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Abstract—K-Means is the most popular algorithm used in 

data mining for clustering. The size and dimensions of data sets 

has increased tremendously due to daily transactions and 

internet. Recently various cost effective parallel architectures 

are emerged such as GPU with CUDA (Compute Unified Device 

Architecture). A significant speedup is achieved when general 

purpose applications are implemented on GPU using CUDA. 

Several implementations are available for K-Means on GPU for 

small dimensions. All features of CUDA can significantly use for 

improving speedup like coalesced memory access and thread 

divergence. 

 

Keywords—Clustering, K-Means, GPU, CUDA, Data 
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I.

 

INTRODUCTION

  

Clustering is unsupervised learning

 

method that partitions 
a data set of data objects into clusters, such a way that intra-
cluster shows maximum similarity while inter-cluster shows 
minimum similarity. K-Means is one of the most popular data 
mining clustering algorithms used now a days and is widely 
used in variety of fields such as pattern recognition, statistical 
data analysis,  bioinformatics and image analysis. It has been 
chosen as one of the Top 10 data mining algorithm. The huge 
data set contains large number of data objects with large 
number of dimensions takes more running time with K-Means 
algorithm for clustering. Hence clustering for large scale data 
sets is usually a time-consuming task [1].

 

Recently, Graphics Processing Units (GPUs) develop 
continuously as a general-purpose high performance parallel 
hardware and provide promising platform for parallelizing K-
Means. GPUs are provided as a dedicated hardware for 
manipulating computer graphics. GPUs have evolved into 
highly parallel many-core processors, due to the demand of 
huge computing power for real-time and high-definition 3D 
graphics. The latest development of computing power and 
memory bandwidth in GPUs has driven the use of general-
purpose computing on GPUs (GPGPU) [6].

 

The application of clustering is wildly spread among 
various different fields such as text mining, computer vision 
or computational biology. The popularity of k-means is 

explained by its low implementation complexity and well 
described mathematical properties. K-Means will only find 
non-optimal local-minima, depending on the initialization of 
centroids. This is known as seeding problem and was 
addressed in many researches. The run-time performance of 
K-Means is increases as data is growing rapidly, as finding the 
correct parameter of k also critical as it change during every 
run and can only be done by performing several runs with 
initial seeding [2].

 

Recently hybrid CPU-GPU architecture has successfully 
emerged as a high performance computing platform. Simply 
this architecture

 

consists of many-core GPUs with multi-core 
CPUs. GPUs are responsible for parallel data computation, 
and CPUs play a role of data distribution and task 
synchronization. GPU has higher density of computational 
cores on chip and require lower energy per instruction than 
CPU. By adapting the hybrid CPU/GPU architecture instead 
of standalone CPU or GPU the energy consumption and space 
requirement reduced dramatically as compared to building a 
supercomputing site. At present, there are various 
supercomputing sites who adapt this novel computing 
architecture in Top500. If the programming complexity of 
hybrid CPU-GPU architecture reduced successfully, the 
hybrid CPU-GPU architecture will become more and more 
popular in future.

 

This paper provides a brief literature review of all versions 
of K-Means implementation on GPUs using CUDA that have 
published till date. Section II brief describes K-Means with its 
parallel implementation details on GPU. Section III explains 
literature review of various K-Means implementations on 
GPUs. Finally, Section IV discusses the findings of this 
review work

 

and future scope for improvement.

 

 

II.

 

RELATED WORK

 
A.

 

K-Means

 

K-Means is a well-known partitioned clustering algorithm 
widely used in both industrial practices and academic 
research. It shares the properties of a more large class of 
statistical algorithms. The number of clusters K is the input to 
the K-Means algorithm. K-Means iteratively finds the K 
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centroids of the data clusters. Each iteration consists of two 
steps: 

 Step 1: Partition the data set into K subsets by 

assigning each data point to the subset whose 

centroid is the closest centroid to the data point. 

 Step 2. Recalculate the K cluster centroids as the 

geometric centers of the subsets. 

The algorithm repeats these two steps until convergence 
criteria fulfilled i.e. no data point moves from one cluster to 
another. It has been shown that K-Means always converges to 
a local optimum and stops after finite number of iterations. 
There is still active research on the K-Means algorithm itself 
[3]. 

