Reliability Assessment of Solar Power System by Employing Algebra of Logics

Pankaj Singh 1, K. P. Yadav 2, Abhishek Srivastava 3

¹ Research Scholars, Department of Electronics Communication Engineering, NIMS University, Jaipur, Rajasthan ²Professor, Mangalmay Institute of Engineering and Technology, Greater Noida, India ³Professor, NIMS University, Jaipur, Rajasthan

Abstract--The author has been used algebra of logics for the formulation and solution of mathematical model of solar power system. Reliability of the whole system has been obtained. Reliability function for the system as a whole has been computed in two different cases e.g., when failures follow Weibull and exponential time distribution. An important reliability parameter, mean time to system failure (M.T.T.F.), has also been obtained to improve practical utility of the model. A numerical computation together with its graphical illustration has been mentioned in the end to highlight important results of the study.

Keyword- Reliability Assessment, Solar Power System, Algebra of Logics, Boolean Algebra etc.

I. INTRODUCTION

In this model, the author has considered a solar power system for its reliability analysis by using algebra of logics. System configuration of considered system has been shown in fig-1. In this system, there are two solar panels in standby redundancy. On failure of solar panel x_1 we can follow online

solar panel X_2 with the help of perfect switching device X_3 . These solar panels produce the solar energy and it can be saved in four batteries B_1, B_2, B_3 and B_4 . There are two automatic switching devices ASD₁ and ASD₂ to change the battery links. Batteries supply DC power to the sine-wave inverter X_{10} , that converts this DC power into AC power. Finally, this AC power feed the connected electric equipments. The cables used to connect any two equipments are hundred percent reliable. Note that any one battery is sufficient to feed all the consumer requirements.

II. ASSUMPTIONS

The following assumptions have been associated with this model:

- (1) Initially, all the components are good and operable.
- (2) Reliability of every component of the system is known in advance.
- (3) Each component will remain either good or bad.
- (4) Transaction of power from one component to any other is 100% reliable.

- (5) Switching device used to online standby solar panel is perfect.
- (6) Failures are statistically-independent.

SOLAR SYSTEM

ASD: Automatic switching device; SP: Solar panel; B: Battery Fig-1 (System Configuration)

III. NOTATIONS USED

Following	notations	have	been	used	throughout	this study:	

<i>x</i> ₁ , <i>x</i> ₂	States of solar panels.		
<i>x</i> ₃	State of switching device.		
x_5, x_6, x_7, x_8	States of batteries.		
x_4, x_9	States of automatic switching devices.		
<i>x</i> ₁₀	State of sine-wave inverter.		
x _i	0 in bad state, 1 in good state.		
\wedge/\vee	Conjunction/disjunction.		
R _s	Reliability of whole system.		
R _i	Reliability corresponding to system state x_i .		
$\frac{R_{SW}(t)}{R_{SE}(t)}$	Reliability functions for whole system, in case failures follow weibull/exponential time distribution.		
M.T.T.F.	Mean time to failure.		

$$x_3 \quad x_8$$
]

 $B_{8} = [x_{2}]$

...(11) in equation (3) and using orthogonalisation algorithm, we obtain:

$$f(x_1, x_2 - -, x_{10}) = \begin{bmatrix} B_1 & & & \\ B'_1 & B_2 & & & \\ B'_1 & B'_2 & B_3 & & \\ B'_1 & B'_2 & B'_3 & B_4 & & \\ B'_1 & B'_2 & B'_3 & B'_4 & B_5 & & \\ B'_1 & B'_2 & B'_3 & B'_4 & B'_5 & B_6 & & \\ B'_1 & B'_2 & B'_3 & B'_4 & B'_5 & B'_6 & B_7 &$$

Now we can obtain by using algebra of logics

$$B_1' = \begin{bmatrix} x_1' \\ x_1 & x_5' \end{bmatrix}$$

$$\therefore B_1' B_2 = \begin{bmatrix} x_1' \\ x_1 & x_5' \end{bmatrix} \land \begin{bmatrix} x_1 & x_6 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 & x_5' & x_6 \end{bmatrix}$$

...(13)

