extension of

edge using depth first order in escan. While in ascan,

hashing and maximal clique cover methods are used for the

vectors using breadth first order. This technique is

incremental and is able to detect model fragments with

modifications. Escan produces complete and accurate clone

results with higher quality and much more quantity but at

larger running time. Ascan detects approximate clone

matching by using a vector-based technique, exas [10].

Two structural patterns are used by exas in a graph or sub-

graph (p, q)-node and n-path. Exas uses the occurrence-

count vector of the features as its characteristic vector.

Occurrence-count vector is extracted from that fragment.

That is, each position in the vector is indexed for a feature

and the value at that position is the number of occurrences

of that feature in the fragment. The model clone granularity

is number of blocks here.

Third phase includes filtering. Filtering process is applied

to remove the redundant groups. Ascan performs filtering

at level k in this way, it needs to check redundancy only

between the groups created at that level and the ones at

level (k-1).

ModelCD provides good scalability, completeness and high

precision.

Liu et al. [11] proposed a tool DuplicationDetector. It

detects duplications in sequence diagram. Sequence

diagrams are used as interaction diagrams to describe

behaviors of use cases, operations and collaborations. It

describes how the processes operate and in what order. The

duplications occur because of system’s complexity , poor

design and reluctance to restructure the design and due to

various existing scenarios with a main execution flow and

several alternate flows. These duplications hamper

maintainability and reusability [12].

In preprocessing phase, the 2-dimensional sequence

diagrams are converted to 1-dimensional array. The arrays

are concatenated into a long array and a suffix tree is

constructed using it. Longest common prefix of two

suffixes is identified in form of reusable sequence diagram

as refactoring candidate.

It is an intra system clone detection approach. It results in

high precision and recall.

Hummel et al. [13] pioneered a tool that is based on

incremental instead of batch mode clone detection. It takes

input Simulink/matlab model. In preprocess phase, it

converts the model into a directed multi graph and assigns

labels to relevant blocks. In detection phase, graph

isomorphism is determined which is based on canonical

labeling (unique code invariant to ordering of vertices and

edges). A small change need not entire detection using

index- based algorithm that is incremental and

distributable. Hash code is used as a heuristic.To reduce

runtime hash code is generated using md5 hashing. In post-

processing phase, cloning information is filtered, prevented

2502

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042180

International Journal of Engineering Research & Technology (IJERT)

or used by the clone management tools. It is reused by

clone detector ConQat [9]. Clone index is created for all

the sub-graphs of same size. On basis of canonical labeling

clone index is calculated and similar labels are hashed. Due

to index update and clone retrieval the run time is less

which results in fast retrieval but for small models only as

it has not been verified on large models.

III. COMPARISONS

Table I: Comparisons of techniques

 Technique applied for Scalability Precision Recall

Manar H. Alalfi et al. [1] Matlab/Simulink Medium High Not Well

Dhavleesh Rattan et al.

[2]

UML models High High High

Florian Deissenboeck et

al. [7]

Matlab/Simulink High Less Medium

Pham et al. [8] Matlab/Simulink High Less High

Liu et al. [11] Sequence Diagram Less High High

Hummel et al. [13] Matlab/Simulink Medium High Medium

IV. CONCLUSION

 Model clones are as harmful as code clones.

Model clones also increase maintenance cost and

probability of bugs. So these need

to be removed. Different

tools have been proposed for model clone detection. Each

tool is designed for particular model. Different

methodologies are used by tools. Each methodology has its

own advantage and limitations. Still very few solutions are

available for model

clone detection. Many methodologies

are expected to be proposed

in

the

future.

FUTURE SCOPE

 Many other solutions can

be found out for model

clone detection. There is no proper classification of

model

clones. Model clones should

be classified in proper

manner. With better classification, clones can be detected

easily.

Many other techniques other than

refactoring

should

be proposed.

REFERENCE:

[1] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, A. Stevenson,

SIMONE: Models are Code too, Near-miss Clone Detection for
Simulink Models, IEEE, 2012.

[2] D. Rattan, R. Bhatia, M. Singh, Model Clone Detection based on

Tree Comparison, IEEE, 2012.
[3] T. Weilkiens, Systems Engineering with SysML/ UML,

MorganKaufmann, 2007.

[4] U. Kelte, J. Wehren and J. Niere, A generic difference algorithm
for UML models, Proceedings of SE 2005, Essen, Germany,

2005.

[5] C. K. Roy and J. R. Cordy, NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code

normalization, in 16th Int. Conf. on Program Compreh., 2008.

[6] J. R. Cordy, The TXL source transformation language, Sci.
Comput. Program, 2006.

[7] F. Deissenboeck, B. Hummel, E. Juergens, B. Schätz, S. Wagner,

J.-F. Girard and S. Teuchert, Clone detection in automotive
model-based development, Proceedings of 30th International

Conference on Software Engineering, Leipzig, Germany, 2008.

[8] N.H. Pham, H.A. Nguyen, T.T. Nguyen, J.M. Al-Kofahi, T.N.
Nguyen, Complete and accurate clone detection in graph based

models, in: Proceedings of 31st International Conference on

Software Engineering (ICSE‟09), Vancouver,Canada, 2009.
[9] B. Hummel, E. Juergens, L. Heinemann, M. Conradt, Index-based

code clonedetection: Incremental, distributed, scalable, in:

Proceedings of the 26th IEEE International Conference on

Software Maintenance (ICSM‟10), Timisoara,Romania, 2010.

[10] H.A. Nguyen, T.T. Nguyen, N.H. Pham, J.M. Al-Kofahi, and

T.N. Nguyen. Accurate and Efficient Structural Characteristic
Feature Extraction for Clone Detection. In FASE’09, Springer-

Verlag, 2009.

[11] H. Liu, Z. Ma, L. Zhang, W. Shao, Detecting duplications in
sequence diagrams based on suffix trees, in: Proceedings 13th

Asia-Pacific Software Engineering Conference (APSEC‟06),
Bangalore, India, 2006.

[12] B. Selic. What‟s new in UML 2.0? Technical report, IBM

Rational Software, April 2005.
[13] B. Hummel, E. Juergens, D. Steidl, Index-based model clone

detection, in:Proceedings of 5th International Workshop on

Software Clones, Honolulu,USA, 2011.

2503

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042180

International Journal of Engineering Research & Technology (IJERT)

