Reliability Assessment of Solar Power System by Employing Algebra of Logics

Pankaj Singh 1, K. P. Yadav 2, Abhishek Srivastava 3
${ }^{1}$ Research Scholars, Department of Electronics Communication Engineering, NIMS University, Jaipur, Rajasthan
${ }^{2}$ Professor, Mangalmay Institute of Engineering and Technology, Greater Noida, India
${ }^{3}$ Professor, NIMS University, Jaipur, Rajasthan

Abstract

The author has been used algebra of logics for the formulation and solution of mathematical model of solar power system. Reliability of the whole system has been obtained. Reliability function for the system as a whole has been computed in two different cases e.g., when failures follow Weibull and exponential time distribution. An important reliability parameter, mean time to system failure (M.T.T.F.), has also been obtained to improve practical utility of the model. A numerical computation together with its graphical illustration has been mentioned in the end to highlight important results of the study.

Keyword- Reliability Assessment, Solar Power System, Algebra of Logics, Boolean Algebra etc.

I. InTRODUCTION

In this model, the author has considered a solar power system for its reliability analysis by using algebra of logics. System configuration of considered system has been shown in fig-1. In this system, there are two solar panels in standby redundancy. On failure of solar panel x_{1} we can follow online solar panel x_{2} with the help of perfect switching device x_{3}. These solar panels produce the solar energy and it can be saved in four batteries B_{1}, B_{2}, B_{3} and B_{4}. There are two automatic switching devices ASD_{1} and ASD_{2} to change the battery links. Batteries supply DC power to the sine-wave inverter x_{10},that converts this DC power into AC power. Finally, this AC power feed the connected electric equipments. The cables used to connect any two equipments are hundred percent reliable. Note that any one battery is sufficient to feed all the consumer requirements.

II. Assumptions

The following assumptions have been associated with this model:
(1) Initially, all the components are good and operable.
(2) Reliability of every component of the system is known in advance.
(3) Each component will remain either good or bad.
(4) Transaction of power from one component to any other is 100% reliable.
(5) Switching device used to online standby solar panel is perfect.
(6) Failures are statistically-independent.

SOLAR SYSTEM

ASD: Autom atic switching device; SP: Solar panel; B: Battery
Fig-1 (System Configuration)
III. Notations Used

Following notations have been used throughout this study:

x_{1}, x_{2}	States of solar panels.
x_{3}	State of switching device.
$x_{5}, x_{6}, x_{7}, x_{8}$	States of batteries.
x_{4}, x_{9}	States of automatic switching devices.
x_{10}	State of sine-wave inverter.
x_{i}	0 in bad state, 1 in good state.
\wedge / \vee	Conjunction/disjunction.
R_{S}	Reliability of whole system.
R_{i}	Reliability corresponding to system state x_{i}.
$R_{S W}(t) / R_{S E}(t)$	Reliability functions for whole system, in case failures follow weibull/exponential distribution.
M.T.T.F.	Mean time to failure.

$$
B_{8}=\left[\begin{array}{lll}
x_{2} & x_{3} & x_{8} \tag{11}
\end{array}\right]
$$

IV. Formulation of Mathematical Model

The possible minimal paths for successful operation of the system, in terms of logical matrix, can be expressed as:

$$
F\left(x_{1}, x_{2}--, x_{10}\right)=\left[\begin{array}{llllll}
x_{1} & x_{4} & x_{5} & x_{9} & x_{10} & \tag{1}\\
x_{1} & x_{4} & x_{6} & x_{9} & x_{10} & \\
x_{1} & x_{4} & x_{7} & x_{9} & x_{10} & \\
x_{1} & x_{4} & x_{8} & x_{9} & x_{10} & \\
x_{2} & x_{3} & x_{4} & x_{5} & x_{9} & x_{10} \\
x_{2} & x_{3} & x_{4} & x_{6} & x_{9} & x_{10} \\
x_{2} & x_{3} & x_{4} & x_{7} & x_{9} & x_{10} \\
x_{2} & x_{3} & x_{4} & x_{8} & x_{9} & x_{10}
\end{array}\right]
$$

V. Solution Of The Model

We can write the equation (1) again as :
$F\left(x_{1}, x_{2}--, x_{10}\right)=\left|x_{4} \quad x_{9} \quad x_{10} \wedge f\left(x_{1}, x_{2}--, x_{10}\right)\right|$
where,

$$
f\left(x_{1}, x_{2}--, x_{10}\right)=\left[\begin{array}{lll}
x_{1} & x_{5} & \tag{2}\\
x_{1} & x_{6} & \\
x_{1} & x_{7} & \\
x_{1} & x_{8} & \\
x_{2} & x_{3} & x_{5} \\
x_{2} & x_{3} & x_{6} \\
x_{2} & x_{3} & x_{7} \\
x_{2} & x_{3} & x_{8}
\end{array}\right]
$$

