
Review for K-Means On Graphics Processing

Units (GPU)

Piyush P. Baramkar,

M.Tech. Information Technology,

Walchand College of Engineering,

Sangli, India.

Dr. D. B. Kulkarni,

H.O.D. Information Technology,

Walchand College of Engineering,

Sangli, India.

Abstract—K-Means is the most popular algorithm used in

data mining for clustering. The size and dimensions of data sets

has increased tremendously due to daily transactions and

internet. Recently various cost effective parallel architectures

are emerged such as GPU with CUDA (Compute Unified Device

Architecture). A significant speedup is achieved when general

purpose applications are implemented on GPU using CUDA.

Several implementations are available for K-Means on GPU for

small dimensions. All features of CUDA can significantly use for

improving speedup like coalesced memory access and thread

divergence.

Keywords—Clustering, K-Means, GPU, CUDA, Data

Mining, Hybrid programming/architecture.

I.

INTRODUCTION

Clustering is unsupervised learning

method that partitions
a data set of data objects into clusters, such a way that intra-
cluster shows maximum similarity while inter-cluster shows
minimum similarity. K-Means is one of the most popular data
mining clustering algorithms used now a days and is widely
used in variety of fields such as pattern recognition, statistical
data analysis, bioinformatics and image analysis. It has been
chosen as one of the Top 10 data mining algorithm. The huge
data set contains large number of data objects with large
number of dimensions takes more running time with K-Means
algorithm for clustering. Hence clustering for large scale data
sets is usually a time-consuming task [1].

Recently, Graphics Processing Units (GPUs) develop
continuously as a general-purpose high performance parallel
hardware and provide promising platform for parallelizing K-
Means. GPUs are provided as a dedicated hardware for
manipulating computer graphics. GPUs have evolved into
highly parallel many-core processors, due to the demand of
huge computing power for real-time and high-definition 3D
graphics. The latest development of computing power and
memory bandwidth in GPUs has driven the use of general-
purpose computing on GPUs (GPGPU) [6].

The application of clustering is wildly spread among
various different fields such as text mining, computer vision
or computational biology. The popularity of k-means is

explained by its low implementation complexity and well
described mathematical properties. K-Means will only find
non-optimal local-minima, depending on the initialization of
centroids. This is known as seeding problem and was
addressed in many researches. The run-time performance of
K-Means is increases as data is growing rapidly, as finding the
correct parameter of k also critical as it change during every
run and can only be done by performing several runs with
initial seeding [2].

Recently hybrid CPU-GPU architecture has successfully
emerged as a high performance computing platform. Simply
this architecture

consists of many-core GPUs with multi-core
CPUs. GPUs are responsible for parallel data computation,
and CPUs play a role of data distribution and task
synchronization. GPU has higher density of computational
cores on chip and require lower energy per instruction than
CPU. By adapting the hybrid CPU/GPU architecture instead
of standalone CPU or GPU the energy consumption and space
requirement reduced dramatically as compared to building a
supercomputing site. At present, there are various
supercomputing sites who adapt this novel computing
architecture in Top500. If the programming complexity of
hybrid CPU-GPU architecture reduced successfully, the
hybrid CPU-GPU architecture will become more and more
popular in future.

This paper provides a brief literature review of all versions
of K-Means implementation on GPUs using CUDA that have
published till date. Section II brief describes K-Means with its
parallel implementation details on GPU. Section III explains
literature review of various K-Means implementations on
GPUs. Finally, Section IV discusses the findings of this
review work

and future scope for improvement.

II.

RELATED WORK

A.

K-Means

K-Means is a well-known partitioned clustering algorithm
widely used in both industrial practices and academic
research. It shares the properties of a more large class of
statistical algorithms. The number of clusters K is the input to
the K-Means algorithm. K-Means iteratively finds the K

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061720

Vol. 3 Issue 6, June - 2014

1911

centroids of the data clusters. Each iteration consists of two
steps:

 Step 1: Partition the data set into K subsets by

assigning each data point to the subset whose

centroid is the closest centroid to the data point.

