Vol. 7 Issue 05, May-2018

Redevelopment of Dharavi Slums

J Joel Samuel, Vit University, Vellore

Akash R, Vit University,Vellore Kishore M, Vit University, Vellore

Vaibhav Venkat, Vit University, Vellore

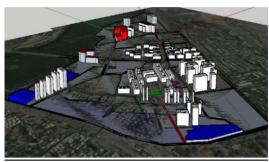
Abstract— Dharavi, Asia's largest slum is a home to nearly 700,000 to 1 million people, with an inordinate population density of 277,136 per square km. The dearth of hygiene, miniature homes, low income and lack of awareness has exacerbated the living conditions in the Dharavi dwelling. This paper proposes a synergistic redevelopment model for the

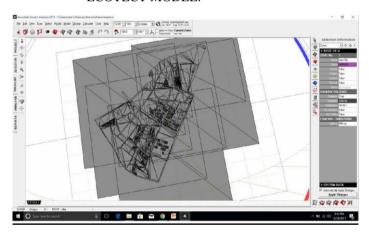
rehabilitation of the local community. In addition, thermal analysis has been carried out for redeveloped model. This paper suggests a sustainable redevelopment approach by draping the new buildings with acopiously growing tropical creeper Vernonia elaeagnifolia. This results in a drop of 3.3 0 C, around noon. The HVAC loads showed a decrease resulting in an annual saving of \$614.14.

I. INTRODUCTION

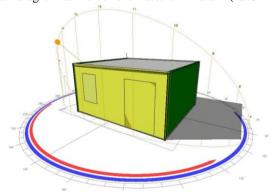
Dharavi is locality in Mumbai, Maharashtra, India. It is spread over 557 acres and houses nearly a million people. The present day living conditions of Dharavi are very poor, and the ever rising temperatures in urban areas is another major issue faced by the slum dwellers. We have proposed a synergistic redevelopment model for the rehabilitation of the local community. In addition, we have carried out thermal analysis for redeveloped model. This paper suggests a sustainable redevelopment approach by draping the

new buildings with a copiously growing tropical creeper Vernonia elaeagnifolia. This results in a drop of 3.3⁰C, around noon. The HVAC loads showed a decrease resulting in an annual saving of \$614.14.

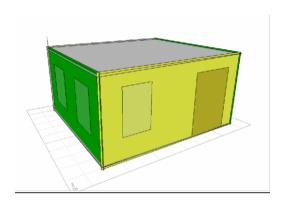

II. THE PLAN FOLLOWED BY FOR REDEVELOPMENT IS THE ONE SUGGESTED BY INDIAN ARCHITECT MUKESH MEHTA.

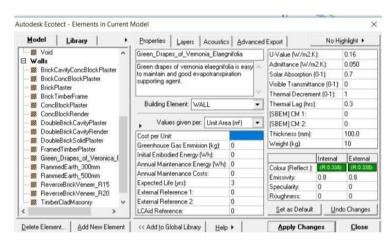

Published by:

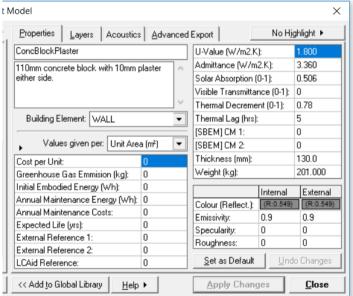
http://www.ijert.org

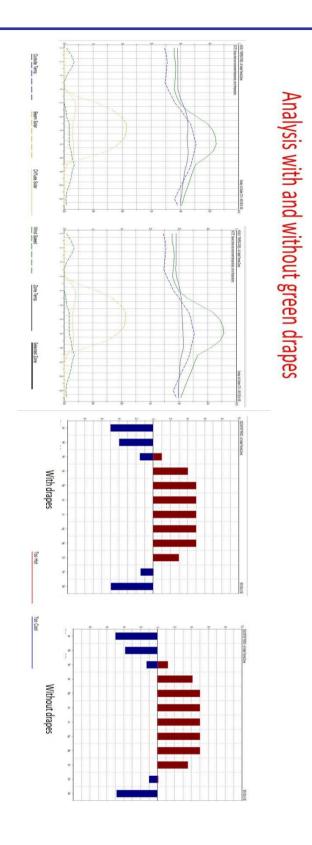


ECOTECT MODEL:

