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    Abstract- A k-unit parallel system having component 

lifetime distribution to be Rayleigh is considered. Based 

on the progressively Type-II censored sample, the 

maximum likelihood estimator (MLE) of the scale 

parameter of the Rayleigh distribution is derived and is 

used to estimate reliability function. EM algorithm is 

used to obtain MLE. Asymptotic confidence interval for 

the scale parameter and reliability function is 

constructed. Confidence interval based on the log-

transformed MLE is also constructed. Simulation study is 

conducted to investigate performance of estimates and  

confidence intervals. An example with real data is 

presented for illustration. 
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Rayleigh distribution, EM algorithm, MLE, 

Reliability, confidence interval, coverage 

probability.  
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ACRONYMS 

CI  Confidence Interval 

CDF Cumulative Density Function 

EM Expectation Maximization  

MLE Maximum Likelihood Estimate 

MSE Mean Square Error 

PDF  Probability Density Function 

 

NOTATIONS 

n Sample size. 

m Number of observed failures in a Type-II 

censored sample. 

λ Scale parameter of the Rayleigh distribution. 

𝜆     MLE of λ. 

g(y) PDF of the Rayleigh distribution. 

G(y) CDF of the Rayleigh distribution. 

f(x) PDF of the life distribution of k unit parallel 

system. 

F(x) CDF of the life distribution of k unit parallel 

system. 

X(i) Order Statistics from a progressively censored 

sample of size m. 

Ri Number of surviving units withdrawn from the 

experiment after i
th

 failure. 

L Log-likelihood function of all n observations. 

L(λ) Likelihood function of observed data. 

Lc Log-likelihood function of complete data. 

Ix(λ) Observed Fisher information. 

Iw(λ) Complete Fisher information. 

Iw|x(λ) Missing information. 

R(t) Reliability of system at time t. 

1. Introduction 

  In a life testing experiment, censoring is 

common practice because of various restrictions on data 

collection such as time limit, cost etc.  In such a situation 

we remove some observations in the experiment. Such 

data is called censored data. Censoring is broadly 

classified into two types; Type-I and Type-II censoring. 

Type-I censoring is related with time. In this 

type, an experiment continues up to a pre-determined 

time T. Units having failure time after time T are not 

observed. Here, lifetime will be known exactly only if it 

is less than T. For example, suppose ‘n’ units are  put on 

test, but decision is made to terminate the test after time 

T. In this experiment life times will be known exactly 

only for those units that fail before time T. In Type-I 

censoring, the number of exact life times observed is 

random. 

Type-II censoring is related with number of 

failures, that is, experiment continues up to the pre-

determined number of failures. For example, in life 

testing experiment, suppose ‘n’ units are put on test, but 

instead of continuing until all ‘n’ units have failed; the 

test is terminated at the time of the m
th

 (m ≤ n) unit 

failure. In case of Type-II censoring, the number of exact 

life times observed is fixed. 

Based on the time epochs for removals of units 

from the experiment, the censoring is further classified in 

to two types, such as conventional censoring and 

progressive censoring. In conventional Type-I and Type-

II censoring, units may not be removed before terminal 

point. In progressive censoring scheme, units may be 
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removed at different stages rather than at terminal point. 

Progressive censoring scheme is applied in both Type-I 

and Type-II censoring schemes.  

In progressive Type-I censoring scheme, m 

censoring times T1, T2,……, Tm and R1, R2,……, Rm are 

fixed in advance. Since  𝑅𝑖
𝑚
𝑖=1 = 𝑛 − 𝑚.   At time T1 

remove R1 units, at time T2 remove R2 units and so on. 

The experiment terminates at time Tm with Rm units still 

surviving.  In progressive Type-II censoring scheme, 

suppose ‘n’ units are put on test. The number ‘m’ and R1, 

R2,….,Rm are fixed prior to the test. At the first failure R1 

units are removed randomly from  remaining n-1 units.  

At the second failure R2 units are  removed randomly 

from  remaining n-2-R1 units and so on. At the m
th

 

failure all remaining Rm units are removed. Here, we 

observe failure time of m units and remaining n-m units 

are removed at different stages of experiment. In 

conventional Type-II censoring scheme R1=R2=……= 

Rm-1 = 0 and Rm= n-m. In this paper, we consider the 

progressive Type-II censoring scheme. 

Progressive Type-II censoring scheme for 

various lifetime distributions has been discussed by 

number of researchers. Cohen [1] studied MLE of the 

parameters of exponential and normal distribution for 

progressively Type-II censored samples. Mann ([2], [3]) 

considered Weibull distribution with progressive 

censoring. Balkrishnan ([4], [5] and [6]) discussed 

inference for the scaled half-logistic, Gaussian and 

extreme value distributions under progressive Type-II 

censoring scheme respectively. Ng [7] studied parameter 

estimation for modified Weibull distribution under 

progressively Type-II censored samples. Balkrishnan and 

Aggarwala [8] gave details about progressive Type-II 

censoring scheme. 

