Regular pre semi ${\cal I}$ Separation axioms in Ideal Topological Spaces

B. Sakthi @ Sathya

Department of Mathematics G.Venkataswamy Naidu College Kovilpatti.

S. Murugesan

Department of Mathematics S.Ramasamy Naidu Memorial College

Sattur.

Abstract

The authors introduced rpsI-closed sets and rpsI-open sets in ideal topological spaces and established their relationships with some generalized sets in ideal topological spaces. The aim of this paper is to introduce $rpsI - T_0$, $rpsI - T_1$, $rpsI - T_2$, $rpsI - T_{\frac{1}{4}}$, $rpsI - Q_1$ spaces and characterize their basic properties.

Keywords: $rpsI - T_0$ spaces, $rpsI - T_1$ spaces, $rpsI - T_2$ spaces, $rpsI - T_{\frac{1}{4}}$ spaces, $rpsI - Q_1$ spaces

2010 AMS Subject Classification : 54A05.

1 Introduction

Separation axioms in topological spaces play a dominated role in analysis. Recently general topologists concentrate on separation axioms between T_0 and T_1 . In this paper the concepts of $rpsI - T_0$, $rpsI - T_1$, $rpsI - T_2$, $rpsI - T_{\frac{1}{4}}$, $rpsI - Q_1$ spaces are introduced, characterized and studied their relationships with $\alpha - T_1$ space and semi-I- T_2

2 Preliminaries

For a subset A of an ideal topological space (X, τ, I) , $cl^*(A)$ and $int^*(A)$ denote the closure of A and interior of A respectively. X - A denotes the complement of A in X. We recall the following definitions and results.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called

- i) semi-I-open [6] if $A \subseteq cl^*(int(A))$.
- ii) semi pre I-open [6] if $A \subseteq cl(int(cl^*(A)))$.
- iii) αI open [6] if $A \subseteq int(cl^*(int(A)))$.
- iv) regular I-open [5] $A = int(cl^*(A))$.

Definition 2.2. A subset A of an ideal topological (X, τ, I) is called

- i) regular generalized I-closed (rgI-closed) [2] if $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is regular I-open.
- ii) regular pre semi I-closed [2] (rpsI-closed) if $spIcl(A) \subseteq A$ whenever $A \subseteq U$ and U is regular generalized I-open.

The complement of rpsI-closed set is rpsI-open set. rpsIcl(A) is the smallest rpsI-closed set containing A.

Theorem 2.3. [2]

- i) Every semi-I-closed set is rpsI-closed.
- ii) Every αI -closed set is rpsI-closed.

Definition 2.4. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called

- i) rpsI-irresolute [3] if $f^{-1}(A)$ is rpsI-closed in X, for every rpsI-closed subset A of Y.
- ii) rpsI-open map [3] if for every rpsI-open subset F of X, then the set f(F) is rpsI-open in Y.

Theorem 2.5. If $f : (X, \tau, I) \to (Y, \sigma)$ is rpsI-irresolute, then the inverse image of every rpsI-open set in Y is also a rpsI-open set in X.

Definition 2.6. An ideal topological space (X, τ, I) is said to be regular pre semi *I*- T_0 (briefly $rpsI - T_0$ space) if for each pair of distinct points x, y of X, there exists an rpsI-open set containing one point but not the other. **Theorem 2.7.** Every subspace of an $rpsI - T_0$ space is a $rpsI - T_0$ space.

Proof. Let X be a $rpsI - T_0$ space and Y be a subspace of X. Let x, y be two distinct points of Y. Since $Y \subseteq X$, we have x and y are distinct points of X. Since X is $rpsI - T_0$ space, there exists an rpsI-open set G such that $x \in G$ but $y \notin G$. Then there exists an rpsI-open set $G \cap Y$ in Y which contains x but does not contain y. Hence Y is a $rpsI - T_0$ space.

Example 2.8. Consider the ideal topological space (X, τ, \mathcal{I}) , where $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. In this ideal space X is a rpsI - T₀ space because $\{b, c, d\}$ is rpsI-open set with $a \neq b$ containing b but not a.

