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Abstract—This paper proposes a model-free deep
reinforcement learning method that leverages a small amount of
demonstration data to assist a reinforcement learning agent. By
applying this approach to robotic manipulation tasks and train
end-to-end visuomotor policies that map directly from RGB
camera inputs to joint velocities. Demonstrating the approach
can solve a wide variety of visuomotor tasks, for which
engineering a scripted controller would be laborious. The
reinforcement and imitation agent achieves significantly better
performances than agents trained with reinforcement learning
or imitation learning alone. The working principles and training
by using reinforcement and imitation learning is discussed in
this paper.
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I INTRODUCTION

Recent advance in deep reinforcement learning (RL) have
performed very well in several challenging domains such as
video games and Go. For robotics, RL in combination with
powerful function approximators such as neural networks
provide a general framework for designing sophisticated
controllers that would hard to handcraft otherwise.
Reinforcement learning methods have a long history in
robotics control but have typically been used with low-
dimensional movement representations. The last few years
have seen a growing number of successful demonstrations of
deep RL for robotic manipulation using model-based and
model-free techniques, both in simulation and on real
hardware. Nevertheless, end-to-end learning of visuomotor
controllers for long-horizon and multi-stage manipulation
tasks using model-free RL techniques remains a challenging
problem.

Developing RL agents for robotics requires overcoming
several significant challenges. Policies for robotics must
transform multi-modal and partial observations from noisy
sensors, such as cameras, into coordinated activity of many
degrees of freedom. At the same time, realistic tasks often
come with contact-rich dynamics and vary along multiple
dimensions (visual appearance, position, shapes, etc.), posing
significant generalization challenges. Model-based methods
can have difficulties handling such complex dynamics and
large variations. Directly training model-free methods on real
robotics hardware can be daunting due to the high sample
complexity. The difficulty of real-world RL training is
compounded by safety considerations as well as the difficulty
of accessing information about the state of the environment
(e.g. the position of an object) to define a reward function.
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Fig 1: Principled robot learning pipeline. We used 3D motion controllers
to collect human demonstrations of a task. Our reinforcement and imitation
learning model leveraged these demonstrations to facilitate learning in a
simulated physical engine. We then performed sim2real transfer to deploy
the learned visuomotor policy to a real robot.
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Finally, even in simulation when perfect state information
and large amounts of training data are available, exploration
can be a significant challenge, especially for on-policy
methods [1]. This is partly due to the often high-dimensional
and continuous action space, but also due to the difficulty of
designing suitable reward functions.

A model-free deep RL method that can solve a variety of
robotic manipulation tasks directly from pixel input. The
main insights are 1) to reduce the difficulty of explanation in
continuous domains by leveraging a handful of human
demonstrations; 2) to leverage several new techniques that
exploit privileged and task-specific information during
training only which can accelerate and stabilize the learning
of visuomotor policies in multi-stage tasks; and 3) to improve
generalization by increasing the diversity of the training
conditions. As a result, the policies work well under
significant variations of system dynamics object appearances,
task lengths, etc. Furthermore, we demonstrate promising
preliminary results for two tasks, where the policies trained in
simulation achieve zero-shot transfer to a real robot. Six
manipulation tasks, including stacking, pouring, etc
employed. The set of tasks includes multi-stage and long-
horizon tasks, and they require full 9-DoF joint velocity
control directly from pixels. The controllers need to be able
to handle significant shape and appearance variations.

To address these challenges, combining imitation learning
with reinforcement learning into a unified training
framework. The approach utilizes demonstration data in two
ways: first, it uses a hybrid reward that combines the task
reward with an imitation reward based on Generative
Adversarial Imitation Learning. This aids with exploration
while still allowing the final controller to outperform the
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human demonstrator on the task. Second, it uses
demonstration trajectories to construct a curriculum of states
along which to initialize the episodes during training. This
enables the agent to learn about later stages of the task earlier
in training, facilitating the solving of long tasks. It solves all
six tasks, which neither the reinforcement learning nor
imitation learning baseline can solve alone.

To sidestep the constrains of training on real hardware we
embrace the sim2real paradigm which has recently shown
promising results .Through the use of a physics engine and
high-throughout RL algorithms. By simulating parallel copies
of a robot arm to perform millions of complex physical
interactions in a contact-rich environment, while eliminating
the practical concerns of robot safety and system reset.
Furthermore, we can, during training, exploit privileged and
task —specific information about the true system state with
several techniques, including learning policy and value in
separate modalities, an object-centric GAIL discriminator,
and auxiliary tasks for visual modules. These techniques
stabilize and speed up policy learning, without imposing any
constraints on the system at test time. Finally, we diversify
training conditions such as visual appearance, object
geometry, and system dynamics. This improves both
generalizations with respect to different task conditions as
well as transfer from simulation to reality.

