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Abstract -Reliability is one of the most important concepts in the 

electronics systems conclude the optimal design.Reliability can be 

defined as the probability that component parts of system will 

perform its intended functions under given circumstances, 

without failure at stated period of time. Redundancy represents 

the most common techniqueused to enhance the reliability.  It 

measures to extend a component or system’s life by reducing its 

potential failure modes. In this paper, two basic challenges are 

examined. The first of them is the selection of the best formula 

for reliability measure.The second challenge is to maintain the 

optimal number of redundancy in the selected configurations. In 

the presented simulation, a comparison is performed using series 

- parallel and parallel - series configurations. Typically, the 

failure of system is subject to be only by two modes of failures, 

which exemplifies the network system. 

Finally, the redundancy may increase or decrease the reliability 

of the system. For example, assume a network consisting of (n) 

relays in series has two different failure modes an open mode or 

closed mode, in addition to variant number of subsystems (m). 

We try to change number of subsystems (m) to find the optimum 

value (m*)at different relays of fixed (n) and the result was that 

the optimum value of m*shouldn't be the maximum and any 

increment of n will decrease the reliability. This analysis will be 

inspected for different configurations of two types of failure 

modes. 
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I. INTRODUCTION 

Due to rapid development of technologies in electronics, 

components and systems increasingly complex and reliability 

has been given more considerable attention by both 

researchers and practitioners. Generally, reliability is the study 

of how, why and when failures occur[1]. From the viewpoint 

of engineering, reliability engineering deals with measures to 

extend a component or system’s life by reducing its potential 

failure modes. Many systems use redundancy to achieve their 

intended reliability [2]. The reliability can be defined as the 

probability that a system, subsystem, component or part will 

perform its intended functions under defined conditions at a 

designated time for a specified operating period 

[3].Reliability, in the quantitative sense as used here, is 

defined above as a probability. For the present, it seems that 

quantitative treatment of reliability will involve probability 

and statistical inference. Reliability predictions may be 

performed for any of the following reasons:Potential technical 

contribution, financial implications, andCompulsory.Each of 

these could apply to the user of a system as well as to the 

supplier [4]. For example, he may decide to search for areas 

needing reliability improvement. However, the other reasons 

do occur. Financial implications arise in a fixed price or 

incentive contract which also has an associated reliability 

requirement and method of measurement. The compulsory 

reason may typically apply to a government agency because of 

policy and to a supplier because of contract requirements. The 

numerical reliability prediction number and its attendant 

measure of uncertainty are usually necessary in order to 

respond to any of the reasons performing a prediction which 

are noted above [5]. That is, response to such questions as 

"Can the mission be achieved?" or "What are the possibilities 

of making a profit?" or simply here is what the customer 

asked for. Searching for reliability improvements and probing 

around for weaknesses in the design and the operational 

procedure is the most technically appealing use. It is this use 

that often results in a reliability prediction going into more 

detail than it otherwise might. That is, comparative detailed 

values are sought rather than absolute gross values. Hopefully 

new alternatives will be opened up and the really bad choices 

can be eliminated. Literal optimization techniques, such as 

dynamic programming algorithms, offer the potential of 

improved allocation of overall reliability among the items 

comprising the system [6]. Of these uses, obtaining the 

prediction number and searching for improvements have seen 

more application than the other two. With the extensive 

experience accumulated with reliability prediction, it is now 

possible to make some intelligent judgments on accuracy even 

if only qualitative. When there is a fair amount of historical 

data and the equipment is not excessively complex or new, a 

crude rule-of-thumb for electronic equipment would beto 

expect the actual meantime between failures (MTBF) to be 

within the range of 50 to 200 percent of the predicted MTBF.  
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A component is subject to failure in either open or closed 

modes. Networks of relays, fuse systems for warheads, diode 

circuits, fluid flow valves, etc. are a few examples of such 

components. Generally, redundancy can be used to enhance 

the reliability of a system without any change in the reliability 

of the individual components that form the system. However, 

in a two-failure mode problem, redundancy may either 

increase or decrease the system’s reliability [7]. For example, 

a network consisting of n relays in series has the property that 

an open-circuit failure of any one of the relays would cause an 

open-mode failure of the system and a closed-mode failure of 

the system. (The designations “closed mode” and “short 

mode” both appear in this chapter and we will use the two 

terms interchangeably.) On the other hand, if the n relays were 

arranged in parallel, a closed-mode failure of any one relay 

would cause a system closed-mode failure, and an open-mode 

failure of all n relays would cause an open-mode failure of the 

system. Therefore, adding components in the system may 

decrease the system reliability [8]. Diodes and transistors also 

exhibit open-mode and short-mode failure behavior. For 

instance, in an electrical system having components connected 

in series, if a short circuit occurs in one of the components, 

then the short circuited component will not operate but will 

permit flow of current through the remaining components so 

that they continue to operate. However, an open-circuit failure 

of any of the components will cause an open-circuit failure of 

the system.  

