
Replicate and Bundle: A Mechanism for Increasing

Efficiency and Scalability of Data Centers

Amruta T. Paul

Computer Science and Engineering

Priyadarshini Institute of Engineering andTechnology

Nagpur, India

Prof. Sonali Bodkhe

Computer science and engineering

Priyadarshini Institute of Engineering andTechnology

Nagpur, India

Abstract— This paper addresses the issue of maximizing the
efficiency and scalability of RAM- Based storage systems where in
multiple objects must be retrieved per user request. The focus is on
per server transaction, not per requested item. By introducing RnB,
a innovative mechanism to minimize the number of servers accessed
per user request, it increases the scalability and efficiency of RAM-
Based storage systems.

In this paper, We present “Replicate and Bundle” (RnB), a
method for reducing the number of transactions required to process
an end user request. This method enables increasing the maximum
system throughput without adding CPUs. RnB entails 1) data
replication and 2) bundling of items requested from the same server
into a single transaction. We use a pseudo-random object-to-server
mapping for each object’s different replicas, placing the replicas on
different servers for each object. During data fetch, we choose which
replica to access in order to reduce the number of servers that need
to be accessed for any given request. Finding a minimal set of
servers is the well known minimum set cover problem, which is NP-
complete . Therefore, we use heuristic low complexity approaches.
Considerable benefits are obtained even with sub-optimal server
selection.

For increasing the efficiency of system, LRU based caching
system is used. For bundling Ranged consistent hashing RCH, which
allows selecting, for each item stored, a group of servers that has the
copy of the requested item.

Keywords: LRU, consistent hashing, replication n bundling,
efficiency, scalability

I. INTRODUCTION

A. Background

In this work, we consider the scalability and efficiency of
RAM-based read-mostly [6] storage caching systems in Web data
centers (e.g., Facebook, Twitter, Gmail). In these data centers, a
large number of web servers, nearly stateless present behind the
load balancer. These stateless web servers are present to run the
application code for the web. The original copies of the (read-
mostly) data for the application are present in the large disk based
databases such as MySQL, MS-SQL, Oracle, Cassandra, etc. As
the database access is slow, a special caching layer is present
between the web servers and the database of the application.
Memcached is a RAM based key-value storage/caching service.
This caching service uses the simple network access protocol.
The Memcached server stores the recent database access results.

Here the Memcached servers are served as RAM based storage
not as the caches.

Fig. 1. TYPICAL WEB APPLICATION

For increasing performance and scalability, it is needed to
identify the servers which are storing the copies of the requested
items. This identification usually, done without communication.
Therefore, Memcached servers use consistent hashing to store the
items to the servers. As a result, in an N-server system, a client
request for M specific items will require sending requests to N(1-
(1-1/N)

M
) servers on an average[1]. When there is a request for

the items from the servers and the request set is larger than the
available number of servers the that request needs to access
almost all servers to fulfill the user request, so adding servers
commensurately increases the number of transactions per user

72

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030196

request. If the maximum amount of server CPU work is per
server transaction not the per server item, then this provides no
relief to the server CPU’s. this goes into the problem of Multi-
Get Hole [2].

B. Terminologies used

Every transaction in our assumption is the collection of

requested items from the client which we called as the request
set.

The end user sends the set of requested item/ items to the web
service. The request size is the number of items in the request.
The web server gets the request from the end user, these web
servers are called as the clients. The client translates the request
into number of transactions, which contains the requested items
list. These transactions are for the access of items from the
database, is send to the different Memcached servers. If the item
is not found in the Memcached server it will be accessed from the
database, and the copy is written back to the relevant Memcached
server.

Finally, we define several metrics used in this work :

•Transactions Per Request (TPR) – the average number of
transactions that are needed to fulfill the single user request.

• Transactions Per Request Per Server (TPRPS) – The
average number of transaction for single user request divided by
the number of servers available in the system.

•Maximum System Throughput (“Throughput”) – the
maximum time required for completing the transactions for the
entire system.

•TPRPS Scaling Factor – It is the ratio of Transactions Per
Request Per Server between two systems.

•Throughput Scaling Factor – It is the throughput ratio
between two systems.

