
Reducing The Cost And Complexity Of Mutation Testing Using Metadata

Versioning

Anu Saini , Raghav Bhasin

Department of Computer Science,Department of Computer Science,

Maharaja Surajmal Institute of Technology,Maharaja Surajmal Institute of Technology,

JanakPuri, New Delhi, India.Janakpuri, New Delhi,India.

Rajat Markan , Rishav Arora

Department of Computer Science,Department of Computer Science,

Maharaja Surajmal Institute of Technology,Maharaja Surajmal Institute of Technology,

JanakPuri, New Delhi, India.JanakPuri, New Delhi, India.

Abstract

Mutants which are generated in mutation testing have

the same complexity as of the original source code.

Thus if the space complexity of the original source code

is large, then the cost of mutation testing will also

increase due to generation of large number of mutants.

In this research paper we have presented the approach

to reduce the complexity of mutation testing using

metadata versioning. Metadata versioning states that

instead of creating a new mutant for the corresponding

statement change, we can maintain a copy of original

source code and change is incorporated in this copy of

source code. Thus we don’t need to maintain all copies

of mutants, we only need a copy of original source code

and a version table that contains the information

regarding which statement has to be changed in the

copy of source code and what was the previous

changed values in that copy. Thus for every mutant, we

can change the statements in the copy of original

source code and test this against the test cases.

1. Introduction
Mutation testing also known as false based testing

is one of the important testing techniques that ensure

the robustness of test cases. It means test cases should

be robust enough to fail the false code also known as

mutant code. There are four steps in mutation testing:

Mutants are generated first. Mutants are generated

by changing the syntactic elements in the source code.

These syntactical changes introduced in the source code

are also known as faults.

This is how the mutant is generated as shown in Table

1:

Table I. How the mutant is generated

Original Source Code Mutant

If(a<b)

Print ”mutation

testing”

Else

Print “testing failed”

If(a)

Print “mutation

testing”

Else

Print “testing failed”

Now the test cases are applied to mutants to

test the effectiveness of these test cases. The test cases

are applied to original source code as well. The test

cases should detect faults in the mutant code. Results

are computed and then comparison of original source

code and mutant code is performed. Mutant is killed if

the output of both the original source code and mutant

code is same otherwise mutant is kept alive. This was

the brief introduction of mutation testing. Now our aim

in this study is to reduce the cost of mutation testing. It

is obvious that mutants occupy the same space

complexity as that of original source code. Thus if we

are generating large number of mutants then cost of

mutation testing will be very high. To solve this

problem, this study uses the concept of metadata

versioning. In metadata versioning, if any change is

809

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

incorporated in the original files, then that change is

reflected in a new table called the metadata version

table. Thus all the changed record, time of their

change, previous value before that change are kept in

that metadata version table. This is the concept that is

used in this study to reduce the complexity of mutation

testing. What we have is the source code on which the

mutation testing is performed and the copy of that

source code. Thus instead of creating a new copy of

source code for every mutant test, we change statement

in the copy of source code using the help of metadata

version table. Metadata version table includes all the

information related to copy of source code that is

information about the, which statement has been

changed, what was the previous value before that

change, time stamp of change. After the mutant is

created we apply the test cases to both the mutant code

as well as the original source code. Results are

compared and it is decided whether to kill the mutant or

it should be kept alive. For creating the second mutant,

we don’t need to create the second copy of source code,

we just need to change few statements in the copy of

original source code using the help of metadata version

table and then apply the test cases to it. Thus for all the

mutants the similar procedure of editing the copy of

original source code using metadata version table is

performed and effectiveness of source code is tested.

2. Proposed Work

Mutants are nothing but the syntactical changes in the

one or two statements of original source code. Thus by

changing one or two statements in source code a new

mutant is generated. But whenever someone creates a

new mutant, he creates a new source code and then

change the required statements of that source code in

order to create a new mutant. Thus each time a new

mutant is created, one has to store it separately in order

to check the effectiveness of test cases or to perform

mutation testing. This creates a storage problem as we

have to make many copies of mutants in order to

perform the mutation testing. Thus cost of mutation

testing increases as the number of mutants increases.

This problem of storage can be stored by using the

concept of metadata versioning. By using the concept

of metadata version table we don’t need to store each

mutant separately, instead we can have a single copy of

original source code and can create mutants from this

copy by using the help of metadata version table. Thus

space complexity of mutation testing will be reduced

and it will be an effective testing technique.

3. Implementation of Mutation testing

using metadata versioning

This section contains the implementation of our

proposed work and how the space complexity can be

reduced in mutation testing. There are many metadata

versioning techniques. One of the approaches is to use

the shadow of tables [1]. But this approach increases

complexity. We have used metadata versioning table

for our study as proposed by “Metadata Versioning”

[2]. Metadata version table tracks the record of any

update made to the data base that is if one made update

to any row of any table then that changed is stored in

metadata version table. That means metadata version

table keeps the tracks of changed values, previous

values before that change, time stamp of the

transaction. We have used this feature of metadata

version table. Step by step implementation of mutation

testing is explained here. First the program which is

under test is given as the input to the system. System

accepts this source code and stores it in the database.