Theorem 2.9. Given a map $f : (X, \tau, I) \to (Y, \sigma)$ is bijective and rpsI-open, X is $rpsI - T_0$ space, then Y is $rspI - T_0$ space.

Proof. Let Y be an ideal topological space and let u, v be two distinct points of Y. Since f is a bijection, we have $, y \in X$ such that f(x) = u, f(y) = v. Since X is $rpsI - T_0$ space, there exists rpsI-open set G in X such that $x \in G$ but $y \notin G$. Also, f is rpsI-open, f(G) is rpsI-open in Y containing f(x) = u but not containing f(y) = v. Thus there exists a rpsI-open set f(G) in Y such that $u \in f(G)$ but $v \notin f(G)$ and hence Y is a $rpsI - T_0$ space. \Box

Theorem 2.10. Let $f : (X, \tau, I) \to (Y, \sigma)$ be an rpsI- irresolute bijective map. If Y is rpsI - T_0 space, then X is rpsI - T_0 space.

Proof. Assume that Y is a $rpsI - T_0$ space. Let u, v be two distinct points of Y. Since f is a bijection, we have $x, y \in X$ such that $f^{-1}(u) = x$; $f^{-1}(v) = y$. since Y is a $rpsI - T_0$ space, there exists rpsI-open set H in Y such that $u \in H$ but $v \notin H$. Since f is rpsI-irresolute, $f^{-1}(H)$ is rpsI-open in X containing f(x) = ubut not containing f(y) = v. Thus there exists a rpsI-open set $f^{-1}(H)$ in X such that $x \in f^{-1}(H)$ but $y \notin f^{-1}(H)$ and hence X is a $rpsI - T_0$ space. \Box

Definition 2.11. An ideal topological space (X, τ, I) is said to be $rpsI - T_1$ space if for each pair of distinct points x, y of X, there exists a pair of rpsI-open sets, one containing x but not y and the other containing y but not x.

Example 2.12. Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. In this ideal topological space X is $rpsI - T_1$ space because $\{b, c, d\}$ and $\{a, d\}$ are rpsI-open sets with $a \neq c, c \in \{b, c, d\}$ but $a \notin \{b, c, d\}$ and $a \in \{a, d\}$ but $c \notin \{a, d\}$.

Theorem 2.13. Every subspace of a $rpsI - T_1$ space is also a $rpsI - T_1$ space.

Proof. Let X be a $rpsI - T_1$ space and let Y be a subspace of X. Let $x, y \in Y \subseteq X$ such that $x \neq y$. By hypothesis X is $arpsI - T_1$ space, hence there exists rpsI-open set U, V in X such that $x \in U$ and $y \in V, x \notin V$ and $y \notin U$. By definition of subspace, $U \cap Y$ and $V \cap Y$ are rpsI-open sets in Y. Further $x \in U, x \in Y$ implies $x \in U \cap Y$ also $y \in V, y \in Y$ implies $y \in V \cap Y$. Thus there exists rpsI-open sets $U \cap Y$ and $V \cap Y$ in Y such that $x \in U \cap Y, y \in V \cap Y$ and $x \notin V \cap Y, y \notin U \cap Y$. Hence Y is a $rpsI - T_1$ space.

Theorem 2.14. Let $f : (X, \tau, I) \to (Y, \sigma)$ be an rpsI-irresolute, injective map. If Y is rpsI - T_1 space, then X is rpsI - T_1 space.

Proof. Assume that Y is a $rpsI - T_1$ space. Let $x, y \in Y$ such that $x \neq y$. Then there exists a pair of rpsI-open sets U, V in Y such that $f(x) \in U$ and $f(y) \in V$, $f(x) \notin V, f(y) \notin U$ which implies $x \in f^{-1}(U), y \in f^{-1}(V)$ and $x \notin f^{-1}(V)$ and $y \notin f^{-1}(U)$. Since f is rpsI-irresolute, we have X is $rpsI - T_1$ space. \Box

Theorem 2.15. If $\{x\}$ is rpsI-closed in X, for every $x \in X$. Then X is rpsI – T_1 space.