Balkrishnan [9] studied various distributions 

and inferential methods for progressively censored data. 

Pradhan [10] considered  point and interval estimation of 

a k-unit parallel system based on progressive Type-II 

censoring scheme with exponential distribution as the 

component life distribution. Chein and Balkrishnan [11] 

discussed consistency and asymptotic normality of MLE 

based on progressive Type-II censored samples. 

Iliopoulos and Balkrishnan [12] studied likelihood 

inference for Laplace distribution based on progressive 

Type-II censored samples. Krishna and Malik [13] 

discussed reliability estimation in Maxwell distribution 

based on progressively Type-II censord data. Recently, 

Potdar and Shirke [14] studied inference for the scale 

parameter of lifetime distribution for k-unit parallel 

system based on progressively censored data. Potdar and 

Shirke [15] discussed estimation for the distribution of a 

k-unit parallel system with exponential distribution as the 

component life distribution based on Type-II 

progressively censored data. Potdar and Shirke [16] 

studied Inference for the parameters generalized inverted 

family of distributions. 

Dempster et al. [17] introduced EM algorithm. 

They presented maximum likelihood estimation for 

incomplete data. Mclachlan and Krishnan [18] gave 

more details about EM algorithm. Little and Rubin [19] 

discussed EM algorithm for exponential family of 

distributions. Pradhan and Kundu [20] used EM 

algorithm to estimate parameters of generalized 

exponential distribution under Type-II censoring scheme.  

Ng et al.  [21] used EM algorithm to estimate parameters 

of lognormal and Weibull distributions under Type-II 

censoring scheme. In this article, we used EM algorithm 

for estimation of the parameters of a k-unit parallel 

system based on progressive Type-II censoring scheme 

when component lifetime follows Rayleigh distribution 

with scale parameter λ.   

Parameter estimation is based on the life times 

of the system. We assumed that n items put on test and 

failure times of    𝑅𝑖
𝑚
𝑖=1  = 𝑛 − 𝑚  items are censored. 

Lifetimes of these censored items are unknown. We 

consider this data as missing and used EM algorithm to 

compute MLE.  Louis [22] presented technique for 

computing observed Fisher information within EM 

algorithm framework. We used this technique to obtain 

observed Fisher information. Asymptotic normal 

distribution of MLE is used to construct CI for the 

parameter.  

Maximum likelihood method is used to estimate 

the parameter and reliability function of the Rayleigh 

distribution. This estimation procedure is discussed in 

Section 2. By using asymptotic normality of the MLE, 

we derived CI and coverage probability is computed in 

Section 3. To investigate performance of procedure, 

simulation study has been made in Section 4. Results of 

simulation study are discussed in Section 5. In Section 6 

proposed estimation methods are illustrated for real data 

set. Conclusions are presented in Section 7. 

 

2. Estimation 

 

Consider Rayleigh distribution with scale 

parameter λ. The PDF g y  and CDF G y  are 

respectively given by, 

g y =  
2y

λ
2 e− 

y
λ
 

2

      y ≥ 0, λ > 0 

G y =  1 − e− 
y
λ
 

2

   y ≥ 0, λ > 0 

Consider k unit parallel system with 

independent and identically distributed components. Let 

Y1, Y2, … , Yk be the lifetimes, where Yi is the lifetime 

of the i
th

 component with Yi ~ g y . Life time of the 

system X= max(Y1, Y2, …. , Yk). The CDF of X is 

F x =  1 − e− 
x

λ
 

2

 
k

                         x ≥ 0, λ > 0.    (1) 
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and the PDF of  X  is 

f x =
2kx

λ
2  e− 

x

λ
 

2

 1 − e− 
x

λ
 

2

 
k−1

x ≥ 0, λ > 0.      (2) 

Suppose ‘n’ systems of k-unit parallel systems 

are under test and we observe lifetimes of ‘m’ systems 

under progressive Type-II censoring. Let (R1, R2,.., Rm) 

is a progressive censoring scheme. The likelihood 

function for the observed data is  

L λ = C  f(x i 

m

i=1

)  1 − F x i   
Ri ,                             (3) 

               where C = n   n − j −  Ri

j

i=1

 

m−1

j=1

. 