Similarly, we compute the following:

$$B'_{1} B'_{2} B_{3} = \begin{bmatrix} x_{1} & x'_{5} & x'_{6} & x_{7} \end{bmatrix}$$

$$B'_{1} B'_{2} B'_{3} B_{4} = \begin{bmatrix} x_{1} & x'_{5} & x'_{6} & x'_{7} & x_{8} \end{bmatrix}$$

$$\dots (14)$$

$$B'_{1} B'_{2} B'_{3} B'_{4} B_{5} = \begin{bmatrix} x'_{1} & x_{2} & x_{3} & x_{5} \end{bmatrix}$$

$$\dots (15)$$

$$B'_{1} B'_{2} B'_{3} B'_{4} B'_{5} B_{6} = \begin{bmatrix} x'_{1} & x_{2} & x_{3} & x'_{5} & x_{6} \end{bmatrix}$$

$$\dots (16)$$

$$B'_{1} B'_{2} B'_{3} B'_{4} B'_{5} B_{6} = \begin{bmatrix} x'_{1} & x_{2} & x_{3} & x'_{5} & x_{6} \end{bmatrix}$$

$$\dots (17)$$

$$B'_{1} B'_{2} B'_{3} B'_{4} B'_{5} B'_{6} B_{7} = \begin{bmatrix} x'_{1} & x_{2} & x_{3} & x'_{5} & x'_{6} & x_{7} \end{bmatrix}$$

$$\dots (18)$$

and

$$B'_1 B'_2 B'_3 B'_4 B'_5 B'_6 B'_7 B_8 = \begin{bmatrix} x'_1 & x_2 & x_3 & x'_5 & x'_6 & x'_7 & x_8 \end{bmatrix}$$

...(19)

Making use of equations (4) and (13) through (19), equation (12) becomes:

Substituting $B_1 = [x_1 \ x_5]$

 $B_2 = \begin{bmatrix} x_1 & x_6 \end{bmatrix}$

where,

$$B_3 = \begin{bmatrix} x_1 & x_7 \end{bmatrix}$$

$$B_{4} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix}$$

$$B_{4} = \begin{bmatrix} x_{1} & x_{8} \end{bmatrix} ...(7)$$
$$B_{5} = \begin{bmatrix} x_{2} & x_{3} & x_{5} \end{bmatrix} ...(8)$$
$$B_{6} = \begin{bmatrix} x_{2} & x_{3} & x_{6} \end{bmatrix}$$

$$\begin{bmatrix} & & & & & \\$$

IV. FORMULATION OF MATHEMATICAL MODEL

The possible minimal paths for successful operation of the

system, in terms of logical matrix, can be expressed as:

 $F(x_1, x_2 - -, x_{10}) = \begin{pmatrix} x_1 & x_4 & x_5 & x_9 & x_{10} \\ x_1 & x_4 & x_6 & x_9 & x_{10} \\ x_1 & x_4 & x_7 & x_9 & x_{10} \\ x_1 & x_4 & x_8 & x_9 & x_{10} \\ x_2 & x_3 & x_4 & x_5 & x_9 & x_{10} \\ x_2 & x_3 & x_4 & x_6 & x_9 & x_{10} \\ x_2 & x_3 & x_4 & x_7 & x_9 & x_{10} \\ x_2 & x_3 & x_4 & x_7 & x_9 & x_{10} \\ x_2 & x_3 & x_4 & x_8 & x_9 & x_{10} \\ \end{pmatrix}$

V. SOLUTION OF THE MODEL

 $F(x_1, x_2 - -, x_{10}) = |x_4 \ x_9 \ x_{10} \wedge f(x_1, x_2 - -, x_{10})|$

 $f(x_1, x_2 - -, x_{10}) = \begin{vmatrix} x_1 & x_5 & \\ x_1 & x_6 & \\ x_1 & x_7 & \\ x_1 & x_8 & \\ x_2 & x_3 & x_5 & \\ x_2 & x_3 & x_6 & \\ x_2 & x_3 & x_7 & \\ x_2 & x_2 & x_2 & x_0 \end{vmatrix}$

...(2)

...(3)

...(4)

...(5)

.(6)

We can write the equation (1) again as :

$$B_7 = \begin{bmatrix} x_2 & x_3 & x_7 \end{bmatrix} ...(10)$$

IJERTV2IS100732

Vol. 2 Issue 10, October - 2013

$$f(x_1, x_2 - -, x_{10}) = \begin{vmatrix} x_1 & x_5 & & & \\ x_1 & x_5' & x_6 & & \\ x_1 & x_5' & x_6' & x_7 & & \\ x_1 & x_2' & x_3 & x_5' & & \\ x_1' & x_2 & x_3 & x_5' & x_6 & & \\ x_1' & x_2 & x_3 & x_5' & x_6' & x_7 & & \\ x_1' & x_2 & x_3 & x_5' & x_6' & x_7 & & \\ x_1' & x_2 & x_3 & x_5' & x_6' & x_7 & & \\ x_1' & x_2 & x_3 & x_5' & x_6' & x_7 & & \\ & & \dots(20) \end{vmatrix}$$