For reader convenience, we provide here definitions of terms
that are used in a later part of this work:

•Overbooking – providing less physical memory than
implied by the declared number of replicas.

C. Contribution of replicate and bundle

Replicate and Bundle is a mechanism to reduce the number of
transactions that are required to satisfy the end user request. It
increases the throughput of the entire system by reducing the
server access for satisfying the number of requests from the
number of clients or end users. It will give maximum throughput
without adding CPUs to the system. RnB entails: 1) data
Replication: Replication enables you to have identical copies of
information on multiple servers and across more than one data
center and 2) Bundling of requested items. In data replication the
data which are not available in the Memcached servers are
duplicated into it, for increasing the efficiency of the system. In
Bundling the requested items from the same server are combined
in single transaction.

For placing the replicas on different servers for each object,
we use pseudo-random object-to-server mapping for each

object’s different replicas. Whenever the we need to access the
data, from multiple replicas, we choose which replica to access,
so that the number of servers accessed should be minimum, for
any given request. Finding a minimal set of servers is the well
known minimum set cover problem, which is NP-complete [3].
We can get the Considerable benefits even with sub-optimal
server selection, but we use we use heuristic low complexity
approaches.

The actual data is always available in the databases like in
MySql etc. The database access is very slow, so we need the
cache layer in between the application program and the database
which are called as the memcached servers. But which we need
the data to be replicated on these memcached servers for
availability. So we need the mechanism which replicates the data
on an appropriate server. But again the problem is which replica
to select from which sever so that the number of transactions
required to fulfill the end user request. For that here we are using
the Bundling mechanism in combination with replication.

 RnB is a distributed, stateless algorithm. The algorithm
requires almost same amount of configuration information as
required in consistent hashing and it does not require any
additional communication for this. RnB can be beneficially
applied to other similar workloads like in the social network data
sets, as our results are in the context of it. RnB can be nearly free
as the data are replicated in systems for other reasons like for
availability, fault tolerance, etc.

 With this basic RnB we are going to use the extensions
as LRU for reducing the number of replicas on Memcached
servers. So that the time required for accessing the data gets
reduced. If the data in servers will be less it will require
minimum time to search the requested object. Another approach
is the extension of consistent hashing, which we call as the
Ranged consistent hashing (RCH). This extension allows, for
requested items, finding the set of severs, that have the copies of
it. While achieving a balanced and uniform distribution of the
replicas, The approach preserves the good attributes of consistent
hashing.

II. REPLICATE AND BUNDLE (RNB)

A. The RnB Solution

Replication: Replication is making copies of available data
from database to the Memcached servers. Each requested item is
written to a preconfigured set of servers. The unit for our system
is the number of transaction per user request.

To reduce the number of transactions on server the data is
replicated on multiple caching servers. So that access speed of
requested item will get reduced. For this consistent hashing is
used.

For replication multiple hashing techniques can be used. The
further studies can include comparative study of multiple hashing
which can reduce the time required for replication.

73

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030196

Fig. 2. Each item is written to a preconfigured set of servers, chosen using
consistent hashing.

Bundling: In this, the locations of all the data item’s replicas
are calculated and set of servers which jointly possess all the
replicas of the requested items are computed. Whenever there is a
request for the data access from the web server the request
doesn’t go to the database directly, it is first found in the
memcached servers. Bundling finds the set of servers which are
jointly possessing the replicas of the requested items, from these
replicas which replica to access is found. The problem of finding
the minimum group is NP-complete [7].

Fig. 3. A group of servers that jointly possess all requested items is computed.

 Here for evaluation we assumed that system can handles
each user request individually and bundles only items in the same
request.

B. Enhancements to RnB

 There are some enhancements that we are going to
implement in this are as follows:

Distinguished copy overbooking:

 This enhancement is aimed at exploiting the fact that

there are some replicas on the Memcached servers which are
used very less frequently in the access of data. These copies are
called as “cold” copies of the data.

 Our mechanism combines the properties of Memcached
servers and a property of the replica selection algorithm. Each
Memcached servers keeps a local Least Recently Used (LRU) list
of the items which are stored on the different Memcached server.
From this list it selects the items which are used very less
frequently and drops these unused copies from the server when
running out of space. The result is that the number of replicas of
the object and the locations of these replicas are determined in
fully distributed manner and implicitly. But there must be at least
one copy of the object replicated on any of the Memcached
server, we mark one of the copy from multiple replica as the
distinguished copy. This can be done by selecting one of the one
of the hash functions as the “distinguished” hash function.