Substituting
$B_{1}=\left[\begin{array}{ll}x_{1} & x_{5}\end{array}\right]$
$B_{2}=\left[\begin{array}{ll}x_{1} & x_{6}\end{array}\right]$
$B_{3}=\left[\begin{array}{ll}x_{1} & x_{7}\end{array}\right]$
$B_{4}=\left[\begin{array}{ll}x_{1} & x_{8}\end{array}\right]$
$B_{5}=\left[\begin{array}{lll}x_{2} & x_{3} & x_{5}\end{array}\right]$
$B_{6}=\left[\begin{array}{lll}x_{2} & x_{3} & x_{6}\end{array}\right]$
$B_{7}=\left[\begin{array}{lll}x_{2} & x_{3} & x_{7}\end{array}\right]$

$$
f\left(x_{1}, x_{2}--, x_{10}\right)=\left[\begin{array}{ccccccc}
x_{1} & x_{5} & & & & & \tag{20}\\
x_{1} & x_{5}^{\prime} & x_{6} & & & & \\
x_{1} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7} & & & \\
x_{1} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7}^{\prime} & x_{8} & & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{5} & & & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{5}^{\prime} & x_{6} & & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7} & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7}^{\prime} & x_{8}
\end{array}\right]
$$

Using (20), equation (2) gives:

$$
F\left(x_{1}, x_{2}--, x_{10}\right)=\left[\begin{array}{lllllllll}
x_{1} & x_{4} & x_{5} & x_{9} & x_{10} & & & \tag{21}\\
x_{1} & x_{4} & x_{5}^{\prime} & x_{6} & x_{9} & x_{10} & & \\
x_{1} & x_{4} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7} & x_{9} & x_{10} & & \\
x_{1} & x_{4} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7}^{\prime} & x_{8} & x_{9} & x_{10} & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{4} & x_{5} & x_{9} & x_{10} & & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{4} & x_{5}^{\prime} & x_{6} & x_{9} & x_{10} & \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{4} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7} & x_{9} & x_{10} \\
x_{1}^{\prime} & x_{2} & x_{3} & x_{4} & x_{5}^{\prime} & x_{6}^{\prime} & x_{7}^{\prime} & x_{8} & x_{9}
\end{array} x_{10}\right]
$$

Since, R.H.S. of equation (21) is disjunction of pair-wise disjoint conjunctions, therefore, the reliability of whole solar system is given by:

$$
R_{S}=P_{r}\left\{F\left(x_{1}, x_{2}--, x_{10}\right)=1\right\}=
$$

$R_{4} R_{9} R_{10}\left[R_{1} R_{5}+Q_{5} R_{1} R_{6}+Q_{5} Q_{6} R_{1} R_{7}+Q_{5} Q_{6} Q_{7} R_{1} R_{8}+Q_{1} R_{2} R_{3} R_{5}\right.$

$$
\left.+Q_{1} Q_{5} R_{2} R_{3} R_{6}+Q_{1} Q_{5} Q_{6} R_{2} R_{3} R_{7}+Q_{1} Q_{5} Q_{6} Q_{7} R_{2} R_{3} R_{8}\right]
$$

where
$R_{i}=$ reliability of the component corresponding to system state x_{i}
and $Q_{i}=1-R_{i}$
Thus, we may write