Using (20), equation (2) gives:

$$F(x_1, x_2 - -, x_{10}) = \begin{bmatrix} x_1 & x_4 & x_5 & x_9 & x_{10} \\ x_1 & x_4 & x_5' & x_6 & x_9 & x_{10} \\ x_1 & x_4 & x_5' & x_6' & x_7 & x_9 & x_{10} \\ x_1 & x_4 & x_5' & x_6' & x_7' & x_8 & x_9 & x_{10} \\ x_1' & x_2 & x_3 & x_4 & x_5 & x_9 & x_{10} \\ x_1' & x_2 & x_3 & x_4 & x_5' & x_6 & x_9 & x_{10} \\ x_1' & x_2 & x_3 & x_4 & x_5' & x_6' & x_7 & x_9 & x_{10} \\ x_1' & x_2 & x_3 & x_4 & x_5' & x_6' & x_7' & x_8 & x_9 & x_{10} \end{bmatrix}$$
$$\dots (21)$$

Since, R.H.S. of equation (21) is disjunction of pair-wise disjoint conjunctions, therefore, the reliability of whole solar system is given by:

$$R_{S} = P_{r} \{ F(x_{1}, x_{2} - -, x_{10}) = 1 \} =$$

 $R_4 R_9 R_{10} \Big[R_1 R_5 + Q_5 R_1 R_6 + Q_5 Q_6 R_1 R_7 + Q_5 Q_6 Q_7 R_1 R_8 + Q_1 R_2 R_3 R_5 \Big]$

 $+Q_1Q_5R_2R_3R_6+Q_1Q_5Q_6R_2R_3R_7+Q_1Q_5Q_6Q_7R_2R_3R_8\Big]$ where

 R_i = reliability of the component corresponding to system state x_i

and $Q_i = 1 - R_i$

Thus, we may write

$$Vol. 2 \text{ Issue 10, October 4.}$$

$$R_{5} = R_{4}R_{9}R_{10}[R_{1}R_{5} + R_{1}R_{6} + R_{1}R_{7} + R_{1}R_{8} + R_{2}R_{3}R_{5} + R_{2}R_{3}R_{6} + R_{2}R_{3}R_{7} + R_{2}R_{3}R_{1}$$

$$+ R_{1}R_{5}R_{6}R_{7} + R_{1}R_{3}R_{6}R_{8} + R_{1}R_{5}R_{7}R_{8} + R_{1}R_{6}R_{7}R_{8} + R_{1}R_{2}R_{3}R_{5}R_{6}$$

$$+ R_{1}R_{2}R_{3}R_{5}R_{7} + R_{1}R_{2}R_{3}R_{6}R_{7} + R_{2}R_{3}R_{5}R_{6}R_{7} + R_{1}R_{2}R_{3}R_{5}R_{8}$$

$$+ R_{1}R_{2}R_{3}R_{6}R_{8} + R_{1}R_{2}R_{3}R_{6}R_{7} + R_{2}R_{3}R_{5}R_{6}R_{7} + R_{1}R_{2}R_{3}R_{5}R_{8}$$

$$+ R_{1}R_{2}R_{3}R_{6}R_{8} + R_{1}R_{2}R_{3}R_{7}R_{8} + R_{2}R_{3}R_{5}R_{6}R_{7} + R_{1}R_{2}R_{3}R_{5}R_{8}$$

$$+ R_{1}R_{2}R_{3}R_{6}R_{8} + R_{1}R_{2}R_{3}R_{7}R_{8} + R_{2}R_{3}R_{5}R_{6}R_{7} + R_{1}R_{2}R_{3}R_{5}R_{7}R_{8}$$

$$+ R_{2}R_{3}R_{6}R_{7}R_{8} + R_{1}R_{2}R_{3}R_{5}R_{6}R_{7}R_{8} - R_{1}R_{5}R_{6} - R_{1}R_{5}R_{7}$$

$$- R_{1}R_{6}R_{7} - R_{1}R_{5}R_{8} - R_{1}R_{6}R_{8} - R_{1}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{5} - R_{1}R_{2}R_{3}R_{6}$$

