
Reinforcement Learning for Diverse Visuomotor 

Skills 
 

Sunanda Dixit                                                                     
Asociate Professor 

Department of Computer Science and Engineering 

BMS institute of Technology and Management 

Bangalore, India 

  

A Vijaya Sai Mythili 
Department of Compuer Science and Engineering 

Bm Institute of Technology and Management 

Bangalore, India  

 

     Abstract—This paper proposes a model-free deep 

reinforcement learning method that leverages a small amount of 

demonstration data to assist a reinforcement learning agent. By 

applying this approach to robotic manipulation tasks and train 

end-to-end visuomotor policies that map directly from RGB 

camera inputs to joint velocities. Demonstrating the approach 

can solve a wide variety of visuomotor tasks, for which 

engineering a scripted controller would be laborious. The 

reinforcement and imitation agent achieves significantly better 

performances than agents trained with reinforcement learning 

or imitation learning alone. The working principles and training 

by using reinforcement and imitation learning is discussed in 

this paper. 

 

Keywords—Reinforcement Learning;Imitation Learning; 

Manipulation tasks; Visuomotor Skills; Learning Agent.  

 

I.  INTRODUCTION  
Recent advance in deep reinforcement learning (RL) have 

performed very well in several challenging domains such as 

video games and Go. For robotics, RL in combination with 

powerful function approximators such as neural networks 

provide a general framework for designing sophisticated 

controllers that would hard to handcraft otherwise. 

Reinforcement learning methods have a long history in 

robotics control but have typically been used with low-

dimensional movement representations. The last few years 

have seen a growing number of successful demonstrations of 

deep RL for robotic manipulation using model-based and 

model-free techniques, both in simulation and on real 

hardware. Nevertheless, end-to-end learning of visuomotor 

controllers for long-horizon and multi-stage manipulation 

tasks using model-free RL techniques remains a challenging 

problem. 

Developing RL agents for robotics requires overcoming 

several significant challenges. Policies for robotics must 

transform multi-modal and partial observations from noisy 

sensors, such as cameras, into coordinated activity of many 

degrees of freedom. At the same time, realistic tasks often 

come with contact-rich dynamics and vary along multiple 

dimensions (visual appearance, position, shapes, etc.), posing 

significant generalization challenges. Model-based methods 

can have difficulties handling such complex dynamics and 

large variations. Directly training model-free methods on real 

robotics hardware can be daunting due to the high sample   

complexity. The difficulty of real-world RL training is 

compounded by safety considerations as well as the difficulty  

of accessing information about the state of the environment 

(e.g. the position of an object) to define a reward function. 

 
Fig 1: Principled robot learning pipeline. We used 3D motion controllers 

to collect human demonstrations of a task. Our reinforcement and imitation 
learning model leveraged these demonstrations to facilitate learning in a 

simulated physical engine. We then performed sim2real transfer to deploy 

the learned visuomotor policy to a real robot. 
 

Finally, even in simulation when perfect state information 

and large amounts of training data are available, exploration 

can be a significant challenge, especially for on-policy 

methods [1]. This is partly due to the often high-dimensional 

and continuous action space, but also due to the difficulty of 

designing suitable reward functions.  

A model-free deep RL method that can solve a variety of 

robotic manipulation tasks directly from pixel input. The 

main  insights are 1) to reduce the difficulty of explanation in 

continuous domains by leveraging a handful of human 

demonstrations; 2) to leverage several new techniques that 

exploit privileged and task-specific information during 

training only which can accelerate and stabilize the learning 

of visuomotor policies in multi-stage tasks; and 3) to improve 

generalization by increasing the diversity of the training 

conditions. As a result, the policies work well under 

significant variations of system dynamics object appearances, 

task lengths, etc. Furthermore, we demonstrate promising 

preliminary results for two tasks, where the policies trained in 

simulation achieve zero-shot transfer to a real robot. Six 

manipulation tasks, including stacking, pouring, etc 

employed. The set of tasks includes multi-stage and long-

horizon tasks, and they require full 9-DoF joint velocity 

control directly from pixels. The controllers need to be able 

to handle significant shape and appearance variations.  