 Step 2. Recalculate the K cluster centroids as the

geometric centers of the subsets.

The algorithm repeats these two steps until convergence
criteria fulfilled i.e. no data point moves from one cluster to
another. It has been shown that K-Means always converges to
a local optimum and stops after finite number of iterations.
There is still active research on the K-Means algorithm itself
[3].

B. Parallelization of K-Means

When parallelizing an application, it is important to
understand for a designer that of the underlying characteristics
of the architecture. For example, if the target architecture is
multi-core or an 8-core general purpose computer, it is best to
distribute the computation task to number of threads created
depending on the number of independent processing elements
in that system. A suitable work distribution can be achieved
by dividing the work evenly among each of the created
threads. This can be performed using traditional OS multi-
threading support such as Java threads or PThreads in POSIX
supported by operating systems like (Linux, UNIX). In such
architectures, it is best to assign a thread to process element
based on its availability, due to context switching overhead
between thread as there may be millions of elements ready to
be processed caused dominating bottleneck [2].

GPU hardware is many-core architecture which uses
CUDA model to schedule and manage automatically the
workload that consists of many individual tasks (threads). The
creating of these threads has very negligible overhead, as it is
hardware generated threads and takes only one clock cycle to
start a thread. This suggests that the programmer should break
the task into many logical units without regard to the
underlying architecture of the parallel system, this
encouraging the use of a huge number of threads to increase
the chances that scheduler will find an optimal schedule for
large number of tasks to execute on parallel SIMD
architecture. Such a programming model is best utilized with
the applications having large number of independent tasks and
threads so called as “embarrassingly parallel” applications [2].

As the time-dominant phase of the K-Means algorithm is
to assignment of data points in each cluster, which takes
Ο(N*K) time. In this phase, the algorithm computes the
Euclidean distance of each data point to the chosen set of
centroids and tries to reassign each data point to the nearest
cluster. To implement K-Means algorithm on CUDA, we can
assign the distance calculation part of each data point to a
single thread. Therefore each thread will loop over for all the
initial cluster centroids, calculating its assigned data point’s
distance by finding the minimum distance from its data point
to a cluster centroid, and become a member of the nearest
cluster centroid [2].

When all threads are finished this task, the membership of
each data point is derived, and thus the first phase of the
algorithm is also finished. If the number of data points were
equal to the number of processing elements, this pass could

finish in one step. However, if we handle large amount of data
the number of processing elements is limited. Therefore, with
P cores we can accelerate the first phase to Ο((N*K)/P). If the
data points are distributed in a 1-dimensional array, the
distance calculation can be computed with a single scalar
subtraction operation. If the data points resided in a 2-
dimensional domain, it would increase computational
requirements per element without adding any pressure on
memory bandwidth. We will see later that in many cases, this
parallel implementation of algorithm is limited by memory
bandwidth rather than processing power [9].

Therefore, K-Means algorithm with multidimensional
applications is likely to see larger speedup factors, as they are
heavily floating point computational operations. With large
dimensions data sets makes the application ideal for GPU
architectures, which are also better suited for computational
heavy classes of applications.

III. LITERATURE SURVEY

In academia, various parallel data mining algorithms have
been proposed on distributed as well as shared memory
parallel architecture models in the past decades. However,
current available successful commercial mining systems does
not applies these parallel data mining techniques, including,
IBM Intelligent Miner, SPSS Clementine and SAS Enterprise
Miner. Actually neither of these commercial systems achieved
real time analysis. One of the reasons that affect the
development of parallel data mining algorithms is the high
cost of various parallel computing systems. Such as clusters,
which are not affordable by small or medium businesses [11].