L λ = C   
2kx i 

λ
2

m

i=1

 e
− 

x i 

λ
 

2

 

              ×  1 − e
− 

x i 

λ
 

2

 

k−1

 

              ×  1 −  1 − e
− 

x(i)

λ
 

2

 

k

 

Ri

.                             (4) 

 Suppose x(1), x(2),……., x(m) is the observed data 

and z1, z2, ……. , zm is the censored data. We note that zi 

is a vector with Ri elements. That is at the i
th

 failure, we 

remove Ri (i=1,2,…….,m) systems. Observations on the 

removed systems are not available. The censored data Z= 

(z1, z2, …. , zm) can  be considered as  missing data. X= 

(x(1), x(2), … , x(m)) is observed data. W=(X, Z) is the 

complete data set. Then complete log likelihood function 

is  

Lc = nlog 2 + nlog k − 2nlog λ  

              +  log xi  

m

i=1

−
1

λ
2  xi

2

m

i=1

 

              + k − 1  log  1 − e− 
xi
λ
 

2

 

m

i=1

 

             +   log zij 

Ri

j=1

m

i=1

−
1

λ
2   zij

2

Ri

j=1

m

i=1

 

               + k − 1   log  1 − e
− 

zij

λ
 

2

 

Ri

j=1

m

i=1

.                (5) 

               
In order to obtain MLE of λ, we use EM 

algorithm due to Dempster et al. [17]. For the E step in 

EM algorithm we take Expectation of  Zij. The derivative 

of Lc with respect to λ is taken for the M step, where 

dLc

dλ
= −

2n

λ
+

2

λ
3  xi

2

m

i=1

−
2 k − 1 

λ
3  

xi
2e− 

xi
λ
 

2

1 − e− 
xi
λ
 

2

m

i=1

 

 

               +
2

λ
3  Ri

m

i=1

a xi , k, λ
0  

              −
2 k − 1 

λ
3  Ri

m

i=1

b xi , k, λ
0 .                           6  

where a xi , k, λ
0 = E zij

2  zij > xi  

              =  z2

∞

xi

 

2kz

λ
2  e− 

z
λ
 

2

 1 − e− 
z
λ
 

2

 
k−1

1 −  1 − e− 
xi
λ

 
2

 

k
 dz . 

and b xi , k, λ
0 = E  

zij
2e

− 
zij

λ
 

2

1 − e
− 

zij

λ
 

2   zij > xi  

                                  

               =  
z2e− 

z
λ
 

2

1 − e− 
z
λ
 

2

∞

xi

 

2kz

λ
2  e− 

z
λ
 

2

 1 − e− 
z
λ
 

2

 
k−1

1 −  1 − e− 
xi
λ
 

2

 

k
 dz. 

We have to solve equation 
dLc

dλ
= 0 to obtain λ

1 

as the solution. But this equation does not have solution 

in the closed form. Therefore we used Newton-Raphson 

method and compute λ
1
. By using λ

1
, we 

computed  a xi , k, λ
1  and b xi , k, λ1 . This ends the M 

step. We continue this procedure until convergence took 

place.  

In Newton Raphson-method, we need to choose 

initial value of λ. We used least square estimate.  Ng [7] 

discussed estimation of model parameters of modified 

Weibull distribution based on progressively Type-II 

censored data where the empirical distribution function is 

computed as (see Meeker and Escober [23]) 

F  x i  = 1 −   (1 − p j

i

j=1

). 

with  

p j =
1

n −  Rk−1 − j + 1
j

k=2

 ,       for j = 1,2, … … , m. 

The estimate of the parameters can be obtained by least 

square fit of simple linear regression. 

yi=βx(i)       with   β = -1/λ. 

  yi = ln  1 −
F 

1
k  x i−1  +F 

1
k  x i  

2
 ,      for i=1,2,…..,m. 

 F  x 0  = 0. 

The least square estimates of λ is given by 
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λ = −
 x(i)

2m
i=1

 x(i)yi
m
i=1

.                                          (7) 

We used 𝜆  as an initial value of λ in Newton-

Raphson method. Reliability function at time t is  

R t = P X > 𝑡 = 1 − F t . 

R t = 1 −  1 − e− 
t
λ
 

2

 

k

        t ≥ 0, λ > 0. 

 

The Maximum likelihood estimate of R(t) is  

R t  = 1 −  1 − e
− 

t

λ 
 

2

 

k

       t ≥ 0, λ > 0. 

We compute observed Fisher information using 

the idea of missing information principle of Louis [22].    

 

The observed information  

      = complete information – missing information 

 

Ix(λ) = Iw(λ) – Iw|x(λ),                                           (8) 

where, 

Complete information =  Iw λ = −E  
d2L

dλ
2 ,     

where, L is the log likelihood function of all n 

observations.   

 

Now, 

L =  nlog 2 + nlog k  

     −2nlog λ +  log xi  

n

i=1

−
1

λ
2  xi

2

n

i=1

 

      + k − 1  log  1 − e− 
xi
λ
 

2

 .

n

i=1

                               

and 

dL

dλ
= −

2n

λ
+

2

λ
3  xi

2

n

i=1

−
2 k − 1 

λ
3  

xi
2e− 

xi
λ
 

2

1 − e− 
xi
λ

 
2

n

i=1

 . 

 
d2L

dλ
2  =

2n

λ
2 −

6

λ
4   xi

2

n

i=1

−
4 k − 1 

λ
6  

xi
4e− 

xi
λ
 

2

 1 − e− 
xi
λ
 

2

 

2

n

i=1

 

          +
6 k − 1 

λ
4  

xi
2e− 

xi
λ

 
2

1 − e− 
xi
λ

 
2

n

i=1

. 