To address these challenges, combining imitation learning 

with reinforcement learning into a unified training 

framework. The approach utilizes demonstration data in two 

ways: first, it uses a hybrid reward that combines the task 

reward with an imitation reward based on Generative 

Adversarial Imitation Learning. This aids with exploration 

while still allowing the final controller to outperform the 
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human demonstrator on the task. Second, it uses 

demonstration trajectories to construct a curriculum of states 

along which to initialize the episodes during training. This 

enables the agent to learn about later stages of the task earlier 

in training, facilitating the solving of long tasks. It solves all 

six tasks, which neither the reinforcement learning nor 

imitation learning baseline can solve alone. 

To sidestep the constrains of training on real hardware we 

embrace the sim2real paradigm which has recently shown 

promising results .Through the use of a physics engine and 

high-throughout RL algorithms. By simulating parallel copies 

of a robot arm to perform millions of complex physical 

interactions in a contact-rich environment, while eliminating 

the practical concerns of robot safety and system reset. 

Furthermore, we can, during training, exploit privileged and 

task –specific information about the true system state with 

several techniques, including learning policy and value in 

separate modalities, an object-centric GAIL discriminator, 

and auxiliary tasks for visual modules. These techniques 

stabilize and speed up policy learning, without imposing any 

constraints on the system at test time. Finally, we diversify 

training conditions such as visual appearance, object 

geometry, and system dynamics. This improves both 

generalizations with respect to different task conditions as 

well as transfer from simulation to reality. 

As illustrated in Fig. 1 this instantiates a visuomotor 

learning pipeline going from collecting human demonstration 

to learning in simulation, and back to real-world deployment 

via sim2real policy transfer [1]. 

 

II. EASE OF USE 

      Reinforcement learning methods have been 

extensively used with low-dimensional policy representations 

such as movement primitives to solve a variety of control 

problems both in simulation and in reality. Three classes of 

RL algorithms are currently dominant for continuous control 

problems: guided policy search methods (GPS; Jonathan Ho 

and Stefano Ermon [2]), value-based methods such as the 

deterministic policy gradient (DPG) or the normalized 

advantage function (NAF) algorithm, and trust-region based 

policy gradient algorithms such as trust region policy 

optimization (TRPO) and proximal policy optimization 

(PPO) [3]. TRPO and PPO hold appeal due to their 

robustness to hyper parameter settings as well as their 

scalability but the lack of sample efficiency makes them 

unsuitable for training directly on robotics hardware. 

GPS [2] has been used (e.g. Jonathan Ho and Stefano 

ermon et al. [2]) to learn visuomotor policies directly on areal 

robotics hardware after a network pre-training phase.  

    The idea of using large-scale data collection for training 

visuomotor controllers is to train a convolutional network to 

predict grasp success for diverse sets of objects using a large 

dataset with 10s or 100s of thousands of grasp attempts 

collected from multiple robots in a self-supervised setting. 

     Suitable cost functions and exploration strategies for 

control problems are challenging to design (e.g. Yuke Zhu, 

Ziyu Wang, Josh Merel et al. [1]) so demonstrations have 

long played an important role. Demonstrations can be used to 

initialize policies, design cost functions, guide exploration, 

augment the training data, or a combination of these. Cost 

functions can be derived from demonstrations either via 

tracking objectives or via inverse RL, or, as in our case, via 

adversarial learning. When expert policies are available, 

behavioral cloning can be used. 

      Most of these methods require observation and/or action 

spaces to be alignment between the robot and demonstrations. 