System reliability where components have various failure 

modes is covered in reference [9]. Series–parallel and 

parallel–series systems have been studied in many references 

where the size of each subsystem was fixed, but the number of 

subsystems was varied to maximize reliability. Determining a 

value of k that maximizes the reliability of k-out-of-n systems 

is analyzed in reference. Reliability optimization of series, 

parallel, parallel–series, series–parallel, and k-out-of-n 

systems subject to two types of failure will be discussed next. 

In general, the formula for computing the reliability of a 

system subject to two kinds of failure is [10]:  

System reliability = Pr{system works in both modes} 

= Pr{system works in open mode} 

− Pr{system fails in closed mode} 

+ Pr{system fails in both modes} 

   (1.1) 

When the open- and closed-mode failure structures are dual of 

one another, i.e. Pr{system fails in both modes} = 0, then the 

system reliability given by Equation 1.1 becomes: 

System reliability = 1 –Pr{system fails in open mode} 

− Pr{system fails in closed mode}  (1.2) 

The next sections will give a brief introduction for several 

reliability configurations, Series, Parallel, Parallel-Series, 

Series-Parallel. 

 

 

 

 

II. RELIABILITY EVALUATION 

The reliability of the system is defined as theprobability of 

obtaining the correctly processedmessage at the output. To 

derive a generalexpression for the reliability of the system, we 

usean adapted form of the total probability theoremas 

translated into the language of reliability. 

Let A denote the event that a system performs as desired,let

iX and jX be the event that acomponent X (e.g. converter, 

monitor, or switch) is good or failed respectively. Then 

 

Pr {System works} 

= Pr {system works when unit X is good}* Pr {unit X is 

good}+ Pr {system works when unit X is failed}* Pr {unit 

X is failed}.      

  (2.1) 

 

The above equation provides a convenient wayof calculating 

the reliability of complex systems. In order for the system to 

operate when the firstconverter works and the first monitor 

fails, thefirst switch must work and the remaining system of 

size 1n  must work. The reliability of the system consisting 

of n non-identicalconverters can be easily obtained. 

III. REDUNDANCY OPTIMIZATION 

Assume the following notations 

qo1:Probability of component failure in open mode due to the 

1
st
 reason. 

qo2:Probability of component failure in open mode due to the 

2
nd

 reason. 

qs1: Probability of component failure in short mode due to the 

1
st
 reason 

qs2: Probability of component failure in short mode due to the 

2
nd

 reason. 

*  implies an optimal value. 

m: number of subsystems in a system (or subsystem size). 

n: number of components in each subsystem. 

ho1(m):  probability of system failure in open mode due to the 

1
st
 reason. 

ho2(m): probability of system failure in open mode due to the 

2
nd

 reason. 

hs1(m): probability of system failure in short mode due to the 

1
st
 reason. 

hs2(m): probability of system failure in short mode due to the 

2
nd

 reason. 

P(m): Average system profit. 

Β:conditional probability (given system failure) that the system is 

in open mode 

1−β: conditional probability (given system failure) that the system 

is in short mode 

c1, c3:  gain from system success in open, short mode 

c2, c4:  gain from system failure in open, short mode; c1> c2, 

c3> c4. 
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Assume the following assumptions 

1. The system consists of (m) subsystems, each subsystem 

contains (n) statistically independent and identical 

distribution (i.i.d.) components (in other words, the 

failure of one component is no way affects the probability 

of failure of the other components). 

2. A component is either good, failed open, or failed short. 

3. The system has two failure modes: 

 An open failure of at least one component in each 

subsystem causes the system to have an open failure 

(1
st
 or 2

nd
 reason). 

 A short failure of all components in any subsystem 

causes the system to have a short failure (1
st
 or 2

nd
 

reason).   

4. The unconditional probabilities of component failure in 

open and short modes are known, and constrained (i.e. 

qo1, qo2 ,qs1, and qs2> 0; qo1 + qo2 + qs1 + qs2< 1). 

5. Costs of system failure in open and short modes are 

known and can be different. 

6. The system can be failed open when all components in 

any subsystem fail open. 