Proof. Let x, y be two distinct points of X such that $\{x\}$ and $\{y\}$ are rpsI-closed. Then $\{x\}^c$ and $\{y\}^c$ are rpsI-open in X such that $y \in \{x\}^c$ but $x \notin \{x\}^c$ and $x \in \{y\}^c$ but $y \notin \{y\}^c$. Hence X is $rpsI - T_1$ space.

Definition 2.16. An ideal topological (X, τ, I) is said to be $\alpha I - T_1$ space if for each pair of distinct points x, y of X, there exists a pair of αI -open sets one containing x but not y and the other containing y but not x.

Theorem 2.17. Every $\alpha I - T_1$ space is a rps $I - T_1$ space.

Proof. Let (X, τ, I) be an $\alpha I - T_1$ space and $x \neq y$ of X. Since X is $\alpha I - T_1$ space, there exists a pair of αI -open sets U, V in X such that $x \in U$ and $y \in V$, $x \notin V, y \notin U$. We know that every αI -open set is rpsI-open. Therefore X is $rpsI - T_1$ space.

Definition 2.18. A ideal topological space (X, τ, I) is said to be $rpsI - T_2$ space if for each pair of distinct points x, y of X, there exists disjoint rpsI-open sets U and V such that $x \in U$ and $y \in V$.

Remark 2.19. Every $rpsI - T_2$ space is $rpsI - T_1$ space. The converse need not be true as seen from the following example.

Example 2.20. Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. In this ideal space, X is $rpsI - T_1$ space but not $rpsI - T_2$ space. That is there exists a pair of rpsI-open sets $U = \{b, c, d\}$ and $V = \{a, b\}$ such that $c \in U$ and $a \in V$ but $c \notin V$ and $a \notin U$. Here the intersection of rpsI-open sets is non-empty. **Theorem 2.21.** Every subspace of a $rpsI - T_2$ space is also a $rpsI - T_2$ space.

Proof. Let X be a $rpsI - T_2$ space and let Y be a subspace of X. Let $a, b \in Y \subseteq X$ with $a \neq b$. By hypothesis there exists rpsI-open sets G, H in X such that $a \in G$ and $b \in H, G \cap H = \phi$. By definition of subspace $G \cap Y$ and $H \cap Y$ are rpsI-open sets in Y. Further $a \in G, a \in Y$ implies $a \in G \cap Y$ and $b \in H, b \in Y$ implies $b \in H \cap Y$. Since $G \cap H = \phi$, $(Y \cap G) \cap (Y \cap H) = Y \cap (G \cap H) = Y \cap \phi = \phi$. Therefore $G \cap Y$ and $H \cap Y$ are disjoint rpsI-open sets in Y such that $a \in G \cap Y$ and $b \in H \cap Y$. Thus Y is $rpsI - T_2$ space.

Theorem 2.22. Given a map $f : (X, \tau, I) \to (Y, \sigma)$ is bijection, rpsI-open and X is rpsI - T_2 space. Then Y is rpsI - T_2 space.

Proof. Given f is a bijection and rpsI-open. Let X be a $rpsI - T_2$ space and Y be any ideal space. Let $a, b \in Y$ with $a \neq b$. Since f is a bijection, there exists distinct points $x, y \in X$ such that f(x) = a and f(y) = b. Since X is a $rpsI - T_2$ space, there exists disjoint rpsI-open sets U and V of X such that $x \in U$ and $y \in V$. Also f is rpsI-open, we have f(U) and f(V) are rpsI-open sets containing f(x) = a and f(y) = b. Thus there exists disjoint rpsI-open sets f(U) and f(V) in Y such that $a \in f(U)$ and $b \in f(V)$. Hence Y is $rpsI - T_2$ space.

Theorem 2.23. If $\{x\}$ is rpsI-closed in X, for every $x \in X$, then X is rpsI – T_2 space.

Proof. Let x and y be two distinct points of X such that $\{x\}$ and $\{y\}$ are rpsIclosed set. Then $\{x\}^c$ and $\{y\}^c$ are rpsI-open in X such that $x \in \{y\}^c$ and $y \in \{x\}^c$. Hence X is $rpsI - T_2$ space.

Theorem 2.24. If X is $rpsI - T_2$ space, then for $y \neq x \in X$, there exists an rpsI-open set G such that $x \in G$ and $y \notin rpsIcl(G)$.