Sunanda Dixit et al [6-9] proposed different segmentation 

techniques. Machine learning algorithm explored in [10-11] 

 

III. MODEL 

 The main goal is to learn a visuomotor policy with deep 

neural networks for robot manipulation tasks. The policy 

takes both an RGB camera observation and a proprioceptive 

feature vector that describes the joint positions and angular 

velocities. These two sensory modalities are also available on 

the real robot, allowing us to train in simulation and 

subsequently transfer the learned policy to the robot without 

modifications. Fig 2 provides an overview of the model. The 

deep visuomotor policy encodes the pixel observation with a 

convolutional network (CNN) and the proprioceptive feature 

with a multilayer perceptron (MLP). The features from these 

two modules are concatenated and passed to a recurrent long 

short term memory (LSTM) layer before producing the joint 

velocities (control commands). The whole network is trained 

end-to-end. We start with a brief review of the basis of 

generative adversarial imitation learning (GAIL) [2] and 

proximal policy optimization (PPO) [3].  

 

 
Fig 2: Model Overview. The core of the model is the deep visuomotor 

policy, which takes the camera observation and the propriceptive feature as 

input and produces the next joint velocities. 

 

A. Background: GAIL and PPO 

Imitation learning (IL) is the problem of learning a 

behavior policy by mimicking a set of demonstrations. Here 

assume that human demonstrations are provided as a dataset 

of state-action pairs D = {(si, ai)} i=1…….N. Some IL 

methods cast the problem as one of supervised learning, i.e., 

behavior cloning. These methods use maximum likelihood to 

train a parameterized policy πθ: S→A, where S is the state 

space and A is the action space. The behavior cloning 

approach works effectively when demonstrations are 

abundant. However, as robot demonstrations can be costly 

and time-consuming to collect, we aim for a method that can 

learn from a handful of demonstrations. GAIL uses 

demonstration data efficiently by allowing the agent to 

interact with the environment and learn from its own 

experiences. Similar to Generative Adversarial Networks 

(GANs), GAIL [2] employs two networks, a policy network 
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and a discriminator network. It uses a min-max objective 

function similar to that of GANs: 

It uses a min-max objective function similar to that of 

GANs. This objective encourages the policy πθ to have an 

occupancy measure close to that of the expert policy. 

The work trained with, train πθ with policy gradient 

methods to maximize the discounted sum of the reward 

function clipped at a max value of 10. In continuous domains, 

trust region methods greatly stabilize policy training. GAIL 

was originally presented in combination with TRPO for 

updating the policy. Recently, PPO has been proposed as a 

simple and scalable approximation to TRPO. PPO (e.g. John 

Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, 

and Oleg Klimov et al. [3])  only relies on first-order 

gradients and can be easily implemented with recurrent 

networks in a distributed setting. PPO implements an 

approximate trust region that limits the change in the policy 

per iteration. This is achieved via a regulation term based on 

the Kullback-Leibler (KL) divergence, the strength of which 

is adjusted dynamically depending on actual change in the 

policy in past iterations. 

  

B. Reinforcement and Imitation Learning Model 

1) Hybrid IL RL Reward: Shaping rewards are a popular 

means of facilitating exploration. Although reward shaping 

can be very effective it can also lead to suboptimal solutions. 

Hence, we design the task rewards as sparse piecewise 

constant functions based on the different stages of the 

respective tasks. For example, we define three stages for the 

block stacking task, including reaching, lifting,  and stacking 

Reward change only occurs when the task transits from one 

stage to another. In practice, [4] we find defining such a 

sparse multi-stage reward easier than handcrafting a dense 

shaping reward and less prone to producing suboptimal 

behaviors. Training agents in continuous domains with sparse 

or piecewise constant rewards is challenging. Maximizing 

this hybrid reward can be interpreted as simultaneous 

reinforcement and imitation learning, where the imitation 

reward encourages the policy to generate trajectories closer to 

demonstration trajectories, and the task reward encourages 

the policy to achieve high returns on the task. Setting λ to 

either 0 or 1 reduces this method to the standard RL or GAIL 

setups. In our experiments, with a balanced contribution of 

these two rewards the agents can solve tasks that neither 

GAIL nor RL can solve alone. Further, the final agents 

achieve higher returns than the human demonstrations owing 

to the exposure to task rewards. 