B. Parallelization of K-Means 

When parallelizing an application, it is important to 
understand for a designer that of the underlying characteristics 
of the architecture. For example, if the target architecture is 
multi-core or an 8-core general purpose computer, it is best to 
distribute the computation task to number of threads created 
depending on the number of independent processing elements 
in that system. A suitable work distribution can be achieved 
by dividing the work evenly among each of the created 
threads. This can be performed using traditional OS multi-
threading support such as Java threads or PThreads in POSIX 
supported by operating systems like (Linux, UNIX). In such 
architectures, it is best to assign a thread to process element 
based on its availability, due to context switching overhead 
between thread as there may be millions of elements ready to 
be processed caused dominating bottleneck [2]. 

GPU hardware is many-core architecture which uses 
CUDA model to schedule and manage automatically the 
workload that consists of many individual tasks (threads). The 
creating of these threads has very negligible overhead, as it is 
hardware generated threads and takes only one clock cycle to 
start a thread. This suggests that the programmer should break 
the task into many logical units without regard to the 
underlying architecture of the parallel system, this 
encouraging the use of a huge number of threads to increase 
the chances that scheduler will find an optimal schedule for 
large number of tasks to execute on parallel SIMD 
architecture. Such a programming model is best utilized with 
the applications having large number of independent tasks and 
threads so called as “embarrassingly parallel” applications [2]. 

As the time-dominant phase of the K-Means algorithm is 
to assignment of data points in each cluster, which takes 
Ο(N*K) time. In this phase, the algorithm computes the 
Euclidean distance of each data point to the chosen set of 
centroids and tries to reassign each data point to the nearest 
cluster. To implement K-Means algorithm on CUDA, we can 
assign the distance calculation part of each data point to a 
single thread. Therefore each thread will loop over for all the 
initial cluster centroids, calculating its assigned data point’s 
distance by finding the minimum distance from its data point 
to a cluster centroid, and become a member of the nearest 
cluster centroid [2]. 

When all threads are finished this task, the membership of 
each data point is derived, and thus the first phase of the 
algorithm is also finished. If the number of data points were 
equal to the number of processing elements, this pass could 

finish in one step. However, if we handle large amount of data 
the number of processing elements is limited. Therefore, with 
P cores we can accelerate the first phase to Ο((N*K)/P). If the 
data points are distributed in a 1-dimensional array, the 
distance calculation can be computed with a single scalar 
subtraction operation. If the data points resided in a 2-
dimensional domain, it would increase computational 
requirements per element without adding any pressure on 
memory bandwidth. We will see later that in many cases, this 
parallel implementation of algorithm is limited by memory 
bandwidth rather than processing power [9]. 

Therefore, K-Means algorithm with multidimensional 
applications is likely to see larger speedup factors, as they are 
heavily floating point computational operations. With large 
dimensions data sets makes the application ideal for GPU 
architectures, which are also better suited for computational 
heavy classes of applications. 

 

III. LITERATURE SURVEY 

In academia, various parallel data mining algorithms have 
been proposed on distributed as well as shared memory 
parallel architecture models in the past decades. However, 
current available successful commercial mining systems does 
not applies these parallel data mining techniques, including, 
IBM Intelligent Miner, SPSS Clementine and SAS Enterprise 
Miner. Actually neither of these commercial systems achieved 
real time analysis. One of the reasons that affect the 
development of parallel data mining algorithms is the high 
cost of various parallel computing systems. Such as clusters, 
which are not affordable by small or medium businesses [11]. 

Low power consumption and low cost are the motivating 
powers of recent development in parallel architectures. One 
probable recent solution is the multi-core system. Examples 
are Intel core-duo or core-quad products. Although the multi-
core systems are consumed low power and low in cost 
compared with traditional supercomputers. As multiple cores 
integrated onto a single chip, its scalability is poor. Another 
popular solution is Graphics Processing Unit (GPU). GPU is 
originally a highly specialized many-core architecture 
designed for graphics rendering for the computer gaming 
industry [7]. 