After the input given to the system the system fetch the

source code from the database and creates a copy of

that original source code. This copy of source code is

also stored in database. Now we want to generate

mutants of our source code in order to test the

effectiveness of the test cases. Now metadata version

table stores the information about mutant that is how

mutants are to be generated by altering the statements

to original source code. First mutant is generated by

changing the statement of copy of source code that is

already stored in the database. Thus first mutant is

created and stored. Now validation of test case if

performed by applying the test cases to both the

original source code as well as the first mutant that is

stored in the database. The results of both the files are

gathered and compared to each other. If the output of

both the files is same then that mutant is killed and the

copy of original source code is restored by the help of

metadata version table because the metadata stores the

record of previous values. And if the output of both the

files is not the same then that mutant is kept alive and

more effective test cases need to consider killing that

mutant. For generation of second mutant the same steps

are applied that is taking the copy of original source

code, changing the syntactical statements for test case

generation and then applying the test case to both the

mutant and the original source code. Thus a large

number of mutants can be created by changing thesmall

810

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

syntactical statements in the copy of original source

code using the help of metadata version table.

Here are a few figures of Implementation of mutation

testing:

Figure 1. Basic source code information is stored.

Here we can provide basic information about the

program such as the program ID, name of the program

and the estimated line of codes. This initial data is

required in storing the program information. This

estimated line of code will create space in the database,

so that the program can be stored easily.

Figure 2. The source code is inserted as input to the

system.After the basic information is provided to the

system, a new window pops up containing the LOC of

source code. The source code is inserted here line by

line. After the source code entered to graphical user

interface, insert button is pressed and the source code is

inserted to the database.

Figure 3: After that the original source code is stored in

the database and a copy of source code is generated by

the system. When we click on the submit button of

figure 2 then the all data from that figure is erase and

811

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

data is stored in the database. When the original source

code is stored in the database, then a copy of source

code is also generated that performs a major role in

reducing the complexity of mutation testing with the

help of metadata version table. This is copy is not

shown through graphical user interface. Whenever we

want to create a new mutant change is implemented in

the copy of original source code. And then the test

cases are applied to both the original source code and

the copy of original source code.

Figure 4. This includes the mutants’ generation from

the copy of source code. With the help of metadata

version table, mutants are generated. Mutants have the

same source code except for one or two statements

change in the original source code. The statements to

be changed can be seen in the metadata version table.

And after changing the statements, new mutant is

created. If we further want to create a mutant then by

using the metadata version table we track the record of

previous values as well as the new value to be inserted

in the copy of original source code in order to create a

new mutant. Thus this is how the mutants are generated

one by one with the help of metadata version table and

test cases can be applied to both the original source

code and mutants in order to test the effectiveness of

test cases. Here we can change the value of any mutant

by updating the values of mutants, we can also retrieve

the mutant from the database.

Figure 5. This is the metadata version table which

records the new value, the previous value and time of

transaction. This is the main entity of this study which

is required to reduce the complexity of mutation

testing. Metadata version table as shown above, records

the previous values of mutant, updated values of

mutant and information where it is stored in the

database. This helps in creation of new mutant from the

copy of original source code.

4. Related Work

Until now very less work is done in reducing the cost

of mutation testing. Aditya and W. Eric [3] at Purdue

University presented two approaches to reduce the cost

of mutation testing. One was, to randomly select x% of

mutants. In this approach one may randomly select x%

of mutants and can ignore the rest. The value of x can

lie between 10 to 100%. The second approach was the

constrained mutation criterion [4]. Constrained

mutation also takes into account a few mutants and

ignores the rest. In the abs constraint mutation we

replace every use of x by abs (x), -abs (x), and zpush

(x) wherever possible. In ror constraint mutation we

replace every relational operator by another relational

operator. This study was useful in reducing the cost of

mutation testing but the exhaustive testing is not

possible in this study and we can have significant loss

of very important test cases.

Another study proposed by Macario, Mario

and Ignacio [5] reduces the cost of mutation testing by

combining the first order mutants to second order

mutants. This study uses testooj testing tool for

combining first order mutants to second order mutants

812

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

which implements three strategies LasttoFirst,

DifferentOperator and RandomMix. The numbers of

mutants are reduced to half in this study, but again

complete exhaustive testing is not possible in this case

also.

5. Conclusion and Future Scope

This study provides a better approach to reduce the cost

of mutation testing using the help of metadata version

table. Mutation testing plays a very important role in

exhaustive testing, but it does so at the cost of higher

space complexity because one needs to maintain

multiple copies of mutants. Thus this study provides

both the advantages of providing the ultra-high level of

mutation coverage and reducing the space complexity

of mutation testing. This is very important study and

many applications can use this study to test the

software system test cases. The test cases of any

application can be tested whether these are effective or

not. And complete exhaustive testing of any application

is possible using this study.

6. References

[1]. Seiderer Peter, Simple Versioning of Database

Entries, February 6, 2002

[2]. AnuSaini, RajatMarkan, RishavArora and

RaghavBhasin, “Versioning of Metadata”,

unpublished.

[3]. Aditya P. Mathur and W. Eric Wong, “Reducing the

cost of Mutation testing: An Empirical Study.”

[4]. A. P. Mathur, “Performance, effectiveness and

reliability issues in software testing”.

[5]. Macario Polo, Mario Piattini and Ignacio Garcia

Rodriguez, “Decreasing the cost of mutation testing

with second order mutants”.

[6]. http://www.guru99.com/mutation-testing.htm

813

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

814

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