 

Complete information is given by,  

Iw λ = −
2n

λ
2 + 

6

λ
4   E xi

2 

n

i=1

 

            + 
4 k − 1 

λ
6  E

 
 
 
 
 

xi
4e− 

xi
λ
 

2

 1 − e− 
xi
λ
 

2

 

2

 
 
 
 
 n

i=1

 

           −
6 k − 1 

λ
4  E  

xi
2e− 

xi
λ

 
2

1 − e− 
xi
λ
 

2 

n

i=1

 .                           (9) 

 

Missing information is given by  

        IW |X λ =  Ri

m

i=1

IW|X
 i  λ  

                       = −   EZ|X  
d2log  f Zij  Xi , λ  

dλ
2  .

Ri

j=1

m

i=1

        (10) 

Consider  

    fz|X Zij  Xi , λ =
f zij ; λ 

1 − F xi; λ 
 

                          =

2kzij

λ
2  e

− 
zij

λ
 

2

 1 − e
− 

zij

λ
 

2

 

k−1

1 −  1 − e− 
xi
λ
 

2

 

k
.      

Let,  

log f = log  fz|X Zij  Xi , λ  .   

 

Therefore,  

logf = log 2 + log k + log zij − 2 log λ −  
zij

λ
 

2

  

  + k − 1 log  1 − e
− 

zij

λ
 

2

 − log  1 −  1 − e− 
xi
λ
 

2

 
k

 . 

dlogf

dλ
= −

2

λ
+ 

2zij
2

λ
3 −  

2 k − 1 zij
2e

− 
zij

λ
 

2

λ
3  1 − e

− 
zij

λ
 

2

 

−
2kxi

2e− 
xi
λ
 

2

 1 − e− 
xi
λ

 
2

 

k−1

λ
3  1 −  1 − e− 

xi
λ

 
2

 

k

 

. 

      and  

d2logf

dλ
2  =

2

λ
2 −  

6zij
2

λ
4 −  

4 k − 1 zij
4e

− 
zij

λ
 

2

λ
6  1 − e

− 
zij

λ
 

2

 

2  

             + 
6 k − 1 zij

2e
− 

zij

λ
 

2

λ
4  1 − e

− 
zij

λ
 

2

 

 

            −
4kxi

4e− 
xi
λ
 

2

 1 − e− 
xi
λ
 

2

 

k−2

 1 − ke− 
xi
λ

 
2

 

λ
6  1 −  1 − e− 

xi
λ

 
2

 

k
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          +
4k2xi

4e−2 
xi
λ

 
2

 1 − e− 
xi
λ

 
2

 

2(k−1)

λ
6  1 −  1 − e− 

xi
λ
 

2

 

k

 

2  

          +
6kxi

2λ
2e− 

xi
λ
 

2

 1 − e− 
xi
λ
 

2

 

k−1

λ
6  1 −  1 − e− 

xi
λ
 

2

 

k

 

.                     

Hence Missing information is  

IW |X λ =  Ri

m

i=1

IW |X
 i  λ  

               = −  EZ|X  
d2log  f Zij  Xi , λ  

dλ
2  

Ri

j=1

m

i=1

,      

              = −
2 n − m 

λ
2 +

6

λ
4   E zij

2 

Ri

j=1

m

i=1

 

                   +
4 k –  1 

λ
6   E

 
 
 
 
 
 

zij
4e

− 
zij

λ
 

2

 1 − e
− 

zij

λ
 

2

 

2

 
 
 
 
 
 Ri

j=1

m

i=1

                

                    −
6 k– 1 

λ
4   E  

zij
2e

− 
zij

λ
 

2

1 − e
− 

zij

λ
 

2 

Ri

j=1

m

i=1

 

         +
4k

λ
6   

xi
4e− 

xi
λ

 
2

 1 −  e− 
xi
λ
 

2

 

k−2

 1 −  ke− 
xi
λ

 
2

 

1 −  1 − e− 
xi
λ

 
2

 

k

Ri

j=1

m

i=1

  

          −
4k2

λ
6   

xi
4e−2 

xi
λ
 

2

 1 − e− 
xi
λ
 

2

 

2 k−1 

 1 −  1 − e− 
xi
λ
 

2

 

k

 

2

Ri

j=1

m

i=1

 

          −
6k

λ
4   

xi
2e− 

xi
λ
 

2

 1 − e− 
xi
λ
 

2

 

k−1

 1 −  1 − e− 
xi
λ
 

2

 

k

 

Ri

j=1

m

i=1

 .                   (11) 

             

Using expressions in equations (10) and (11), we 

obtained Fisher information. 

 

3. Confidence Intervals 

 

Using property of asymptotic normality of MLE 

we construct CI for λ. Let 𝜆 𝑛  is the MLE of λ and 

σ 2 λ n =
1

I λ n  
 is the estimated variance of  λ n . 