As illustrated in Fig. 1 this instantiates a visuomotor
learning pipeline going from collecting human demonstration
to learning in simulation, and back to real-world deployment
via sim2real policy transfer [1].

Il. EASE OF USE

Reinforcement  learning methods have been
extensively used with low-dimensional policy representations
such as movement primitives to solve a variety of control
problems both in simulation and in reality. Three classes of
RL algorithms are currently dominant for continuous control
problems: guided policy search methods (GPS; Jonathan Ho
and Stefano Ermon [2]), value-based methods such as the
deterministic policy gradient (DPG) or the normalized
advantage function (NAF) algorithm, and trust-region based
policy gradient algorithms such as trust region policy
optimization (TRPO) and proximal policy optimization
(PPO) [3]. TRPO and PPO hold appeal due to their
robustness to hyper parameter settings as well as their
scalability but the lack of sample efficiency makes them
unsuitable for training directly on robotics hardware.

GPS [2] has been used (e.g. Jonathan Ho and Stefano
ermon et al. [2]) to learn visuomotor policies directly on areal
robotics hardware after a network pre-training phase.

The idea of using large-scale data collection for training
visuomotor controllers is to train a convolutional network to
predict grasp success for diverse sets of objects using a large
dataset with 10s or 100s of thousands of grasp attempts
collected from multiple robots in a self-supervised setting.

Suitable cost functions and exploration strategies for
control problems are challenging to design (e.g. Yuke Zhu,
Ziyu Wang, Josh Merel et al. [1]) so demonstrations have
long played an important role. Demonstrations can be used to
initialize policies, design cost functions, guide exploration,
augment the training data, or a combination of these. Cost

functions can be derived from demonstrations either via
tracking objectives or via inverse RL, or, as in our case, via
adversarial learning. When expert policies are available,
behavioral cloning can be used.

Most of these methods require observation and/or action
spaces to be alignment between the robot and demonstrations.
Sunanda Dixit et al [6-9] proposed different segmentation
techniques. Machine learning algorithm explored in [10-11]

I1l. MODEL

The main goal is to learn a visuomotor policy with deep
neural networks for robot manipulation tasks. The policy
takes both an RGB camera observation and a proprioceptive
feature vector that describes the joint positions and angular
velocities. These two sensory modalities are also available on
the real robot, allowing us to train in simulation and
subsequently transfer the learned policy to the robot without
modifications. Fig 2 provides an overview of the model. The
deep visuomotor policy encodes the pixel observation with a
convolutional network (CNN) and the proprioceptive feature
with a multilayer perceptron (MLP). The features from these
two modules are concatenated and passed to a recurrent long
short term memory (LSTM) layer before producing the joint
velocities (control commands). The whole network is trained
end-to-end. We start with a brief review of the basis of
generative adversarial imitation learning (GAIL) [2] and
proximal policy optimization (PPO) [3].

deep visuomotor policy
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Fig 2: Model Overview. The core of the model is the deep visuomotor
policy, which takes the camera observation and the propriceptive feature as
input and produces the next joint velocities.

feature

A. Background: GAIL and PPO

Imitation learning (IL) is the problem of learning a
behavior policy by mimicking a set of demonstrations. Here
assume that human demonstrations are provided as a dataset
of state-action pairs D = {(si, ai)} i=1....... N. Some IL
methods cast the problem as one of supervised learning, i.e.,
behavior cloning. These methods use maximum likelihood to
train a parameterized policy n6: S—A, where S is the state
space and A is the action space. The behavior cloning
approach works effectively when demonstrations are
abundant. However, as robot demonstrations can be costly
and time-consuming to collect, we aim for a method that can
learn from a handful of demonstrations. GAIL uses
demonstration data efficiently by allowing the agent to
interact with the environment and learn from its own
experiences. Similar to Generative Adversarial Networks
(GANS), GAIL [2] employs two networks, a policy network
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and a discriminator network. It uses a min-max objective
function similar to that of GANs:

It uses a min-max objective function similar to that of
GANSs. This objective encourages the policy nf to have an
occupancy measure close to that of the expert policy.

The work trained with, train 6 with policy gradient
methods to maximize the discounted sum of the reward
function clipped at a max value of 10. In continuous domains,
trust region methods greatly stabilize policy training. GAIL
was originally presented in combination with TRPO for
updating the policy. Recently, PPO has been proposed as a
simple and scalable approximation to TRPO. PPO (e.g. John
Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov et al. [3]) only relies on first-order
gradients and can be easily implemented with recurrent
networks in a distributed setting. PPO implements an
approximate trust region that limits the change in the policy
per iteration. This is achieved via a regulation term based on
the Kullback-Leibler (KL) divergence, the strength of which
is adjusted dynamically depending on actual change in the
policy in past iterations.