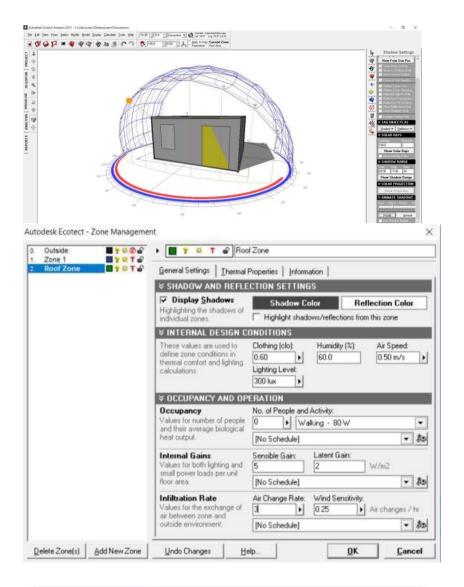


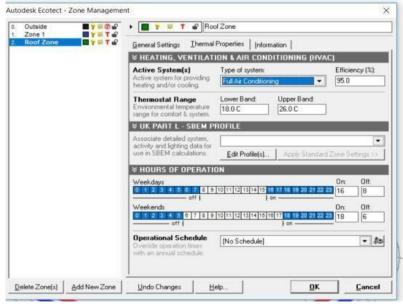

Sides Receiving Direct Sunlight The sides requiring shading is found out using the sun path diagram at the co-ordinates of Dharavi (19.042N 72.85E).

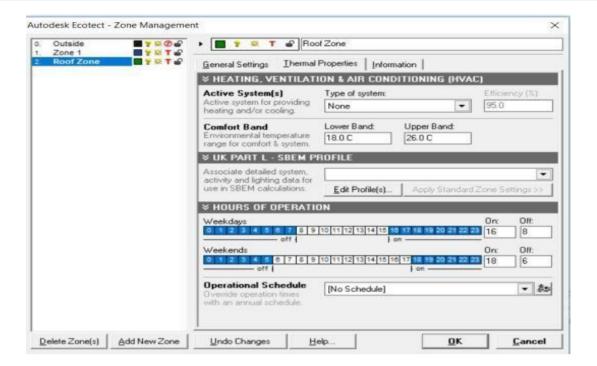



Basic Sketch of Room [2] Green colour -Vernonia Elaegnifolia drapes 3cm thickness Yellow

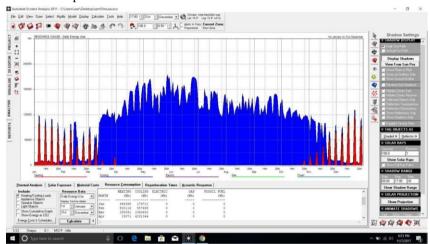
Brick concrete Block Plaster

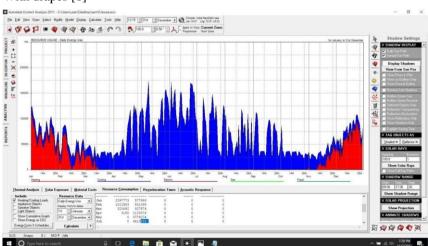






ISSN: 2278-0181 Vol. 7 Issue 05, May-2018


ENERGY REQUIRED FOR HEATING AND COOLING DURING DIFFERENT MONTHS



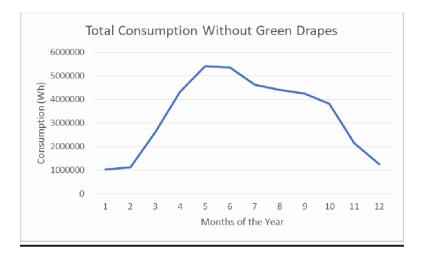
Without drapes

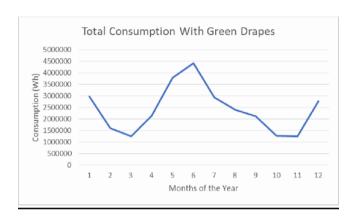
With drapes [6]