Therefore, 100(1-α)% asymptotic CI for λ is given by 

 λ n − τα/2 σ 2 λ n  ,    λ n + τα/2 σ 2 λ n   ,            (12) 

where 𝜏𝛼/2 is the upper 100(α/2)
th

 percentile of 

standard normal distribution. 

 Meeker and Escober [23] reported that the 

asymptotic CI for λ based on ln(λ n) has better coverage 

probability. An approximate 100(1-α)% CI for ln(λ) is  

 

 
ln λ n − τα

2
 σ 2 ln λ n   ,   

ln(λ n) + τα/2 σ 2 ln(λ n)  
 

 ,                               (13) 

where σ 2 ln λ n   is the estimated variance of 

ln λ n which is approximately  obtained  by 

 σ 2 ln λ n  ≈
σ 2 λ n  

λ n
2    Hence,  an  approximate  100(1-

α)% CI for λ is 

 

 
 

λ ne
 − 

τα/2 σ 2 λ n    

λ n
 

,   λ n e
 

τα/2 σ 2 λ n    

λ n
 

 

 
 

.       (14) 

4. Simulation Study  

A simulation study is carried out to study the 

performance of MLE by considering bias and MSE for 

various progressively Type-II censoring scheme. 

Approximate CIs based on MLE and log-transformed 

MLE are compared through their coverage probability. 

Balkrishnan and Sandhu [24] presented algorithm for 

sample generation from progressively Type-II censored 

scheme. Using this algorithm, we generate samples from 

the distribution of a k-unit parallel system with Rayleigh 

distribution as the component life distribution. 

Algorithm – 

1. Generate i.i.d. observations (W1, W2, ……, Wm) from 

U(0, 1). 

2. For (R1, R2, …. , Rm) censoring scheme, set       Ei= 1/ 

(i + Rm+Rm-1+…. + Rm-i+1)  for i=1,2,….,m. 

3. Set Vi= Wi
Ei

 for i=1,2, ….. , m.  

4. Set  Ui= 1–  Vm Vm-1 ….. Vm-i+1) for i=1,2, …. , m. 

Then (U1, U2, …… , Um) is the progressively Type-II 

censored sample from U(0,1). 

5. For given values of the parameter λ, set 

𝑥 𝑖 =   −𝜆2  log 1 − (Ui)
1/k  

1/2
, for i=1, …, m.  (15) 

Then (x(1), x(2), …… , x(m)) is the required 

progressively Type-II censored sample from the 
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distribution of a k-unit parallel system with Rayleigh 

distribution as the component life distribution. For 

simulation study we consider 30 different progressively 

Type-II censored schemes as mentioned in Table I. 

Table 1.

Progressively Type-II censored schemes used for 

simulation study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 1, scheme (a, b) stands for R1= a and 

R2=b. Similar meaning holds for schemes described 

through completely specified vector, while  scheme (10, 

4*0) means R1=10 and rest four Ri’s are zero. i.e. 

R2=R3=R4=R5=0. 

Simulation was carried out for 3-unit parallel 

system and 5-unit parallel system (i.e. k=3, k=5) with 

λ=1. EM algorithm and Newton-Raphson method are 

used to compute MLE. For each particular progressive 

censoring scheme, 10,000 sets of observations were 

generated. The bias, the MSE and the coverage 

probability for the corresponding approximate CIs for λ 

are displayed in the Tables 2 and 3 for k=3 and k=5 

respectively.Further, reliability estimate for different 

time period t= 1 given in Tables 4 and 5 for k=3 and k=5 

respectively.  

Table 2. 

Bias, MSE and Coverage Probability for k=3 and λ=1 

 

 

From Table II and III we observe the following for the 

MLE of the scale parameter. 

 The bias and MSE of the MLE decrease with 

increase in sample size n as well as with increase in 

the effective sample size m. 

 The bias and MSE of the MLE decrease as k (no. of 

units in parallel system) increases. 

n m Scheme 

no. 

Scheme 

5 2 [1] (3,0) 

  [2] (0,3) 

  [3] (1,2) 

  [4] (2,1) 

15 5 [5] (10, 4*0) 

  [6] (4*0, 10) 

  [7] (2,2,2,2,2) 

15 10 [8] (5,9*0) 

  [9] (9*0,5) 

  [10] (3,2, 8*0) 

20 10 [11] (10,9*0) 

  [12] (9*0,10) 

25 10 [13] (15,9*0) 

  [14] (9*0,15) 

  [15] (5,5,5,7*0) 

25 15 [16] (10,14*0) 

  [17] (14*0,10) 

30 10 [18] (20, 9*0) 

  [19] (9*0,20) 

30 15 [20] (15, 14*0) 

  [21] (14*0,15) 

  [22] (5,5,5,12*0) 

30 20 [23] (10, 19*0) 

  [24] (19*0,10) 

  [25] (0,5,5,17*0) 

50 20 [26] (30,19*0) 

  [27] (19*0,30) 

50 35 [28] (15,34*0) 

  [29] (34*0,15) 

  [30] (5,5,5,32*0) 

Schem

e 

No. 