Recently high level languages like OpenCL, CUDA 
(Compute Unified Device Architecture) have developed to 
support easy programming on GPUs. NVIDIA’s GPU with 
CUDA environment provides standard extensions to C-like 
languages to manipulate the GPUs. GPUs with CUDA 
provide tremendous computing power and memory bandwidth 
for applications. There are computational intensive 
applications which run on   a GPU + CPU heterogeneous 
system architecture where the GPU acts as the computation 
accelerator, including scientific, medical, military, business, 
communication, and other domains. Successful examples are 
Computational Fluid Dynamics (CFD), Neural Network, 
Support Vector Machine (SVM), Magnetic Resonance 
Imaging (MRI), Finite Difference Time Domain (FDTD), 
intrusion detection, etc [1]. 

A wide variety of applications have been achieved huge 
speedups with GPGPU implementations. Kruger et al. 
presented framework for solving linear algebra problems on 
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graphics processor units. Harris et al. present a cloud 
dynamics simulation with the help of partial differential 
equations and various other N-body and molecular dynamics 
simulations have also shown huge speedups [9]. Some 
database operations have been implemented on the GPU by 
pixel engine, and variety of other applications, such as AES 
encryption and sequence alignment have been successfully 
implemented on GPUs [8]. 

There are several implementations of the popular parallel 
K-means data clustering algorithm on GPUs exist [12]. One 
common restriction among this parallel implementation is that 
dimensionality of test data is limited to small values of 60 or 
below. An exception to this is the work of Zechner and 
Granitzer that specifically design K-Means for arbitrary large 
number of dimensions, but only implements the labeling stage 
of the algorithm on GPU, thus a substantial portion of the 
work is done with the CPU which encounters frequent 
memory transfers [4]. 

Che et al. report eight fold speedup for the cluster 
assignment stage of K-means on an Nvidia 8800GT for nearly 
1.6 million data objects with 42 dimensions each [10]. Farivar 
et al. claim nearly 130-fold speedup with an Nvidia 8600GT 
using data set of 581,012 data objects with 54 dimensions. Wu 
et al.  report up to 11-fold speedup with one billion data 
objects of eight or less dimensions when comparing running 
time of a Nvidia GeForce GTX280 to multicore processors 
with highly optimized parallel CPU code [2]. Finally, Zechner 
and Granitzer show speedups on an Nvidia GeForce 9600GT 
for data set consist of 500,000 data objects and 200 
dimensions up to 42-fold and when compared to sequential 
code compiled with Intel C++ and Visual C++ compilers 
gives up to 13-fold speedup [4]. 

A non-optimal solution to the NP-hard problem of 
partitioned clustering was proposed by Lloyd whose most 
well-known variant is the K-Means algorithm. Shuai Che et al. 
and Li Zhan et al. published nearly similar work where Shuai 
Che et al. used CUDA for parallelizing partial steps of k-
means on GPU, while Li Zhan et al. parallelize new centroids 
recalculation step also on GPU and thus algorithm 
performance become better [8][5]. 

Recently, Fang et al. proposed GPUMiner, a system 
consisting of three components: 

 CPU-based storage and buffer manager to handle 
I/O and data transfer between CPU and GPU. 

 GPU-CPU co-processing parallel mining module. 

 GPU based mining visualization module. 

GPUMiner used bitmap as the data structure because 
bitmap can enhance the efficiency of SIMD execution [13]. 
Apriori in GPUMiner shows significant speedups but it has 
the following weaknesses: 

 GPUMiner uses Bitmap as a specialized data 
format which required tedious preprocessing 
work to convert transactional database to 
bitmap. 

 The size of the database would be huge, since 
each item takes one bit in bitmap, no which 
exceed global memory on the GPU. 

A fast CUDA-based K-means is proposed dedicatedly for 
very large data sets which cannot be fit into the global 
memory of the GPU [3]. 

IV. RESULTS AND COMPARISONS 

 
You Li and Kaiyong Zhao implemented speeded parallel 

k-Means algorithm using CUDA 2.3 on a PC having NVIDIA 
GTX280 GPU and Intel(R) Core(TM) i5 CPU. They also 
provide the comparative results between speeded K-Means 
and other parallel popular benchmarking K-Means 
implementations such as HP_K-Means, UV_K-Means and 
GPUMiner. In below tables N is number of data objects in 
data sets, D is number of dimensions for every data object, K 
is number of clusters and M is number of maximum iterations 
[13]. 