Low power consumption and low cost are the motivating
powers of recent development in parallel architectures. One
probable recent solution is the multi-core system. Examples
are Intel core-duo or core-quad products. Although the multi-
core systems are consumed low power and low in cost
compared with traditional supercomputers. As multiple cores
integrated onto a single chip, its scalability is poor. Another
popular solution is Graphics Processing Unit (GPU). GPU is
originally a highly specialized many-core architecture
designed for graphics rendering for the computer gaming
industry [7].

Recently high level languages like OpenCL, CUDA
(Compute Unified Device Architecture) have developed to
support easy programming on GPUs. NVIDIA’s GPU with
CUDA environment provides standard extensions to C-like
languages to manipulate the GPUs. GPUs with CUDA
provide tremendous computing power and memory bandwidth
for applications. There are computational intensive
applications which run on a GPU + CPU heterogeneous
system architecture where the GPU acts as the computation
accelerator, including scientific, medical, military, business,
communication, and other domains. Successful examples are
Computational Fluid Dynamics (CFD), Neural Network,
Support Vector Machine (SVM), Magnetic Resonance
Imaging (MRI), Finite Difference Time Domain (FDTD),
intrusion detection, etc [1].

A wide variety of applications have been achieved huge
speedups with GPGPU implementations. Kruger et al.
presented framework for solving linear algebra problems on

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061720

Vol. 3 Issue 6, June - 2014

1912

graphics processor units. Harris et al. present a cloud
dynamics simulation with the help of partial differential
equations and various other N-body and molecular dynamics
simulations have also shown huge speedups [9]. Some
database operations have been implemented on the GPU by
pixel engine, and variety of other applications, such as AES
encryption and sequence alignment have been successfully
implemented on GPUs [8].

There are several implementations of the popular parallel
K-means data clustering algorithm on GPUs exist [12]. One
common restriction among this parallel implementation is that
dimensionality of test data is limited to small values of 60 or
below. An exception to this is the work of Zechner and
Granitzer that specifically design K-Means for arbitrary large
number of dimensions, but only implements the labeling stage
of the algorithm on GPU, thus a substantial portion of the
work is done with the CPU which encounters frequent
memory transfers [4].

Che et al. report eight fold speedup for the cluster
assignment stage of K-means on an Nvidia 8800GT for nearly
1.6 million data objects with 42 dimensions each [10]. Farivar
et al. claim nearly 130-fold speedup with an Nvidia 8600GT
using data set of 581,012 data objects with 54 dimensions. Wu
et al. report up to 11-fold speedup with one billion data
objects of eight or less dimensions when comparing running
time of a Nvidia GeForce GTX280 to multicore processors
with highly optimized parallel CPU code [2]. Finally, Zechner
and Granitzer show speedups on an Nvidia GeForce 9600GT
for data set consist of 500,000 data objects and 200
dimensions up to 42-fold and when compared to sequential
code compiled with Intel C++ and Visual C++ compilers
gives up to 13-fold speedup [4].

A non-optimal solution to the NP-hard problem of
partitioned clustering was proposed by Lloyd whose most
well-known variant is the K-Means algorithm. Shuai Che et al.
and Li Zhan et al. published nearly similar work where Shuai
Che et al. used CUDA for parallelizing partial steps of k-
means on GPU, while Li Zhan et al. parallelize new centroids
recalculation step also on GPU and thus algorithm
performance become better [8][5].

Recently, Fang et al. proposed GPUMiner, a system
consisting of three components:

 CPU-based storage and buffer manager to handle
I/O and data transfer between CPU and GPU.

 GPU-CPU co-processing parallel mining module.

 GPU based mining visualization module.

GPUMiner used bitmap as the data structure because
bitmap can enhance the efficiency of SIMD execution [13].
Apriori in GPUMiner shows significant speedups but it has
the following weaknesses:

 GPUMiner uses Bitmap as a specialized data
format which required tedious preprocessing
work to convert transactional database to
bitmap.