Proof. Let $x, y \in X$ such that $y \neq x$. Since X is $rpsI - T_2$ space, there exists disjoint rpsI-open sets G and H in X such that $x \in G$ and $y \in H$. Therefore H^c is rpsI-closed set such that $rpsIcl(G) \subseteq H^c$. Since $y \in H$, we have $y \notin H^c$. Hence $y \notin rpsIcl(G)$.

Definition 2.25. An ideal topological space (X, τ, I) is $rpsI - Q_1$ space, if for $x, y \in X$ with $rpsIcl(\{x\}) \neq rpsIcl(\{y\})$, then there exists disjoint rpsI-open sets U and V such that $rpsIcl(\{x\}) \subseteq U$ and $rpsIcl(\{y\}) \subseteq V$.

Theorem 2.26. If (X, τ, I) is $rpsI - T_2$ space, then it is $rpsI - Q_1$ space.

Proof. Let $\{x\}, \{y\}$ be two distinct closed set in X such that for every $x, y \in X$ with $rpsIcl(\{x\}) \neq rpsIcl(\{y\})$. We know that, every closed set is rpsI-closed and so $\{x\} = rpsIcl(\{x\}), \{y\} = rpsIcl(\{y\})$. Since X is $rpsI - T_2$ space, there exists disjoint rpsI-open sets U and V in X such that $x \in U$ and $y \in V$. Therefore $rpsIcl(\{x\}) \subseteq U$ and $rpsIcl(\{y\}) \subseteq V$. Hence X is $rpsI - Q_1$ space. \Box

Definition 2.27. An ideal topological space (X, τ, I) is called $rpsI - T_{\frac{1}{4}}$ space if for any rpsI-closed set $F \subseteq X$ and any point $x \in X - F$ there exists disjoint open sets $U, V \subseteq X$ and $x \in U$ and $F \subseteq V$.

Theorem 2.28. For any ideal space (X, τ, I) , if $x \in G \subseteq X$ and G is a rpsI-open set, there exists a rpsI-open set $H \subseteq X$ such that $x \in H \subseteq \overline{H} \subseteq G$. Then X is $rpsI - T_{\frac{1}{4}}$ space.

Proof. Let $F \subseteq X$ be rpsI-closed set with $x \in F^c$. Since F^c is rpsI-open by our assumption choose a rpsI-open set H with $x \in H \subseteq \overline{H} \subseteq X - F$. Let $K = X - \overline{H}$ and so W is rpsI-open. Further, $F \subseteq X - \overline{H} = W$ and $H \cap K = \phi$. Hence X is $rpsI - T_{\frac{1}{4}}$ space.

Remark 2.29. We have the following diagram,

$$rpsI - T_2 \Longrightarrow rpsI - T_1 \Longrightarrow rpsI - I_0$$

Definition 2.30. An ideal space (X, τ, I) is said to be semi-I- $T_2[4]$, if for each pair of distinct points x and y in X, there exists two semi-I-open sets U and V in X such that $x \in U$ and $y \in V$, $U \cap V = \phi$.

Remark 2.31. Every semi I- T_2 space is a $rpsI - T_2$ space but the converse is not true because, every semi I-open set is rpsI-open and rpsI-open set need not be semi-I-open [2].

References

- Jamal M. Mustafa, Contra Semi-I-continuous functions, Hacettepe Journal of Mathematics and Statistics, vol 39(2)(2010), 191-196.
- [2] B. Sakthi alias Sathya, S. Murugesan, On regular pre semi I closed sets in ideal topological spaces, International Journal of Mathematics and Soft Computing, vol 39(1)(2013), 37-46.
- [3] B. Sakthi alias Sathya, S. Murugesan, Regular pre-semi-I continuous and regular pre-semi-I irresolute functions, International Journal of Mathematical Archieve (accepted).

- [4] E.Hatir and S.Jafari, On weakly semi *I*-open sets and another decomposition of continuity via ideals, Sarajevo Journal of Mathematics, 2(14)(2006), 107-114.
- [5] E.Hatir and T.Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [6] A. Keskin and T.Noiri, S. Yuksel, Idealization of a decomposition theorem, Acta. Math. Hungar., 102(2004), 269-277.