$$- R_{2}R_{3}R_{5}R_{6} - R_{1}R_{2}R_{3}R_{7} - R_{2}R_{3}R_{5}R_{7} - R_{2}R_{3}R_{6}R_{7} - R_{1}R_{2}R_{3}R_{8}$$

$$- R_{2}R_{3}R_{5}R_{8} - R_{2}R_{3}R_{6}R_{8} - R_{2}R_{3}R_{7}R_{8} - R_{1}R_{5}R_{6}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{6}R_{7}$$

$$- R_{1}R_{2}R_{3}R_{5}R_{6}R_{8} - R_{1}R_{2}R_{3}R_{7}R_{8} - R_{1}R_{5}R_{6}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{6}R_{7}$$

$$- R_{1}R_{2}R_{3}R_{5}R_{6}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{6}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{6}R_{7}$$

$$- R_{1}R_{2}R_{3}R_{5}R_{6}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{6}R_{7}R_{8} - R_{2}R_{3}R_{5}R_{6}R_{7} R_{8}$$

$$- R_{1}R_{2}R_{3}R_{5}R_{6}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{6}R_{7} R_{8}$$

$$- R_{1}R_{2}R_{3}R_{5}R_{6}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{7}R_{8} - R_{1}R_{2}R_{3}R_{6}R_{7} R_{8} - R_{1}R_{2}R_{3}R_{7}R_{8}$$

$$- R_{1}R_{2}R_{3}R_{5}R_{6}R_{8} - R_{1}R_{2}R_{3}R_{5}R_{7} R_{8} - R_{1}R_{2}R_{3}R_{7}R_{8} - R_{1}R_{2}R_{7}R_{8} - R_{1}R_{2}R_{7}R_{8} - R_{1$$

VI. SOME PARTICULAR CASES

CASE I: When each component has the reliability R: In this case, the reliability of the whole system can be obtained from equation (22),

$$R_s = 4R^5 - 2R^6 - 6R^7 + 9R^8 - 5R^9 + R^{10}$$
...(23)

CASE II: When failure rates follow weibull time distribution:

In this case, the reliability of the whole system is given by:

$$\mathbf{R}_{\rm SW}(t) = \sum_{i=1}^{23} \exp\left\{-a_i t^{\alpha}\right\} - \sum_{j=1}^{22} \exp\left\{-b_j t^{\alpha}\right\}$$
(24)

where α is a real positive parameter and

$$a_{1} = c + \lambda_{1} + \lambda_{5}$$

$$a_{2} = c + \lambda_{1} + \lambda_{6}$$

$$a_{3} = c + \lambda_{1} + \lambda_{7}$$

$$a_{4} = c + \lambda_{1} + \lambda_{8}$$

$$a_{5} = c + \lambda_{2} + \lambda_{3} + \lambda_{5}$$

$$a_{6} = c + \lambda_{2} + \lambda_{3} + \lambda_{6}$$

$$a_{7} = c + \lambda_{2} + \lambda_{3} + \lambda_{7}$$

$$a_{8} = c + \lambda_{2} + \lambda_{3} + \lambda_{8}$$

$$a_{9} = c + \lambda_{1} + \lambda_{5} + \lambda_{6} + \lambda_{7}$$

$$a_{10} = c + \lambda_{1} + \lambda_{5} + \lambda_{6} + \lambda_{8}$$

$$a_{11} = c + \lambda_{1} + \lambda_{5} + \lambda_{7} + \lambda_{8}$$

$$a_{12} = c + \lambda_{1} + \lambda_{6} + \lambda_{7} + \lambda_{8}$$

Exponential time distribution is the particular case of weibull time distribution for $\alpha = 1$ and is very useful in numerous practical problems. Therefore the reliability function for the whole system at any time't', in this case, is given by:

$$R_{SE}(t) = \sum_{i=1}^{23} \exp\left\{-a_i t\right\} - \sum_{j=1}^{22} \exp\left\{-b_j t\right\}$$
...(25)

where $a'_i s$ and $b'_i s$ have been mentioned earlier.

Also, in this case, an important reliability parameter M.T.T.F, is given by

$$M.T.T.F. = \int_{0}^{\infty} R_{SE}(t) dt$$
$$= \sum_{i=1}^{23} \frac{1}{a_i} - \sum_{j=1}^{22} \frac{1}{b_j}$$

.

...(26)

VII. RESULTS AND CONCLUSION

For a numerical computation, let us consider the values: (i) $\lambda_i (i = 1, 2, -10) = \lambda = 0.001$, $t = 0, 1, 2 - - \alpha$ and $\alpha = 2$. Using these values in equation (24), we compute the table -1. The corresponding graph has been shown in fig-2.