 The probability of system failure in 1
st
 open mode 

ho1(m) = 1 −  (1-qo1
 n

)
m

 (2.2) 

 The probability of system failure in 2
nd

 open mode 

ho2(m) = 1 −  (1-qo2
 n

)
m

  (2.3) 

7. The system can be failed short if at least one components 

in each subsystem fails short. 

 The probability of system failure in 1
st
 short mode 

hs1(m) = [1 −  (1-qs1)
 n

)]
m

  (2.4) 

 The probability of system failure in 2
nd

 short mode 

hs2(m) = [1 −  (1-qs2)
 n

)]
m

  (2.5) 

 
A. Series - Parallel Redundant Systems Analysis 

In this section, we analyze the series-parallel system in which 

the components are arranged so that there are (m) subsystems 

operating in series. Each subsystem consists of (n) identical 

components in parallel. Two reasons of failure are assumed. 

 

In order to maximizing the average system profit, we settle the 

following equations. 

The average system profit is given by: 

P(m)=β [c1(1-Σ hoi(m) ) + c2(1-Σ hoi(m) )] +  

(1-β) [c3(1-Σ hsi(m) ) + c4(1-Σ hsi(m) )] 

   i=1 .. 2  (2.6) 

P(m)=β [c1-( c1 - c2 )(ho1(m) + ho2(m) )] +   

 (1-β) [c3-( c3 - c4)(hs1(m)+ hs2(m) )] (2.7) 

P(m) = -(1-β)(c3-c4) [(hs1(m) + hs2(m) ) +  

 a (ho1(m)+ ho2(m) )]+b(2.8) 

 

 

 

 

 

 

 

 

Where 

a=β( c1 - c2 )/[(1-β)( c3 - c4)] 

b=β c1 + (1-β)c3 

ΔP =P(m+1) – P(m), 

It will conclude to be: 

hs1(m+1)- hs1(m)= -(1-qs1)
n
[1 –(1-qs1)

n
]

m
 (2.9) 

Similarly: 

hs2(m+1)- hs2(m)= -(1-qs2)
n
[1 –(1-qs2)

n
]

m
 (2.10) 

Also, 

ho1(m+1)- ho1 (m)= (1-(qo1)
 n

)
 m

 [1 –1+(qo1)
n
] 

ho1(m+1)- ho1 (m)= (qo1)
 n

[1 –(qo1)
n
]

 m
 (2.11) 

ho2(m+1)- ho2 (m)= (qo2)
 n

[1 –(qo2)
n
]

 m
 (2.12) 

ΔP= -(1-β)(c3- c4){-(1-(1 – qs1)
n
)

 m
(1 – qs1)

n
- 

(1-(1 – qs2)
n
)

 m
(1 – qs2)

n
+a[(qo1)

 n
(1-(qo1)

 n
)

 m
+      

(qo2)
n
(1-(qo2)

 n
)

 m
} (2.13) 

Let  

ΔP=0 

a[(qo1)
 n

(1-(qo1)
 n

)
 m

+(qo2)
 n

(1-(qo2)
 n

)
 m

]= 

 (1 – qs1)
n
 (1-(1 – qs1)

n
)

 m
 +(1 – qs2)

n
(1-(1 – qs2)

n
)

 m
 

     (2.14) 

1) First Case: 

For a < 1: 

Let  β=0.4 c1=500 c2=50c3=400  

c4=80 qs2 =0.01  qo2 =0.01 

 a=15/16 

The next figures illustrate the variation of m* versus qo1 with 

different qs1. 

 
Figure 1:  m* versus qo1 at n=5 for qs1=0.025, 0.4, and 0.055 

(Series Parallel Configuration for a <1) 

 

Figure 1 shows that m* increases with larger qs1 at n=5 for 

qs1=0.025, 0.04, and 0.055. 

 In other words optimality can be reached with lower number 

of subsystems (m*), also m* decreases with qo1 

increase.Reaching better results can be attained by increasing 

n value but to a certain value then again the optimality is 

reached with large value of m*.  

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100971

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1312



 
Figure 2:  m* versus qo1 at n=12 for qs1=0.025, 0.4, and 0.055 

(Series Parallel Configuration for a<1) 

 

Figure 2illustrates the variation of m* withqo1 at n=12 for 

qs1=0.025, 0.04, and 0.055.Optimality can be reached with 

lower number of subsystems (m*), also m* decreases asqo1 

increases.Reaching better results can be attained by increasing 

n value but to a certain value then again the optimality is 

reached with large value of m*.  

2) Second Case: 

For a >1 : 

Let  β=0.6 c1=500 c2=50c3=400 c4=80

 qs2 =0.01qo2 =0.01a=135/64 

The next figures show the variation of optimal number of 

subsystem m* for different qs1 and qo1 at specific value of n. 