$$
\begin{align*}
R_{5}= & R_{4} R_{9} R_{10}\left[R_{1} R_{5}+R_{1} R_{6}+R_{1} R_{7}+R_{1} R_{8}+R_{2} R_{3} R_{5}+R_{2} R_{3} R_{6}+R_{2} R_{3} R_{7}+R_{2} R_{3} R_{4}\right. \\
& +R_{1} R_{5} R_{6} R_{7}+R_{1} R_{5} R_{6} R_{8}+R_{1} R_{5} R_{7} R_{8}+R_{1} R_{6} R_{7} R_{8}+R_{1} R_{2} R_{3} R_{5} R_{6} \\
& +R_{1} R_{2} R_{3} R_{5} R_{7}+R_{1} R_{2} R_{3} R_{6} R_{7}+R_{2} R_{3} R_{5} R_{6} R_{7}+R_{1} R_{2} R_{3} R_{5} R_{8} \\
& +R_{1} R_{2} R_{3} R_{6} R_{8}+R_{1} R_{2} R_{3} R_{7} R_{8}+R_{2} R_{3} R_{5} R_{6} R_{8}+R_{2} R_{3} R_{5} R_{7} R_{8} \\
& +R_{2} R_{3} R_{6} R_{7} R_{8}+R_{1} R_{2} R_{3} R_{5} R_{6} R_{7} R_{8}-R_{1} R_{5} R_{6}-R_{1} R_{5} R_{7} \\
& -R_{1} R_{6} R_{7}-R_{1} R_{5} R_{8}-R_{1} R_{6} R_{8}-R_{1} R_{7} R_{8}-R_{1} R_{2} R_{3} R_{5}-R_{1} R_{2} R_{3} R_{6} \\
& -R_{2} R_{3} R_{5} R_{6}-R_{1} R_{2} R_{3} R_{7}-R_{2} R_{3} R_{5} R_{7}-R_{2} R_{3} R_{6} R_{7}-R_{1} R_{2} R_{3} R_{8} \\
& -R_{2} R_{3} R_{5} R_{8}-R_{2} R_{3} R_{6} R_{8}-R_{2} R_{3} R_{7} R_{8}-R_{1} R_{5} R_{6} R_{7} R_{8}-R_{1} R_{2} R_{3} R_{5} R_{6} R_{7} \\
& \left.-R_{1} R_{2} R_{3} R_{5} R_{6} R_{8}-R_{1} R_{2} R_{3} R_{5} R_{7} R_{8}-R_{1} R_{2} R_{3} R_{6} R_{7} R_{8}-R_{2} R_{3} R_{5} R_{6} R_{7} R_{8}\right] \tag{22}
\end{align*}
$$

VI. Some Particular Cases

CASE I: When each component has the reliability R :
In this case, the reliability of the whole system can be obtained from equation (22),

$$
\begin{equation*}
R_{S}=4 R^{5}-2 R^{6}-6 R^{7}+9 R^{8}-5 R^{9}+R^{10} \tag{23}
\end{equation*}
$$

CASE II: When failure rates follow weibull time distribution:
In this case, the reliability of the whole system is given by:
$\mathrm{R}_{\mathrm{SW}}(t)=\sum_{i=1}^{23} \exp \cdot\left\{-a_{i} t^{\alpha}\right\}-\sum_{j=1}^{22} \exp \cdot\left\{-b_{j} t^{\alpha}\right\}$
where α is a real positive parameter and
$a_{1}=c+\lambda_{1}+\lambda_{5}$
$a_{2}=c+\lambda_{1}+\lambda_{6}$
$a_{3}=c+\lambda_{1}+\lambda_{7}$
$a_{4}=c+\lambda_{1}+\lambda_{8}$
$a_{5}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}$
$a_{6}=c+\lambda_{2}+\lambda_{3}+\lambda_{6}$
$a_{7}=c+\lambda_{2}+\lambda_{3}+\lambda_{7}$
$a_{8}=c+\lambda_{2}+\lambda_{3}+\lambda_{8}$
$a_{9}=c+\lambda_{1}+\lambda_{5}+\lambda_{6}+\lambda_{7}$
$a_{10}=c+\lambda_{1}+\lambda_{5}+\lambda_{6}+\lambda_{8}$
$a_{11}=c+\lambda_{1}+\lambda_{5}+\lambda_{7}+\lambda_{8}$
$a_{12}=c+\lambda_{1}+\lambda_{6}+\lambda_{7}+\lambda_{8}$
$a_{13}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}$
$a_{14}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{7}$
$a_{15}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{6}+\lambda_{7}$
$a_{16}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{7}$
$a_{17}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{8}$
$a_{18}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{6}+\lambda_{8}$
$a_{19}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{7}+\lambda_{8}$
$a_{20}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{8}$
$a_{21}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{7}+\lambda_{8}$
$a_{22}=c+\lambda_{2}+\lambda_{3}+\lambda_{6}+\lambda_{7}+\lambda_{8}$
$a_{23}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{7}+\lambda_{8}$
$b_{1}=c+\lambda_{1}+\lambda_{5}+\lambda_{6}$
$b_{2}=c+\lambda_{1}+\lambda_{5}+\lambda_{7}$
$b_{3}=c+\lambda_{1}+\lambda_{6}+\lambda_{7}$
$b_{4}=c+\lambda_{1}+\lambda_{5}+\lambda_{8}$
$b_{5}=c+\lambda_{1}+\lambda_{6}+\lambda_{8}$
$b_{6}=c+\lambda_{1}+\lambda_{7}+\lambda_{8}$
$b_{7}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}$
$b_{8}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{6}$
$b_{9}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}$
$b_{10}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{7}$
$b_{11}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{7}$
$b_{12}=c+\lambda_{2}+\lambda_{3}+\lambda_{6}+\lambda_{7}$
$b_{13}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{8}$
$b_{14}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{8}$
$b_{15}=c+\lambda_{2}+\lambda_{3}+\lambda_{6}+\lambda_{8}$
$b_{16}=c+\lambda_{2}+\lambda_{3}+\lambda_{7}+\lambda_{8}$
$b_{17}=c+\lambda_{1}+\lambda_{5}+\lambda_{6}+\lambda_{7}+\lambda_{8}$
$b_{18}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{7}$
$b_{19}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{8}$
$b_{20}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{7}+\lambda_{8}$
$b_{21}=c+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{6}+\lambda_{7}+\lambda_{8}$
$b_{22}=c+\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{7}+\lambda_{8}$
and $\quad c=\lambda_{4}+\lambda_{9}+\lambda_{10}$
where λ_{i} is the failure rate of system state