HVAC DATA

Without greendrapes Concrete block plaster walls

	HEATING	COOLING	ELECTRIC	GAS	FOSSIL FUEL	total	
MONTH	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)		
Jan	866398	179712	0	0	0		1046110
Feb	530116	587665	0	0	0		1117781
Mar	290091	2340692	0	0	0		2630783
Apr	23071	4281344	0	0	0		4304415
May	0	5395574	0	0	0		5395574
Jun	0	5354172	0	0	0		5354172
Jul	0	4608399	0	0	0		4608399
Aug	0	4399482	0	0	0		4399482
Sep	0	4255898	0	0	0		4255898
Oct	28463	3779847	0	0	0		3808310
Nov	325165	1808992	0	0	0		2134157
Dec	971321	272535	0	0	0		1243856
					N	IET	40298937


40298.937kW


With green drapes covered on Two sides with

Direct solar exposure

ar exposure						
	HEATING	COOLING	ELECTRIC	GAS	FOSSIL FUEL	TOTAL
MONTH	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	
Jan	2397773	577993	0	0	0	2975766
Feb	1022583	581398	0	0	0	1603981
Mar	320692	927574	0	0	0	1248266
Apr	3150	2128076	0	0	0	2131226
May	0	3779274	0	0	0	3779274
Jun	0	4413151	0	0	0	4413151
Jul	0	2929142	0	0	0	2929142
Aug	0	2394686	0	0	0	2394686
Sep	0	2116856	0	0	0	2116856
Oct	0	1271528	0	0	0	1271528
Nov	473975	777390	0	0	0	1251365
Dec	2192060	581050	0	0	0	2773110
			_	_	NET	28888351
						-
						28888.351kW

Graphs [4]

Energy Savings		EB(Rs3.5/unit)				
without drapes	40298.937kW	141046				
with drapes	28888.351kW	101109				
Savings	11410.019kW	Rs39936				
Savings	11410.019kW	K\$39930				
cost savind USD(65Rs/\$)		\$614.41				

Energy Plus Simulation:

The google sketch up model input for energy plus simulation was:

Input IDF file for energy plus simulation

A midrise apartment was considered, four story, having 31 apartments and an office.

The parameters were as follows:

```
! Midrise Apartment building, new construction 90.1-2004
! Version 1.3 5.0
! EnergyPlus Version 6.0
! ASHRAE Standards 90.1-2004 and 62-1999
 Description: Four story apartment building, 31 apartments plus office
 Form:
               Area = 3,135 m2 (33,742 ft2); Number of Stories = 4; Shape = rectangle; Aspect ratio = 2.74
 Envelope:
               Envelope thermal properties vary with climate according to ASHRAE Standard 90.1-2004 residential.
               Opaque constructions: Steel frame wall; Insulation entirely above deck; slab-on-grade floor
               Windows: window-to-wall ratio = 15.0%,
               Infiltration in perimeter zones only
                            = 0.4 cfm/ft2 above grade wall area at 0.3 in wc (75 Pa) adjusted to 0.016 in wc (4 Pa).
                              Office: 25% of full value when ventilation system on.
 HVAC:
               Split system units in each apartment, office; DX cooling and gas furnace
               Economizer per 90.1-2004 for office system only
 Int. gains:
               W/m2 (W/ft2) lights
                                           elec plug
                                                         gas plug
               Apartments
                             3.88 (0.36)
                                           5.38 (0.50)
                                                         0
                                           12.9 (1.20)
               Office
                             10.8 (1.0)
                                                         0
               Corridor
                             5.38 (0.5)
               1 @ 20 HP, 91% motor efficiency
! Elevators:
```