Bias MSE Confidence 

level (MLE) 

Confidence 

level (log 

MLE) 

90% 95% 90% 95% 

[1] -0.0195  0.0406 0.8653 0.9075 0.8806 0.9323 

[2] -0.0196  0.0351 0.8683 0.9118 0.8865 0.9376 

[3] -0.0210  0.0359 0.8675 0.9080 0.8831 0.9335 

[4] -0.0222  0.0377 0.8651 0.9092 0.8832 0.9350 

[5] -0.0082 0.0174 0.8861 0.9327 0.8919 0.9432 

[6] -0.0079  0.0133 0.8829 0.9324 0.8893 0.9414 

[7] -0.0083  0.0143 0.8847 0.9297 0.8919 0.9414 

[8] -0.00274  0.0096 0.8951 0.9425 0.8961 0.9482 

[9] -0.0023  0.0082 0.8945 0.9421 0.8944 0.9497 

[10] -0.0036  0.0096 0.8929 0.9416 0.8966 0.9457 

[11] -0.0039  0.0093 0.8927 0.9422 0.8977 0.9513 

[12] -0.0027  0.0076 0.8908 0.9407 0.8949 0.9462 

[13] -0.0051  0.0093 0.8897 0.9408 0.8959 0.9455 

[14] -0.0035  0.0067 0.8990 0.9460 0.9052 0.9505 

[15] -0.0037  0.0087 0.8945 0.9412 0.8990 0.9464 

[16] -0.0024  0.0063 0.9017 0.9456 0.9025 0.9515 

[17] -0.00157  0.0053 0.8943 0.9430 0.8963 0.9471 

[18] -0.0038  0.0091 0.8927 0.9431 0.8990 0.9492 

[19] -0.0045  0.0066 0.8919 0.9437 0.8977 0.9453 

[20] -0.00314  0.0064 0.8952 0.9433 0.8963 0.9468 

[21] -0.0039  0.0048 0.9022 0.9496 0.9039 0.9534 

[22] -0.0031  0.0061 0.8952 0.9425 0.8981 0.9471 

[23] -0.0018  0.0049 0.8939 0.9423 0.8951 0.9457 

[24] -0.00096  0.0041 0.8988 0.9463 0.9008 0.9490 

[25] -0.0016  0.0047 0.8985 0.9451 0.9026 0.9482 

[26] -0.0013  0.0048 0.8960 0.9451 0.8966 0.9489 

[27] -0.0016  0.0033 0.8981 0.9449 0.8999 0.9498 

[28] -0.00001 0.0028 0.9002 0.9498 0.9021 0.9509 

[29] -0.00034  0.0024 0.8971 0.9475 0.8961 0.9485 

[30] -0.0004  0.0027 0.9022 0.9525 0.9019 0.9537 
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Table 3. 

Bias, MSE and Coverage Probability for k=5 and λ=1 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 

Bias, MSE and Coverage Probability of reliability 

estimate for k=3, t=1 and λ=1, R(t)=0.7474 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 

No. 

Bias MSE Confidence level 

(MLE) 

Confidence level 

(log MLE) 