B. Reinforcement and Imitation Learning Model

1) Hybrid IL RL Reward: Shaping rewards are a popular
means of facilitating exploration. Although reward shaping
can be very effective it can also lead to suboptimal solutions.
Hence, we design the task rewards as sparse piecewise
constant functions based on the different stages of the
respective tasks. For example, we define three stages for the
block stacking task, including reaching, lifting, and stacking
Reward change only occurs when the task transits from one
stage to another. In practice, [4] we find defining such a
sparse multi-stage reward easier than handcrafting a dense
shaping reward and less prone to producing suboptimal
behaviors. Training agents in continuous domains with sparse
or piecewise constant rewards is challenging. Maximizing
this hybrid reward can be interpreted as simultaneous
reinforcement and imitation learning, where the imitation
reward encourages the policy to generate trajectories closer to
demonstration trajectories, and the task reward encourages
the policy to achieve high returns on the task. Setting A to
either 0 or 1 reduces this method to the standard RL or GAIL
setups. In our experiments, with a balanced contribution of
these two rewards the agents can solve tasks that neither
GAIL nor RL can solve alone. Further, the final agents
achieve higher returns than the human demonstrations owing
to the exposure to task rewards.

2) Leveraging physical states in stimulation: The physics
simulator we employ for training exposes the full state of the
system. Even though such privileged information is un-
available on a real system, we can take advantage of it when
training the policy in simulation. We propose four techniques
for leveraging the physical states in simulation to stabilize
and accelerate learning (1)the use of a curriculum derived
from demonstration states, (2)the wuse of privileged
information for the value function (3)the use of object-centric
features in the discriminator, and (4)auxiliary tasks. We
elaborate theses four techniques as follows:

1. Demonstration as a curriculum. The problem of
exploration in continuous domains is exacerbated by the long

duration of realistic tasks. Previous work indicates that
shaping the distribution of start states towards states where
the optimal policy tends to visit can greatly improve policy
learning. We alter the start state distribution with the
demonstration states. We build a curriculum that contains
clusters of states in different stages of a task.

For instance, we define three clusters for the pouring task,
including reaching the mug grasping the mug and pouring.
During training with probability, we then start an episode
from a random initial state, and with probability 1- we
uniformly select a cluster and initialize the episode with a
demonstration state from that cluster. This is possible since
our simulated system is fully characterized by the physical
states.

2. Learning value functions from states. PPO uses a
learnable value function to estimate the advantage required to
compute the policy gradient. During training, each PPO
worker executes the policy for K steps and uses the
discounted sum of rewards and the value as an advantage
function estimator. As the policy gradient relies on the value
function to reduce variance, it is beneficial to accelerate
learning of the value function. Rather than using pixels as
inputs similar to the policy network, we take advantage of the
low-level physical states (e.g., the position and velocity of the
3D objects and the robot arm) to train the value with a
smaller multilayer perception. We find that training the
policy and value in two different modalities stabilizes training
and reduces oscillation of the agent’s performance.

3. Object-centric discriminator. As for the value function,
we exploit the availability of the physical states for the GAIL
[2] discriminator and provide task specific features as input.
We find that object-centric representations (e.g., absolute and
relative positions of the objects) provide the salient and
relevant signals to the discriminator. The states of the robot
arm in contrast lead the discriminator to focus on irrelevant
aspects of the behavior of the controller and are detrimental
for training of the policy. The construction of the object-
centric representation requires a certain amount of domain
knowledge of the tasks. We find that the relative positions of
objects and displacements from the gripper to the objects
usually provide the most informative characterization of a
task. Empirically, we find that our model is not very sensitive
to the particular choices of object-centric features, as long as
they carry sufficient task-specific information.

4. State prediction auxiliary tasks. Auxiliary tasks have
been shown to be effective in improving the learning
efficiency and the final performance of deep RL methods. To
facilitate learning visuomotor policies we add a state
prediction layer on the top of the CNN module to predict the
locations of objects from the camera observation[12] . We
use a fully-connected layer to regress the 3D coordinates of
objects in the task, minimizing the loss between the predicted
and ground-truth object locations. The auxiliary tasks are not
required for our model to learn good visuomotor policies;
however, adding the additional supervision can often
accelerate the training of the CNN module.