 The algorithm which we are using for selecting the
servers to satisfy a request is the greedy set cover algorithm. See
figure4.This algorithm is has the property as, if there are two
requests which require same item sets, the replicas which are
used to fulfill the request are mostly the same for maximum
request. This property allows to "automatically" benefit from the
spatial locality in the requests. This will make some of the
replicas of each object as the “cold” copies. The local LRUs on
the memcached servers will drop these cold replicas.

 Consider the figure, if there are two requests, consider
request 1- for the file 1,file 2 and file 3 and request 2- for for the
file 1,file 2 and file 4. The figure gives the possible placements of
data items on multiple servers. Here both the requests will fetch
the data from server A, even though there is a virtual copy of F1
is present on server C and F2 is present on B. so maximum
access of F1 and F2 will be done from server A and the copies on
server B and C are not used at all, so the servers will eventually
discard the replicas through their LRU mechanism.

Fig. 4. An example of request locality reducing the needed memory.

C. Merging Multiple Requests

74

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030196

Several ([9], [10]) real world implementations of Memcached
support merging multiple end user requests, thereby reducing the
number of transactions performed with the servers.

The simulator is designed to collect a predefined number of
requests, and these requests are handled as a single request. The
consecutive requests are combined which is called as bundling of
item into a single transaction. This will reduce the number of
transactions per user request.

D. When RnB is not Effective

If the request is for write data: RnB cannot satisfy the write
requests, as it will require updating multiple replicas of the items
on different servers.

If the request is for individual data i.e. for single item per
request: here if the request are for single data item at a time the
basic RnB can do nothing for it.

If the request set is very large: here if the request sets are
large then it performs like per item access not as the per
transaction access, so RnB cannot help here much.

III. IMPLEMENTATION OF RNB

In this paper we have defined the main elements that are

required for the main implementation of the RnB in the
Memcached servers. We have implemented the paper partially;
the full implementation is not yet done. So the results are not
present in the paper. Some elements which we have defined and
implemented partially are given below:

Basic RnB : The main requirement here is the replication of
data on multiple servers, which is already implemented in most
of the systems for reliability and availability of the system. The
Bundling of the multiple requests is done, thereby reducing
number of transactions per user request.

Ranged consistent hashing : It is an enhancement to the
basic consistent hashing. This extension allows, for requested
items, finding the set of severs, that have the copies of it. While
achieving a balanced and uniform distribution of the replicas,
The approach preserves the good attributes of consistent hashing.
It improves the runtime efficiency for finding the set servers
having copies of requested item set.

Atomic operations are supported : with the use of LRU in
local Memcached servers keeping only the distinguished copies
of the item, and discarding the cold copies is done automatically
in the system. If the copies are present in the server then loads
them on demand.

IV. RELATED WORK

FAWN [14] is a distributed key–value storage system with a
memcached interface, this work focuses on power efficiency. In
[11] it is compared with disk based systems. It makes no use of
redundancy.

CRAQ [12] uses redundant copies of the data. That is it avails
multiple copies of the data on multiple servers as replication.
This allows better read performance. But the work in it uses for

single-item requests. Bundling of multiple items is not proposed
in this work.

The replication and bundling concept, similar to the RnB is
also used in [8], for storage system. The goal of this is improving
system performance by accessing the data faster as it is available
on multiple servers and the requests are combined. However, the
focus in [8] is on data arrangement within a disk to reduce seek
work.

For the RAM based storage, Ongaro et al.[13] consider
replication. The focus of their work is on fault recovery. As such,
it assumes that only one replica is memory residentand the other
or the secondary replicas written to mechanical disks.

In [14], Mike Mitzenmacher proposed the use of a choice
between two options for load balancing. While the utilization of
choice is common between this work and [14], Mitzenmacher’s
work focused on achieving a better load balancing for achieving
better performance of system, while this work focuses on
achieving a better bundling, which reduces the total amount of
work that the system performs.