90% 95% 90% 95% 

[1] -0.0160  0.0258 0.8733 0.9171 0.8831 0.9362 

[2] -0.0091  0.0217 0.8807 0.9290 0.8909 0.9407 

[3] -0.0122  0.0224 0.8788 0.9248 0.8879 0.9403 

[4] -0.0113  0.0237 0.8792 0.9256 0.8917 0.9367 

[5] -0.0046  0.0115 0.8879 0.9397 0.8941 0.9449 

[6] -0.0042  0.0078 0.8925 0.9418 0.8969 0.9482 

[7] -0.0044  0.0087 0.8918 0.9412 0.8932 0.9458 

[8] 0.0009 0.0065 0.8985 0.9472 0.9002 0.9492 

[9] -0.0014  0.0053 0.8997 0.9460 0.8992 0.9492 

[10] 0.00014  0.0064 0.8958 0.9442 0.8957 0.9475 

[11] -0.0019  0.0063 0.8962 0.9458 0.8978 0.9479 

[12] -0.0023 0.0046 0.8970 0.9450 0.8979 0.9477 

[13] -0.0017  0.0061 0.8971 0.9473 0.8991 0.9495 

[14] -0.0026  0.0042 0.8977 0.9456 0.8994 0.9504 

[15] -0.0017  0.0055 0.9009 0.9463 0.9006 0.9502 

[16] -0.0005  0.0043 0.8993 0.9465 0.8998 0.9491 

[17] -0.0007  0.0034 0.8958 0.9481 0.8978 0.9481 

[18] -0.0016  0.0061 0.8963 0.9438 0.8965 0.9490 

[19] -0.0016  0.0039 0.8944 0.9452 0.8969 0.9454 

[20] -0.0016  0.0042 0.9013 0.9490 0.9029 0.9507 

[21] -0.0013  0.0031 0.8962 0.9461 0.8965 0.9484 

[22] -0.0018  0.0040 0.8970 0.9440 0.8997 0.9478 

[23] -0.0001  0.0033 0.8968 0.9464 0.8978 0.9484 

[24] 0.0006  0.0027 0.9026 0.9502 0.9045 0.9512 

[25] -0.00002  0.0031 0.9005 0.9524 0.9020 0.9529 

[26] -0.0014  0.0032 0.8973 0.9435 0.8958 0.9446 

[27] -0.0011  0.0021 0.8971 0.9448 0.8968 0.9460 

[28] -0.0008  0.0019 0.8980 0.9499 0.8989 0.9500 

[29] 0.0004  0.0015 0.9047 0.9488 0.9032 0.9497 

[30] -0.0003  0.0019 0.9004 0.9463 0.9009 0.9489 

Scheme 

No. 

Bias MSE Confidence level (MLE) 

90% 95% 

[1] -0.0648  0.0427 0.8258 0.8716 

[2] -0.0627  0.0374 0.8424 0.8867 

[3] -0.0620  0.0378 0.8390 0.8881 

[4] -0.0662  0.0395 0.8414 0.8880 

[5] -0.0302  0.0164 0.8702 0.9193 

[6] -0.0265  0.0125 0.8774 0.9299 

[7] -0.0267  0.0132 0.8780 0.9246 

[8] -0.0166  0.0085 0.8856 0.9342 

[9] -0.0143 0.0071 0.8878 0.9356 

[10] -0.0157 0.0083 0.8811 0.9310 

[11] -0.0174  0.0082 0.8867 0.9360 

[12] -0.0146 0.0066 0.8820 0.9335 

[13] -0.0168  0.0082 0.8819 0.9323 

[14] -0.0141  0.0060 0.8853 0.9356 

[15] -0.0170 0.0078 0.8872 0.9336 

[16] -0.0107  0.0054 0.8892 0.9361 

[17] -0.0095  0.0043 0.8937 0.9421 

[18] -0.0155  0.0077 0.8918 0.9422 

[19] -0.0116  0.0055 0.8873 0.9384 

[20] -0.0113  0.0055 0.8869 0.9348 

[21] -0.0084  0.0040 0.8922 0.9403 

[22] -0.0104  0.0051 0.8916 0.9407 

[23] -0.0086  0.0041 0.8868 0.9412 

[24] -0.0064  0.0034 0.8884 0.9386 

[25] -0.0084  0.0039 0.8901 0.9415 

[26] -0.0073 0.0039 0.8890 0.9408 

[27] -0.0058  0.0028 0.8929 0.9448 

[28] -0.0049  0.0022 0.8984 0.9472 

[29] -0.0040  0.0019 0.8964 0.9465 

[30] -0.0044  0.0022 0.8986 0.9453 
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Table 5. Bias, MSE and Coverage Probability of 

reliability estimate for k=5, t=1 and λ=1, R(t)=0.8991 

 

 

6. Results and discussion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The bias and MSE of the MLE decrease with 

increase in sample size ‘n’ as well as with increase in 

effective sample size ‘m’. The bias and MSE of the MLE 

decrease as k (no. of units in parallel system) increases. 

The MSE of the MLE is relatively small for conventional 

Type-II censoring scheme as compared with progressive 

Type-II censoring scheme. There is negligible difference 

between bias in case of conventional Type-II censoring 

scheme and progressive Type-II censoring scheme. 

Coverage probability in case of progressive Type-II 

censoring scheme are better than confidence levels in case 

of conventional Type-II censoring scheme. Same trend is 

observed in confidence levels for the log-transformed 

MLE. Coverage probability for k=5 is better than 

coverage probability for k=3 in case of small sample size. 

Same trend is observed in coverage probability for the 

log-transformed MLE. There is negligible difference in 

coverage probability for different k for large sample size 

in both MLE and log-transformed MLE case. Coverage 

probability using log-transformed MLE are close to 

nominal levels as compared to the coverage probability of  

MLE for small size, while for large sample size both are 

similar. 

 The bias and MSE of the MLE of Reliability 

decrease with increase in sample size ‘n’ as well as with 

increase in the effective sample size ‘m’. The bias and 

MSE of the MLE of Reliability decrease as k (no. of units 

in parallel system) increases. There is negligible 

difference between the bias and MSE of the MLE of 

Reliability  in case of conventional Type-II censoring 

scheme and progressive Type-II censoring scheme. For 

small sample size, coverage probability in case of 

conventional Type-II censoring are better than coverage 

probability in case of progressive Type-II censoring, 

whereas for large sample size coverage probability in case 

of   progressive Type-II censoring are better. 