3) Sim2Real Policy Transfer: We perform policy transfer
experiments on a real-world robot arm. The simulation was
manually adjusted to roughly match the appearance and
dynamics of the laboratory setup: a Kinect camera was
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visually calibrated to match the position and orientation of
the simulated camera, and the simulation’s dynamics
parameters were manually adjusted to match the dynamics of
the real arm. Instead of using professional calibration
equipment, our approach to sim2real transfer relies on
domain randomization of camera position and orientation [5].
In addition, to improve robustness of our controllers to
latency effects on the real robot, we also fine tune our
policies while subjecting them to action dropping.
The following steps explains about the working

A. Environment Setup
Kinova Jaco arm that has 9 degrees of freedom: six arm joints
and three actuated fingers. The robot arm interacts with a
diverse set of objects on a tabletop. The visuomotor policy
controls the robot by setting the joint velocity commands,
producing 9-dimensional continuous velocities in the range of
[-1, 1] at 20Hz. These propriceptive feature consist of the
positions and angular velocities of the arm joints and the
fingers. Visual observations of the table-top scene are
provided via a suitably positioned real-time RGB camera [1].
The proprioceptive features and the camera observations are
available in both simulation and real environments thus
enabling policy transfer. We use a large variety of objects,
ranging from basic geometric shapes to procedurally
generated 3D objects built from ensembles of primitive
shape. Increase the diversity of objects by randomizing
various physical properties, including dimension, color, mass,
friction, etc. We collect demonstrations using a 3D motion
controller, which allows us to operate the robot arm with a
position controller, and gather 30 episodes of demonstration
for each task including observations, actions, and physical
states [4]. As each episode takes less than a minute to
complete, demonstrating each task can be done within half an
hour.
B. Robot Arm Manipulation Tasks
Fig 3 shows the six manipulation tasks. The first column
shows the six manipulation tasks in simulated environments,
and the second column shows the real-world setup of the
block-lifting and stacking tasks.
C. Robot Arm Manipulation Tasks
The first column shows the six tasks in simulated
environments, and the second column shows the real-world
setup of the block lifting and stacking tasks. We see obvious
visual discrepancies of the same task in simulation and
reality. These six tasks exhibit learning challenges to varying
degrees. The first three tasks use simple colored blocks,
which makes east to replicate a similar setup on the real
robot. We study sim2real policy transfer with the block lifting
and stacking tasks.

clearing block
table with fifing
blocks (real)

block block
lifting stacking

clearing block
table with stacking
abox (real)

pouring order
liquid fulfilment

Fig 3: Visualizations of the six manipulation tasks in our experiments. The
left column shows RGB images of all six tasks in the simulated
environments. These images correspond to the actual pixel observations as
input to the visuomotor policies. The right column shows the two tasks with
color blocks on the real robot.

Block lifting. The goal is to grasp and lift a randomized
block, allowing us to evaluate the model’s robustness. We
vary several random factors, including the robot arm
dynamics, lighting conditions, camera poses, background
colors, as well as the properties of the block. Each episode
starts with a new configuration with these random factors
uniformly drawn from a preset range.

Block stacking. The goal is to stack on top of the other block.
Together with the block lifting task, this is evaluated in
sim2real transfer experiments.

Clearing table with blocks. This task requires lifting two
blocks off the tabletop. One solution is to stack the blocks
and lift them both together. This task requires longer time and
a more dexterous controller, introducing a significant
challenge for exploration.

The next three tasks involve a large variety of procedurally
generated 3D shapes, making them difficult to recreate in real
environments [1]. To generalize across object variations in
long and complex tasks.

Clearing table with a box. The goal is to clear the tabletop
that has a box and a toy car. One strategy is to grasp the toy,
put it into the box, and lift the box. Both the box and the toy
car are randomly generated for each episode.

Pouring liquid. Modeling and reasoning about deformable
objects and fluids is a long-standing challenge in the robotics
community. We design a pouring task where we use many
small spheres to simulate liquid. The goal is to pour the
“liquid” from one mug to the other container. This task is
particularly challenging due to the dexterity required. Even
humans struggled to demonstrate the task with our 3D motion
controller after extensive practice.

Order fulfillment. In this task we randomly place a variable
number of procedurally generated toy planes and cars on the
table. The goal is to place all the planes into the green box
and

all the cars into the red box. This task requires the policy to
generalize at an abstract level. It needs to recognize the object
categories, perform successful grasps on diverse shapes, and
handle tasks with variable lengths.
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IV. CONCLUSION

Combining reinforcement and imitation learning considerably
improves the ability to train systems capable of solving
challenging dexterous manipulation tasks from pixels. The
method describes all three stages of a pipeline for robot skill
learning. Working principle of robot with steps in visuomotor
skills is explained.
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