CASE III: When failures follow exponential time distribution:
Exponential time distribution is the particular case of weibull time distribution for $\alpha=1$ and is very useful in numerous practical problems. Therefore the reliability function for the whole system at any time' t^{\prime} ', in this case, is given by:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SE}}(t)=\sum_{i=1}^{23} \exp \cdot\left\{-a_{i} t\right\}-\sum_{j=1}^{22} \exp \cdot\left\{-b_{j} t\right\} \tag{25}
\end{equation*}
$$

where $a_{i}^{\prime} s$ and $b_{j}^{\prime} s$ have been mentioned earlier.
Also, in this case, an important reliability parameter M.T.T.F , is given by

$$
\begin{array}{r}
\text { M.T.T.F. }=\int_{0}^{\infty} R_{S E}(t) d t \\
=\sum_{i=1}^{23} \frac{1}{a_{i}}-\sum_{j=1}^{22} \frac{1}{b_{j}} \tag{26}
\end{array}
$$

VII. Results and Conclusion

For a numerical computation, let us consider the values:
(i) $\lambda_{i}(i=1,2,--10)=\lambda=0.001, \mathrm{t}=0,1,2--\quad$ and $\alpha=2$. Using these values in equation (24), we compute the table-1. The corresponding graph has been shown in fig-2.
(ii) $\lambda_{i}(i=1,2,3--10)=\lambda=0.001$, and $\mathrm{t}=0,1,2--$.

Using these values in equation (25), we compute the table-1 and the corresponding graph has been shown in fig- 2 .
(iii) Putting
$\lambda_{i}(i=1,2,3--10)=\lambda=0.001,0.002--0.01 \quad$ in
equation (26), we compute table-2 and its graphical reorientation has been shown in fig-3.

Analysis of table -1 and fig-2 reveals that values of reliability function decreases catastrophically, in case, failures follow weibull time distribution but it decreases approximately in constant manner for exponential time distribution. Therefore, reliability function remains better when failures follow exponential time distribution.

A critical examination of table -2 and fig- 3 concludes that M.T.T.F. decreases rapidly for the lower values of failure rate λ but it decreases smoothly for higher values of λ.

TABLE-1

TABLE-1		
t	$\boldsymbol{R}_{S W}(t)$	$\boldsymbol{R}_{S E}(t)$
0	1	1
1	0.997003	0.997003
2	0.988040	0.994010
3	0.973206	0.991023
4	0.952657	0.988040
5	0.926626	0.985063
6	0.895421	0.982091
7	0.859436	0.979124
8	0.819147	0.976162
9	0.775117	0.973206
10	0.727979	0.970254

Fig-2

References

[1] Cluzeau, T.; Keller, J.; Schneeweiss, W. (2008): "An Efficient Algorithm for Computing the Reliability of Consecutive-k-Out-Of-n: F Systems", IEEE TR. on Reliability, Vol. 57 (1), 84-87.
[2] Gupta P.P., Agarwal S.C. (1983): "A Boolean Algebra Method for Reliability Calculations", Microelectron. Reliability, Vol.23, 863-865.
[3] Lai C.D., Xie M., Murthy D.N.P. (2005): "On Some Recent Modifications of Weibull Distribution", IEEE TR. on Reliability, Vol. 54 (4), 563-569.
[4] Tian, Z.; Yam, R. C. M.; Zuo, M. J.; Huang, H.Z.(2008): "Reliability Bounds for Multi-State k-out-of- n Systems", IEEE TR. on Reliability, Vol. 57 (1), 53-58.
[5] Zhimin He., Han T.L., Eng H.O. (2005): "A Probabilistic Approach to Evaluate the Reliability of Piezoelectric Micro-Actuators", IEEE TR. on Reliability, Vol. 54 (1), 44-49.

Fig-3