 The size of the database would be huge, since
each item takes one bit in bitmap, no which
exceed global memory on the GPU.

A fast CUDA-based K-means is proposed dedicatedly for
very large data sets which cannot be fit into the global
memory of the GPU [3].

IV. RESULTS AND COMPARISONS

You Li and Kaiyong Zhao implemented speeded parallel

k-Means algorithm using CUDA 2.3 on a PC having NVIDIA
GTX280 GPU and Intel(R) Core(TM) i5 CPU. They also
provide the comparative results between speeded K-Means
and other parallel popular benchmarking K-Means
implementations such as HP_K-Means, UV_K-Means and
GPUMiner. In below tables N is number of data objects in
data sets, D is number of dimensions for every data object, K
is number of clusters and M is number of maximum iterations
[13].

Table 1: Comparison of various K-Means

Implementations

N K D Speeded

K-

Means

HP

K-

Means

UV

K-

Means

GPU

Miner

2

Millions

100 2 0.22 1.45 2.84 61.39

400 2 0.79 2.16 5.96 63.46

100 8 0.35 2.48 6.07 192.05

400 8 1.23 4.53 16.32 226.79

R. Wu, B. Zhang and M. Hsu provide a significant result
for large data sets. The experiments are performed on HP
XW8400 workstation with dual quad core Intel Xeon 5345
equipped with an Nvidia GeForce GTX 280. It calculates
speedup on GPU over CPU on large data sets. Table II shows
speedup compared to increased number of clusters which
gives average speedup up to 10.2x. Similarly Table III shows
speedup with constant clusters and increased dimensions up to
7.2x [3].

Table 2: Speedup for increase number of clusters

Data Set Time(Sec) Speedups

N D K M CPU(8C) GPU

1,000,00,000 2 200 50 4139 508 8.2

1,000,00,000 2 400 50 7470 744 10.0

1,000,00,000 2 600 50 10847 1012 10.7

1,000,00,000 2 800 50 14176 1248 11.0

1,000,00,000 2 1000 50 17515 1558 11.2

 10.2

Table 3: Speedup for increase number of dimensions

Data Set Time(Sec) Speedups

N D K M CPU(8C) GPU

1,000,00,000 2 2000 50 3415 299 11.4

1,000,00,000 4 2000 50 5969 446 13.4

1,000,00,000 6 2000 50 8343 2528 3.3

1,000,00,000 8 2000 50 10711 3354 3.2

 7.8

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061720

Vol. 3 Issue 6, June - 2014

1913

V. DISCUSSION

According to literature survey we found that
implementations of algorithms on Nvidia’s GPU using CUDA
enabled many-core architectures have two major obstacles:

 First is limited size of low-latency high
bandwidth shared memory.

 Second, thread divergence causing lost clock
cycles through idle threads.

The first obstacle persists along two dimensions of data
sets first is the number of data points and other is their
dimensionality. It’s relatively easy to split data sets up along
one of those. Splitting data set efficiently along both requires
specific method that allows processing large high dimensional
data within the limitation of a small amount of shared memory
and by using collaborative power of many parallel threads.
The need for algorithms that can handle large data sets
becomes also apparent when looking towards number of
excellent serial K-Means algorithms that have been developed
specifically for handling large data [12].

The apparent limitation of previous implementations of
performing high-occupancy code to low dimensions is too
restrictive for applications and makes these implementations
less useful. Thread divergence, is not just specific to CUDA,
but can be also found in other architectures, such as vector
processors with multiple threads share a common instruction
pointer. Without properly preprocessing the input data sets,
branching of the program flow is common. None of the
previously mentioned implementations for CUDA on GPU
include data preprocessing as an essential tool for achieving
additional speedup.

Analyzing the various papers on K-Means on GPU we
can deduce:

 Nearly all complex and time-cost computation
operations of K-Means can be speedup
substantially by offloading work to GPU.

 Exploiting the GPU for the labelling stage of K-
Means proved to be beneficial especially for
large data sets and high cluster number.