2) Leveraging physical states in stimulation: The physics 

simulator we employ for training exposes the full state of the 

system. Even though such privileged information is un-

available on a real system, we can take advantage of it when 

training the policy in simulation. We propose four techniques 

for leveraging the physical states in simulation to stabilize 

and accelerate learning (1)the use of a curriculum derived 

from demonstration states, (2)the use of privileged 

information for the value function (3)the use of object-centric 

features in the discriminator, and (4)auxiliary tasks. We 

elaborate theses four techniques as follows: 

1. Demonstration as a curriculum. The problem of 

exploration in continuous domains is exacerbated by the long 

duration of realistic tasks. Previous work indicates that 

shaping the distribution of start states towards states where 

the optimal policy tends to visit can greatly improve policy 

learning. We alter the start state distribution with the 

demonstration states. We build a curriculum that contains 

clusters of states in different stages of a task. 

For instance, we define three clusters for the pouring task, 

including reaching the mug grasping the mug and pouring. 

During training with probability, we then start an episode 

from a random initial state, and with probability 1- we 

uniformly select a cluster and initialize the episode with a 

demonstration state from that cluster. This is possible since 

our simulated system is fully characterized by the physical 

states.   

2. Learning value functions from states. PPO uses a 

learnable value function to estimate the advantage required to 

compute the policy gradient. During training, each PPO 

worker executes the policy for K steps and uses the 

discounted sum of rewards and the value as an advantage 

function estimator. As the policy gradient relies on the value 

function to reduce variance, it is beneficial to accelerate 

learning of the value function. Rather than using pixels as 

inputs similar to the policy network, we take advantage of the 

low-level physical states (e.g., the position and velocity of the 

3D objects and the robot arm) to train the value with a 

smaller multilayer perception. We find that training the 

policy and value in two different modalities stabilizes training 

and reduces oscillation of the agent’s performance.  

3. Object-centric discriminator. As for the value function, 

we exploit the availability of the physical states for the GAIL 

[2] discriminator and provide task specific features as input. 

We find that object-centric representations (e.g., absolute and 

relative positions of the objects) provide the salient and 

relevant signals to the discriminator. The states of the robot 

arm in contrast lead the discriminator to focus on irrelevant 

aspects of the behavior of the controller and are detrimental 

for training of the policy. The construction of the object-

centric representation requires a certain amount of domain 

knowledge of the tasks. We find that the relative positions of 

objects and displacements from the gripper to the objects 

usually provide the most informative characterization of a 

task. Empirically, we find that our model is not very sensitive 

to the particular choices of object-centric features, as long as 

they carry sufficient task-specific information.  

4. State prediction auxiliary tasks. Auxiliary tasks have 

been shown to be effective in improving the learning 

efficiency and the final performance of deep RL methods. To 

facilitate learning visuomotor policies we add a state 

prediction layer on the top of the CNN module to predict the 

locations of objects from the camera observation[12] . We 

use a fully-connected layer to regress the 3D coordinates of 

objects in the task, minimizing the loss between the predicted 

and ground-truth object locations. The auxiliary tasks are not 

required for our model to learn good visuomotor policies; 

however, adding the additional supervision can often 

accelerate the training of the CNN module. 

3) Sim2Real Policy Transfer: We perform policy transfer 

experiments on a real-world robot arm. The simulation was 

manually adjusted to roughly match the appearance and 

dynamics of the laboratory setup: a Kinect camera was 
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visually calibrated to match the position and orientation of 

the simulated camera, and the simulation’s dynamics 

parameters were manually adjusted to match the dynamics of 

the real arm. Instead of using professional calibration 

equipment, our approach to sim2real transfer relies on 

domain randomization of camera position and orientation [5]. 

In addition, to improve robustness of our controllers to 

latency effects on the real robot, we also fine tune our 

policies while subjecting them to action dropping. 