CONCLUSIONS

Here we considered the D-RAM based storage for our results.

In this paper, it is discussed that efficiency and scalability of
RAM- Based storage systems can be maximized by reducing the
number of transactions per user request.

 RnB is a combination of object replication on different
servers and the bundling of requested items into a single
transaction, which reduces the total amount of work that the
system performs.

In addition to the basic RnB scheme various enhancements,
such as declaring a larger number of replicas than can actually be
stored in memory have been proposed and evaluated. We have
developed the efficient technique such as ranged consistent
hashing, which is for finding the number of servers that jointly
possess the replicas of the requested item.

RnB does not create any extra work for the front-end servers.
The object replicas are already present for other reasons in the
system, like for availability, fault tolerance etc. so we don’t need
to put extra effort for replication of data on multiple servers. So
the main cost element of RnB comes almost for free. RnB also
supports smooth scalability and is relatively easy to incorporate
in.

Summarization: The existing systems have the technologies
which are used in this mechanism but there are some limitations
of these systems. Replication is done in many systems for other
reasons, here it is used for increasing the efficiency of the system,
and jointly it provides availability to the system. Cache misses
are less in this case. So the replication in this system is nearly
free.

Bundling of the consecutive item requests from the end user
is done, so that it reduces the number of transactions per user
request. This is the main issue of the mechanism.

75

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030196

LRU is the mechanism used in addition to the basic RnB for
reducing the unnecessary use of the memory used for the system.
If there are replicas which are vey “cold” are removed from the
server so that the actual needed data can occupy the server
memory space.

RCH is Ranged Consistent Hashing which is an extension to
the Consistent Hashing. It provides the set of servers that jointly
possess the requested item set.

REFRENCES

[1] Shachar Raindel and Yitzhak Birk “Replicate and Bundle (RnB) – A

Mechanism for Relieving Bottlenecks in Data Centers” 2013 IEEE 27th
International Symposium on Parallel & Distributed Processing

[2] J. Rothschild, “High Performance at Massive Scale – Lessons learned at
Facebook.” http://cns.ucsd.edu/lecturearchive09.shtml#Roth, October

2009.

[3] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity
of Computer Computations (R. E. Miller and J. W. Thatcher, eds.), pp. 85–
103, Plenum Press, 1972.

[4] Tonglin, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao “ZHT: A
Light-weight Reliable Persistent Dynamic Scalable Zero-hop Distributed
Hash Table” 2013 IEEE 27th International Symposium on Parallel &
Distributed Processing

[5] Ahmad Waqas, Nahadia Majeed, “Dynamic Object Replica Placement
using Underlying Routing Protocol: Ensuring the Reliability”, 2013 5th
International Coference on Information and Communication Technology
for the Muslim World.

[6] “Memcached Overview Page.”
http://code.google.com/p/memcached/wiki/NewOverview,

Feb. 2013.

[7] S. Raindel, “Replicate and Bundle (RnB) - A Mechanism for Relieving
Bottlenecks in Data Centers,” M.Sc. thesis.

[8] I. Hoque and I. Gupta, “Social Network-Aware Disk Management,” tech.
rep., University of Illinois at Urbana-Champaign, Dec. 2010.

[9] “Feature List of Moxi.” http://code.google.com/p/moxi/, Feb. 2013.

[10] “Spymemcached Optimizations Description.”
http://code.google.com/p/spymemcached/wiki/Optimizations, Feb. 2013.

[11] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V.
Vasudevan, “FAWN: A Fast Array of Wimpy Nodes,” in ACM Symposium
on Operating Sys. Principles (SOSP), (Big Sky, MT), Oct. 2009.

[12] J. Terrace and M. J. Freedman, “Object storage on CRAQ: high-throughput
chain replication for read-mostly workloads,” in USENIX, pp. 11–11,
USENIX, 2009.

[13] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and M.
Rosenblum, “Fast crash recovery in RAMCloud,” in ACM Symposium on
Operating Systems Principles (SOSP) (T. Wobber and P. Druschel, eds.),
pp. 29–41, ACM, 2011.

[14] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” Parallel and Distributed Systems, IEEE Transactions on, vol.
12, pp. 1094 –1104, Oct. 2001.

76

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030196