 Parallelize an elementary data processing
operation used by many applications on a highly
parallel GPU architecture.

 The GPU architecture using CUDA parallel
computing will provide compelling benefits for
data mining applications.

VI. CONCLUSION

On the basis of literature survey and referenced results we
conclude that in K-Means speedup is depend on number of
clusters compared to number of dimensions or data objects.
We found that there are many efficient parallel K-Means
algorithm emerges as the size of data increases with good
speedup on GPU. But we can utilize many more features of
CUDA to get significant and more increased speedup
compared to all previous parallel implementations.

ACKNOWLEDGMENT

We express our sincere thanks to the all authors, whose
papers in the area of parallel data mining, K-Means
algorithm and GPGPU published in various conference
proceedings and journals.

REFERENCES

[1] Liheng Jian, ChengWang, Ying Liu, Shenshen Liang,Weidong Yi,
Yong Shi, "Parallel data mining techniques on Graphics Processing
Unit with Compute Unified Device Architecture(CUDA) ", The Journal
of Supercomputing Springer , Volume 64, Issue 3, June 2013.

[2] R. Farivar, D. Rebolledo, E. Chan, and R. Campbell, “A Parallel
Implementation of K-Means Clustering on GPUs,” Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications, 2008.

[3] R. Wu, B. Zhang and M. Hsu, “Clustering Billions of Data Points
Using GPUs,” Proc. Combined Workshops Unconventional High
Performance Computing Workshop Plus Memory Access Workshop
(UCHPC-MAW ’09), 2009, doi: 10.1145/1531666.1531668.

[4] M. Zechner and M. Granitzer, “Accelerating K-Means on the Graphics
Processor via CUDA,” Proc. First Int’l Conf. Intensive Applications
and Services (INTENSIVE ’09), pp. 7-15 , 2009, doi:
10.1109/INTENSIVE.2009.19.

[5] H. Bai, L. He, D. Ouyang, Z. Li, and H. Li, “K-Means On Commodity
GPUs With CUDA,” Proc. WRI World Congress Computer Science
and Information Eng., vol. 3, pp. 651-655, 2009,
doi:10.1109/CSIE.2009.491.

[6] S.A.A. Shalom, M. Dash, and M. Tue, “Efficient K-Means Clustering
Using Accelerated Graphics Processors,” Proc. 10th Int’l Conf. Data
Warehousing and Knowledge Discovery I. Song, J. Eder, and T.
Nguyen, eds., pp. 166 175, 2008, doi: 10.1007/978-3-540-85836-2_16.

[7] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 103-114, 1996, doi:
10.1145/235968.233324.

[8] S. Che, J. Meng, J.W. Sheaffer, and K. Skadron, “A Performance Study
of General Purpose Applications on Graphics Processors,” Proc. First
Workshop General Purpose Processing on Graphics Processing Units,
2007.

[9] J. Kruger and R. Westermann, “BIRCH: An Efficient Data Clustering
Method for Very Large Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 103-114, 1996, doi: 10.1145/235968.233324.

[10] Che S, Boyer M and Meng JY et al, ”A performance study of general
purpose applications on graphics processors using CUDA,” J Parallel
Distrib Compu 68(10), pp.1370-1380, 2008.

[11] Wu R, Zhang B and Hsu MC,”Cl W.D. Hillis and G.L. Steele Jr., “Data
Parallel Algorithms,” Comm. ACM, vol. 29, no. 12, pp. 1170-1183,
Dec. 1986, doi:10.1145/7902.7903.

[12] Kai J. Kohlhoff, Vijay S. Pande, and Russ B. Altman, “K-Means for
Parallel Architectures Using All-Prefix-Sum Sorting and Updating
Steps”, IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013.

[13] You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu,”Speeding up K-
Means Algorithm by GPUs”.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061720

Vol. 3 Issue 6, June - 2014

1914