The following steps explains about the working 

A. Environment Setup 

Kinova Jaco arm that has 9 degrees of freedom: six arm joints 

and three actuated fingers. The robot arm interacts with a 

diverse set of objects on a tabletop. The visuomotor policy 

controls the robot by setting the joint velocity commands, 

producing 9-dimensional continuous velocities in the range of 

[-1, 1] at 20Hz. These propriceptive feature consist of the 

positions and angular velocities of the arm joints and the 

fingers. Visual observations of the table-top scene are 

provided via a suitably positioned real-time RGB camera [1]. 

The proprioceptive features and the camera observations are 

available in both simulation and real environments thus 

enabling policy transfer. We use a large variety of objects, 

ranging from basic geometric shapes to procedurally 

generated 3D objects built from ensembles of primitive 

shape. Increase the diversity of objects by randomizing 

various physical properties, including dimension, color, mass, 

friction, etc. We collect demonstrations using a 3D motion 

controller, which allows us to operate the robot arm with a 

position controller, and gather 30 episodes of demonstration 

for each task including observations, actions, and physical 

states [4]. As each episode takes less than a minute to 

complete, demonstrating each task can be done within half an 

hour. 

B. Robot Arm Manipulation Tasks 

Fig 3 shows the six manipulation tasks. The first column 

shows the six manipulation  tasks in simulated environments, 

and the second column shows the real-world setup of the 

block-lifting and stacking tasks.  

C. Robot Arm Manipulation Tasks 

The first column shows the six tasks in simulated 

environments, and the second column shows the real-world 

setup of the block lifting and stacking tasks. We see obvious 

visual discrepancies of the same task in simulation and 

reality. These six tasks exhibit learning challenges to varying 

degrees. The first three tasks use simple colored blocks, 

which makes east to replicate a similar setup on the real 

robot. We study sim2real policy transfer with the block lifting 

and stacking tasks.  

 

 

 
  

Fig 3: Visualizations of the six manipulation tasks in our experiments. The 
left column shows RGB images of all six tasks in the simulated 

environments. These images correspond to the actual pixel observations as 

input to the visuomotor policies. The right column shows the two tasks with 
color blocks on the real robot. 

 

Block lifting. The goal is to grasp and lift a randomized 

block, allowing us to evaluate the model’s robustness. We 

vary several random factors, including the robot arm 

dynamics, lighting conditions, camera poses, background 

colors, as well as the properties of the block. Each episode 

starts with a new configuration with these random factors 

uniformly drawn from a preset range.  

Block stacking. The goal is to stack on top of the other block. 

Together with the block lifting task, this is evaluated in 

sim2real transfer experiments. 

Clearing table with blocks. This task requires lifting two 

blocks off the tabletop. One solution is to stack the blocks 

and lift them both together. This task requires longer time and 

a more dexterous controller, introducing a significant 

challenge for exploration. 

The next three tasks involve a large variety of procedurally 

generated 3D shapes, making them difficult to recreate in real 

environments [1]. To generalize across object variations in 

long and complex tasks.  

Clearing table with a box. The goal is to clear the tabletop 

that has a box and a toy car. One strategy is to grasp the toy, 

put it into the box, and lift the box. Both the box and the toy 

car are randomly generated for each episode.  

Pouring liquid. Modeling and reasoning about deformable 

objects and fluids is a long-standing challenge in the robotics 

community. We design a pouring task where we use many 

small spheres to simulate liquid. The goal is to pour the 

“liquid” from one mug to the other container. This task is 

particularly challenging due to the dexterity required. Even 

humans struggled to demonstrate the task with our 3D motion 

controller after extensive practice. 

Order fulfillment. In this task we randomly place a variable 

number of procedurally generated toy planes and cars on the 

table. The goal is to place all the planes into the green box 

and  

all the cars into the red box. This task requires the policy to 

generalize at an abstract level. It needs to recognize the object 

categories, perform successful grasps on diverse shapes, and 

handle tasks with variable lengths. 
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IV.  CONCLUSION 
Combining reinforcement and imitation learning considerably 

improves the ability to train systems capable of solving 

challenging dexterous manipulation tasks from pixels. The 

method describes all three stages of a pipeline for robot skill 

learning. Working principle of robot with steps in visuomotor 

skills is explained.  
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