 
Figure 3: m* versus qo1 at n=5 for qs1=0.025, 0.4, and0.055 

(Series Parallel Configuration for a >1) 
 

 
Figure 4:  m* versus qo1 at n=12 for qs1=0.025, 0.4, and 0.055 

(Series Parallel Configuration for a >1) 

 

We can summarize the results as: 

1) m* is increasing asqs1increases. 

2) m* is decreasing asqo1 increases. 

3)  Case two (a>1) required higher m*. 

4) m* decreases with β. 

5) It can realized that m* increases with increasing the value of 

the subsystem size (n). 

 

B. Parallel – Series Redundant Systems Analysis:  

This system is considered to have components arranged so 

that there are m subsystems operating in parallel, each 

subsystem consists of (n) identical components in series. The 

system consists of components that can fail in two mutually 

exclusive ways. In this case, the following assumptions are 

considered: 

1. The system can be failed open when one component in any 

subsystem failed open. 

 The probability of system failure in 1
st
 open mode 

ho1(m) =( 1 −  (1-qo1)
 n

)
m

 (2.15) 

 The probability of system failure in 2
nd

 open mode 

ho2(m) =( 1 −  (1-qo2)
 n

)
m

 (2.16) 

2. The system can be failed short when all components in any 

subsystem are failed short. 

 The probability of system failure in 1
st
 short mode 

hs1(m) = 1 −  (1-(qs1)
 n

)
 m

 (2.17) 

 The probability of system failure in 2
nd

 short mode 

hs2(m) = 1 −  ((1-(qs2)
 n

)
 m

 (2.18) 

 

Similarly, from above sections, to maximizing the average 

system profit,it can prove that the equation which calculates 

the optimal number of subsystems that maximizes the average 

system profit: 

a[(1-qo1)
 n
(1-(1-qo1)

 n
)

 m
+(1-qo2)

 n
(1-(1-qo2)

 n
)

 m
]= 

  (qs1)
n
 (1 –( qs1)

n
)

 m
 +(qs2)

n
(1-(qs1)

n
)

 m
 (2.19) 

1) First Case: 

For a <1 : 

Let  β=0.4 c1=500             c2=50 

c3=400 c4=80 qs2 =0.01         qo2 =0.01 

 a=15/16 
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The next figures show the variation of optimal number of 

subsystem m* for different qs1 and qo1 at specific value of n 

 
Figure 5:  m* versus qo1 at n=5 for qs1=0.025, 0.4, and 0.055 

(Parallel Series Configuration for a <1) 

 
Figure 6:  m* versus qo1 at n=12 for qs1=0.025, 0.4, and 0.055 

(Parallel Series Configuration for a<1) 

From these figures, it can concluded that for a <1, m* is 

decreasing asqs1increases, also m* is increasing with higher 

values of qo1. 

2) Second Case: 

For a >1 : 

Let  β=0.6  c1=500  c2=50 

c3=400 c4=80  qs2 =0.01         qo2 =0.01 

 a=135/64 

The next figures show the variation of optimal number of 

subsystem m* for different qs1 and qo1 at specific value of n. 

 
Figure 7:  m* versus qo1 at n=5 for qs1=0.025, 0.4, and 0.055 

(Parallel Series Configuration for a>1) 

 
Figure 8:  m* versus qo1 at n=12 for qs1=0.025, 0.4, and 0.055 

(Parallel Series Configuration for a>1) 

We can summarize the results as: 

1) It can be concluded from the figures that for a < 1, m* is 

decreasing asqs1 increases. 

2) For a > 1, m* is increasing asqo1 increases. 

3) Case two (a>1) required higher m*. 

4) m* increases with β. 

 
IV. CONCLUSIONS 

There are many definitions to the Reliability of the system, 

still trying to quantify this expression. Redundancy doesn't 

increase the reliability in linear relation, i.e. increasing the 

number of components (n) or the subsystem (m), not always 

reach the maximum reliability. The optimal value, we try to 

achieve is the maximum reliability with minimum number of 

components. Redundancy has many shapes or arrangement 

(series, parallel, Series-Parallel, Parallel-Series, and k-out-of-

n). Every arrangement has different relation or variation for 

the optimal value m*. In Parallel-Series for a<1, m* is 

decreasing with qs1 whereas, Series-Parallel for a<1, m* is 

increasing with qs1. For a>1,m* is increasing with qo1 in 

Parallel-Series, and decreasing in Series-Parallel. 
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