Table 1: Comparison of various K-Means 

Implementations 

N K D Speeded 

K-

Means 

HP 

K-

Means 

UV 

K-

Means 

GPU 

Miner 

2 

Millions 

100 2 0.22 1.45 2.84 61.39 

400 2 0.79 2.16 5.96 63.46 

100 8 0.35 2.48 6.07 192.05 

400 8 1.23 4.53 16.32 226.79 

 

R. Wu, B. Zhang and M. Hsu provide a significant result 
for large data sets. The experiments are performed on HP 
XW8400 workstation with dual quad core Intel Xeon 5345 
equipped with an Nvidia GeForce GTX 280. It calculates 
speedup on GPU over CPU on large data sets. Table II shows 
speedup compared to increased number of clusters which 
gives average speedup up to 10.2x. Similarly Table III shows 
speedup with constant clusters and increased dimensions up to 
7.2x [3]. 

Table 2: Speedup for increase number of clusters 

Data Set Time(Sec) Speedups 

N D K M CPU(8C) GPU 

1,000,00,000 2 200 50 4139 508 8.2 

1,000,00,000 2 400 50 7470 744 10.0 

1,000,00,000 2 600 50 10847 1012 10.7 

1,000,00,000 2 800 50 14176 1248 11.0 

1,000,00,000 2 1000 50 17515 1558 11.2 

  10.2 

 

Table 3: Speedup for increase number of dimensions 

Data Set Time(Sec) Speedups 

N D K M CPU(8C) GPU 

1,000,00,000 2 2000 50 3415 299 11.4 

1,000,00,000 4 2000 50 5969 446 13.4 

1,000,00,000 6 2000 50 8343 2528 3.3 

1,000,00,000 8 2000 50 10711 3354 3.2 

  7.8 
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V. DISCUSSION 

According to literature survey we found that 
implementations of algorithms on Nvidia’s GPU using CUDA 
enabled many-core architectures have two major obstacles: 

 First is limited size of low-latency high 
bandwidth shared memory. 

 Second, thread divergence causing lost clock 
cycles through idle threads. 

The first obstacle persists along two dimensions of data 
sets first is the number of data points and other is their 
dimensionality. It’s relatively easy to split data sets up along 
one of those. Splitting data set efficiently along both requires 
specific method that allows processing large high dimensional 
data within the limitation of a small amount of shared memory 
and by using collaborative power of many parallel threads. 
The need for algorithms that can handle large data sets 
becomes also apparent when looking towards number of 
excellent serial K-Means algorithms that have been developed 
specifically for handling large data [12]. 

The apparent limitation of previous implementations of 
performing high-occupancy code to low dimensions is too 
restrictive for applications and makes these implementations 
less useful. Thread divergence, is not just specific to CUDA, 
but can be also found in other architectures, such as vector 
processors with multiple threads share a common instruction 
pointer. Without properly preprocessing the input data sets, 
branching of the program flow is common. None of the 
previously mentioned implementations for CUDA on GPU 
include data preprocessing as an essential tool for achieving 
additional speedup. 

Analyzing the various papers on K-Means on GPU we 
can deduce: 

 Nearly all complex and time-cost computation 
operations of K-Means can be speedup 
substantially by offloading work to GPU. 

 Exploiting the GPU for the labelling stage of K-
Means proved to be beneficial especially for 
large data sets and high cluster number. 

 Parallelize an elementary data processing 
operation used by many applications on a highly 
parallel GPU architecture. 

 The GPU architecture using CUDA parallel 
computing will provide compelling benefits for 
data mining applications. 

 

 

 

 

 

 

VI. CONCLUSION 

On the basis of literature survey and referenced results we 
conclude that in K-Means speedup is depend on number of 
clusters compared to number of dimensions or data objects. 
We found that there are many efficient parallel K-Means 
algorithm emerges as the size of data increases with good 
speedup on GPU. But we can utilize many more features of 
CUDA to get significant and more increased speedup 
compared to all previous parallel implementations. 
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