Scheme 

No. 

Bias MSE Confidence level 

(MLE) 

90% 95% 

[1] -0.0512  0.0203 0.8512 0.8869 

[2] -0.0455  0.0169 0.8506 0.8911 

[3] -0.0447  0.0168 0.8550 0.8920 

[4] -0.0471  0.0185 0.8511 0.8920 

[5] -0.0226  0.0062 0.8791 0.9179 

[6] -0.0164  0.0040 0.8852 0.9279 

[7] -0.0169  0.0045 0.8826 0.9256 

[8] -0.0113  0.0029 0.8840 0.9260 

[9] -0.0095  0.0023 0.8917 0.9341 

[10] -0.0124  0.0031 0.8800 0.9239 

[11] -0.0118  0.0028 0.8878 0.9287 

[12] -0.0082  0.0019 0.8895 0.9318 

[13] -0.0107  0.0028 0.8782 0.9237 

[14] -0.0086  0.0019 0.8870 0.9329 

[15] -0.0107  0.0025 0.8840 0.9281 

[16] -0.0078  0.0017 0.8933 0.9346 

[17] -0.0063  0.0013 0.8925 0.9366 

[18] -0.0112  0.0027 0.8936 0.9341 

[19] -0.0073  0.0016 0.8940 0.9370 

[20] -0.0072  0.0017 0.8894 0.9333 

[21] -0.0058  0.0013 0.8939 0.9380 

[22] -0.0080  0.0017 0.8900 0.9365 

[23] -0.0061  0.0013 0.8936 0.9399 

[24] -0.0047  0.0011 0.8875 0.9383 

[25] -0.0060  0.0013 0.8939 0.9404 

[26] -0.0056  0.0012 0.8939 0.9369 

[27] -0.0043  0.0008 0.8976 0.9457 

[28] -0.0031  0.0007 0.8970 0.9424 

[29] -0.0028 0.0006 0.8914 0.9415 

[30] -0.0039  0.0007 0.8961 0.9444 
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6. Real Life Data 
 

Consider the following data which represent the 

number of revolutions to failure (in hundreds of millions) 

for each of 23 ball bearings given by Lieblein and Zelen 

[25] (also given by Lawless [26]). 

0.1788, 0.2892, 0.33, 0.4152, 0.4212, 0.4560, 0.4840, 

0.5184, 0.5196, 0.5412, 0.5556, 0.6780, 0.6864, 0.6864, 

0.6888, 0.8412, 0.9312, 0.9864, 105.12, 105.84, 127.92, 

128.04, 173.40 

According to Raqab and Madi [27], scale 

parameter Rayleigh distribution satisfactory fit to this 

data. We consider this data as outcome for life time of two 

unit parallel systems and three unit parallel systems. 

Reliability estimate for k=2, 3 and different time periods 

(t=0.5, 1, 1.5, 2) is given in Tables 6. 

 

 
Table 6. Reliability Estimate for k=2, 3 

 
k n m Scheme MLE R(t)^ 

t=0.5 t=1 t=1.5 t=2 

2 11 7 (1,1,1,1,3*0) 0.6141 0.7651 0.1361 0.0051 0 

 (4,6*0) 0.7332 0.8617 0.2871 0.0302 0.0012 

 (6*0,4) 0.7155 0.8507 0.2635 0.0245 0.0008 

 (3*0,1,1,1,1) 0.7606 0.8769 0.3236 0.0405 0.0020 

11 (11*0) 0.7380 0.8645 0.2935 0.0319 0.0013 

3 7 4 (1,1,1,0) 0.7064 0.9388 0.3523 0.0327 0.0010 

 (3,3*0) 0.8906 0.9802 0.6321 0.1657 0.0192 

 (3*0,3) 0.7451 0.9523 0.418 0.0512 0.0022 

7 (7*0) 0.7894 0.9639 0.4898 0.0789 0.0049 

 
From Table 6 we observe the following. 

Reliability estimate increase with increase in 

effective sample size ‘m’. Reliability estimate increase as 

k (no. of units in parallel system) increases. Reliability 

estimate in case of progressive Type-II censoring scheme 

are better than reliability estimate in case of conventional 

Type-II censoring scheme. 

 
7. Conclusion  

 
The study reveals that for small sample size ‘n’ 

and the smallest effective sample size ‘m’, EM algorithm 

method works well. Overall both conventional Type-II 

censoring scheme and progressive Type-II censoring 

scheme give better results.  According to MSE, 

conventional Type-II censoring method are superior to the 

progressive Type-II censoring method, while CIs perform 

well in case of progressive Type-II censoring methods. In 

this study both conventional and progressive censoring 

methods give better performance. In many situations units 

are removed or lost from the experiment before the 

completion. For example individuals from clinical trial 

may drop from the experiment. In such situations we have 

no alternative but to use progressive censoring method 

and analyze the data accordingly.   
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