Vol. 7 Issue 05, May-2018

```
The construction materials chosen were as follows
```

```
! ***OPAQUE CONSTRUCTIONS AND MATERIALS***
 ! Exterior Walls
   Construction,
      Steel Frame Res Ext Wall,!- Name
      Wood Siding, !- Outside Layer
      Steel Frame Res Wall Insulation, !- Layer 2
      1/2IN Gypsum; !- Layer 3
   Material,
      Steel Frame Res Wall Insulation, !- Name
     MediumRough, !- Roughness
0.119161363096001, !- Thickness {m}
0.049, !- Conductivity {W/m-K}
265.0000, !- Density {kg/m3}
836.8000, !- Specific Heat {J/kg-K}
0.9000, !- Thermal Absorptance
0.7000, !- Solar Absorptance
0.7000; !- Visible Absorptance
! Root
  Construction,
     IEAD Res Roof, !- Name
Roof Membrane, !- Outside Layer
     IEAD Res Roof Insulation,!- Layer 2
                                          !- Layer 3
     Metal Decking;
  Material,
     IEAD Res Roof Insulation,! - Name
     MediumRough, !- Roughness
0.127338688569477, !- Thickness {m}
0.049, !- Conductivity {W/m-K}
265.0000, !- Density {kg/m3}
836.8000, !- Specific Heat {J/kg-K}
0.9000, !- Thermal Absorptance
0.7000, !- Solar Absorptance
     0.7000;
                                          !- Visible Absorptance
     ! Interior Walls
       Construction,
          int-walls,
                                           !- Name
                                       !- Outside Layer
!- Laver 2
          1/2IN Gypsum,
                                              !- Layer 2
          1/2IN Gypsum;
     ! Interior Floors
       Construction,
          INT-FLOOR-TOPSIDE, !- Name
MAT-CC05 4 HW CONCRETE, !- Outside Layer
                                             !- Layer 2
          CP02 CARPET PAD;
       Construction,
          INT-FLOOR-UNDERSIDE, !- Name
                                            !- Outside Layer
          CP02 CARPET PAD,
          MAT-CC05 4 HW CONCRETE; !- Layer 2
```

ISSN: 2278-0181

```
! ***WINDOW/DOOR CONSTRUCTIONS AND MATERIALS***
  Construction,
Window Res Operable,
                                    ! - Name
    Res Operable Assembly Window;
                                           !- Outside Layer
  WindowMaterial:SimpleGlazingSystem,
    3.80426,
                                    !- U-Factor {W/m2-K}
                                    !- Solar Heat Gain Coefficient
    0.39,
                                    !- Visible Transmittance
! ***COMMON CONSTRUCTIONS AND MATERIALS***
    nstruction,
InteriorFurnishings, !- Name
!- Outside Layer
  Construction.
  Material,
    Std Wood 6inch,
                                  I - Name
    MediumSmooth,
                                    !- Roughness
                                   !- Thickness {m}
    0.15,
                                    !- Conductivity {W/m-K}
    0.12
                                   !- Conductivity {W/m-K}
!- Density {kg/m3}
!- Specific Heat {J/kg-K}
!- Thermal Absorptance
!- Solar Absorptance
!- Visible Absorptance
    540.0000,
    1210,
    0.9000000,
    0.7000000,
    0.70000000
```

The no of people per apartment was chosen to be four.

The electric loads were also defined as follows:

```
Lights,
 G NW Apartment_Lights,
                           !- Name
 G NW Apartment.
                           !- Zone or ZoneList Name
 APT LIGHT SCH,
                          !- Schedule Name
 Watts/Area,
                           !- Design Level Calculation Method
                           !- Lighting Level {W}
                           !- Watts per Zone Floor Area {W/m2}
  3.88,
                           !- Watts per Person {W/person}
 0.0000.
                          !- Return Air Fraction
                          !- Fraction Radiant
 0.7000,
 0.2000.
                           !- Fraction Visible
 1.0000,
                          !- Fraction Replaceable
 General,
                          !- End-Use Subcategory
                           !- Return Air Fraction Calculated from Plenum Temperature
 No;
```

```
ElectricEquipment,
 G SW Apartment_PlugMisc_Equip, !- Name
 G SW Apartment,
                          !- Zone or ZoneList Name
                           !- Schedule Name
 APT_EQP_SCH,
                           !- Design Level Calculation Method
 Watts/Area,
                           !- Design Level {W}
  5.38,
                           !- Watts per Zone Floor Area {W/m2}
                           !- Watts per Person {W/person}
 0.0000,
                          !- Fraction Latent
 0.5000,
                          !- Fraction Radiant
 0.0000,
                          !- Fraction Lost
 General:
                           !- End-Use Subcategory
```