(ii) $\lambda_i (i = 1, 2, 3 - -10) = \lambda = 0.001$, and t = 0, 1, 2 - -. Using these values in equation (25), we compute the table-1 and the corresponding graph has been shown in fig-2.

(iii) Putting $\lambda_i (i = 1, 2, 3 - -10) = \lambda = 0.001, 0.002 - - 0.01$ in equation (26), we compute table-2 and its graphical reorientation has been shown in fig-3.

Analysis of table -1 and fig-2 reveals that values of reliability function decreases catastrophically, in case, failures follow weibull time distribution but it decreases approximately in constant manner for exponential time distribution. Therefore, reliability function remains better when failures follow exponential time distribution.

A critical examination of table -2 and fig-3 concludes that M.T.T.F. decreases rapidly for the lower values of failure rate λ but it decreases smoothly for higher values of λ .

$$a_{13} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6$$

$$a_{14} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$a_{15} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$a_{16} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$a_{17} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8$$

$$a_{18} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_7 + \lambda_8$$

$$a_{20} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_7 + \lambda_8$$

$$a_{21} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_7 + \lambda_8$$

$$a_{22} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_7 + \lambda_8$$

$$a_{23} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_1 = c + \lambda_1 + \lambda_5 + \lambda_6$$

$$b_2 = c + \lambda_1 + \lambda_5 + \lambda_7$$

$$b_3 = c + \lambda_1 + \lambda_5 + \lambda_7$$

$$b_4 = c + \lambda_1 + \lambda_5 + \lambda_8$$

$$b_5 = c + \lambda_1 + \lambda_6 + \lambda_7$$

$$b_4 = c + \lambda_1 + \lambda_5 + \lambda_8$$

$$b_5 = c + \lambda_1 + \lambda_6 + \lambda_8$$

$$b_6 = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5$$

$$b_8 = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5$$

$$b_8 = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5$$

$$b_1 = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6$$

$$b_{10} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_7$$

$$b_{11} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8$$

$$b_{15} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8$$

$$b_{16} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8$$

$$b_{16} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8$$

$$b_{17} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8$$

$$b_{18} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7$$

$$b_{19} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{20} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{22} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{22} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{21} = c + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_7 + \lambda_8$$

$$b_{22} = c + \lambda_2 + \lambda_3 + \lambda_5 + \lambda_6 + \lambda_$$

state

	TABLE-	1
t	$R_{SW}(t)$	$R_{SE}(t)$
0	1	1
1	0.997003	0.997003
2	0.988040	0.994010
3	0.973206	0.991023
4	0.952657	0.988040
5	0.926626	0.985063
6	0.895421	0.982091
7	0.859436	0.979124
8	0.819147	0.976162
9	0.775117	0.973206
10	0.727979	0.970254

Time ---->

	TABLE-2
λ	M.T.T.F.
0	∞
0.001	278.9683
0.002	139.4841
0.003	92.9894
0.004	69.7421
0.005	55.7937
0.006	46.4947
0.007	39.8526
0.008	34.8710
0.009	30.9965
0.010	27.8968

Vol. 2 Issue 10, October - 2013

REFERENCES

- [1] Cluzeau, T.; Keller, J.; Schneeweiss, W. (2008): "An Efficient Algorithm for Computing the Reliability of Consecutive-k-Out-Of-n: F Systems", IEEE TR. on Reliability, Vol.57 (1), 84-87.
- [2] Gupta P.P., Agarwal S.C. (1983): "A Boolean Algebra Method for Reliability Calculations", Microelectron. Reliability, Vol.23, 863-865.
- Lai C.D., Xie M., Murthy D.N.P. (2005): "On Some Recent [3] Modifications of Weibull Distribution", IEEE TR. on Reliability, Vol.54 (4), 563-569.
- [4] Tian, Z.; Yam, R. C. M.; Zuo, M. J.; Huang, H.Z.(2008): "Reliability Bounds for Multi-State k-out-of- n Systems", IEEE TR. on Reliability, Vol.57 (1), 53-58.
- Zhimin He., Han T.L., Eng H.O. (2005): "A Probabilistic Approach to [5] Evaluate the Reliability of Piezoelectric Micro-Actuators", IEEE TR. on Reliability, Vol.54 (1), 44-49.

R_{SW}(t)

R_{SE}(t)