Vol. 7 Issue 05, May-2018

```
! ***HVAC EOUIPMENT***
   Fan:OnOff,
     SPLITSYSTEMAC:01 Unitary Package fan, !- Name
                            !- Availability Schedule Name
     ALWAYS ON,
                            !- Fan Total Efficiency
     0.53625,
                            !- Pressure Rise {Pa}
     622.0,
                            !- Maximum Flow Rate {m3/s}
     AUTOSIZE,
                            !- Motor Efficiency
     0.825,
                            !- Motor In Airstream Fraction
     OA-SPLITSYSTEMAC:01 Unitary PackageNode, !- Air Inlet Node Name
     SPLITSYSTEMAC:01 Unitary PackageCoolCoil air inlet, !- Air Outlet Node Name
                            !- Fan Power Ratio Function of Speed Ratio Curve Name
                            !- Fan Efficiency Ratio Function of Speed Ratio Curve Name
     Unitary Fans;
                       !- End-Use Subcategory
   Coil:Heating:Fuel,
     SPLITSYSTEMAC:12 Unitary Package HeatCoil, !- Name
                                !- Availability Schedule Name
     ALWAYS ON,
     NaturalGas,
                                 !- Fuel Type
                                 !- Burner Efficiency
     0.8,
                                 !- Nominal Capacity {W}
     AUTOSIZE,
     SPLITSYSTEMAC:12 Unitary PackageHeatCoil air inlet, !- Air Inlet Node Name
     SPLITSYSTEMAC: 12 Supply Equipment Outlet Node; !- Air Outlet Node Name
AirLoopHVAC,
```

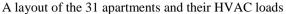
```
SPLITSYSTEMAC:13, !- Name

, !- Controller List Name

, !- Availability Manager List Name

AUTOSIZE, !- Design Supply Air Flow Rate {m3/s}

SPLITSYSTEMAC:13 Air Loop Branches, !- Branch List Name


, !- Connector List Name

SPLITSYSTEMAC:13 Supply Equipment Inlet Node, !- Supply Side Inlet Node Name

SPLITSYSTEMAC:13 Zone Equipment Outlet Node, !- Demand Side Outlet Node Name

SPLITSYSTEMAC:13 Zone Equipment Inlet Node, !- Demand Side Inlet Node Names

SPLITSYSTEMAC:13 Supply Equipment Outlet Node; !- Supply Side Outlet Node Names
```


Weather file was imported as well. The following results were obtained. [6]

Site to Source Energy Conversion Factors

	Site=>Source Conversion Factor
Electricity	3.546
Natural Gas	1.092
District Cooling	0.848
District Heating	1.647
Steam	0.585
Gasoline	1.050
Diesel	1.050
Coal	1.050
Fuel Oil #1	1.050
Fuel Oil #2	1.050
Propane	1.050
Other Fuel 1	1.000
Other Fuel 2	1.000

328

Building Area

	Area [m2]
Total Building Area	3134.59
Net Conditioned Building Area	3134.59
Unconditioned Building Area	0.00

ENVELOPE

Window-Wall Ratio

	Total	North (315 to 45 deg)	East (45 to 135 deg)	South (135 to 225 deg)	West (225 to 315 deg)
Gross Wall Area [m2]	1542.01	564.78	206.22	564.78	206.22
Above Ground Wall Area [m2]	1542.01	564.78	206.22	564.78	206.22
Window Opening Area [m2]	231.09	83.23	33.42	83.23	31.21
Gross Window-Wall Ratio [%]	14.99	14.74	16.20	14.74	15.13
Above Ground Window-Wall Ratio [%]	14.99	14.74	16.20	14.74	15.13

Conditioned Window-Wall Ratio

	Total	North (315 to 45 deg)	East (45 to 135 deg)	South (135 to 225 deg)	West (225 to 315 deg)
Gross Wall Area [m2]	1542.01	564.78	206.22	564.78	206.22
Above Ground Wall Area [m2]	1542.01	564.78	206.22	564.78	206.22
Window Opening Area [m2]	231.09	83.23	33.42	83.23	31.21
Gross Window-Wall Ratio [%]	14.99	14.74	16.20	14.74	15.13
Above Ground Window-Wall Ratio [%]	14.99	14.74	16.20	14.74	15.13

Skylight-Roof Ratio

	Total
Gross Roof Area [m2]	783.65
Skylight Area [m2]	0.00
Skylight-Roof Ratio [%]	0.00

PERFORMANCE

Zone Summary

	Area [m2]	Conditioned (Y/N)	Part of Total Floor Area (Y/N)	Volume [m3]	Multipliers	Above Ground Gross Wall Area [m2]	Underground Gross Wall Area [m2]	Window Glass Area [m2]	Opening Area [m2]	Lighting [W/m2]	People [m2 per person]	Plug and Process [W/m2]
G SW APARTMENT	88.25	Yes	Yes	268.96	1.00	58.52	0.00	8.55	8.55	3.8800	35.30	5,3800
G NW APARTMENT	88.25	Yes	Yes	268.96	1.00	58.52	0.00	8.55	8.55	3.8800	35.30	5.3800
OFFICE	88.25	Yes	Yes	268.96	1.00	58.52	0.00	8.55	8.55	10.7600	44.12	12.9000
G NE APARTMENT	88.25	Yes	Yes	268.96	1.00	58.52	0.00	8.55	8.55	3.8800	35.30	5.3800

Exterior Fenestration

	Construction	Glass Area [m2]	Frame Area [m2]	Divider Area [m2]		2000/01/07/05/05	Glass U-Factor [W/m2-K]	Glass SHGC	Glass Visible Transmittance	Frame Conductance [W/m2-K]	Divider Conductance [W/m2-K]	Shade Control	Parent Surface	Azimuth [deg]	Tilt [deg]	Cardinal Direction
GWINDOW1	WINDOW RES OPERABLE	5.20	0.00	0.00	5.20	5.20	3.809	0.389	0.274			No	G SWALL SWA	180.00	90.00	S
GWINDOW2	WINDOW RES OPERABLE	3.34	0.00	0.00	3.34	3.34	3.809	0.389	0.274			No	G WWALL SWA	270.00	90.00	W
GWINDOW4	WINDOW RES OPERABLE	5.20	0.00	0.00	5.20	5.20	3.809	0.389	0.274			No	G NWALL NWA	0.00	90.00	N
GWINDOW6	WINDOW RES OPERABLE	3.34	0.00	0.00	3.34	3.34	3.809	0.389	0.274			No	G WWALL NWA	270.00	90.00	W

Cooling Coils

	Туре	Design Coil Load [W]	Nominal Total Capacity [W]	Nominal Sensible Capacity [W]		Sancinia Hast	Nominal Efficiency [W/W]
SPLITSYSTEMAC:01_UNITARY_PACKAGE_COOLCOIL	Coil:Cooling:DX:SingleSpeed		3482.68	2431.20	1051.48	0.70	3.67
SPLITSYSTEMAC:10_UNITARY_PACKAGE_COOLCOIL	Coil:Cooling:DX:SingleSpeed		7567.22	5282.55	2284.67	0.70	3.67
SPLITSYSTEMAC:11_UNITARY_PACKAGE_COOLCOIL	Coil:Cooling:DX:SingleSpeed		6913.01	4825.85	2087.15	0.70	3.67
SPLITSYSTEMAC:12_UNITARY_PACKAGE_COOLCOIL	Coil:Cooling:DX:SingleSpeed		6921.80	4831.99	2089.81	0.70	3.67

Heating Coils

	Туре	Design Coil Load [W]	Nominal Total Capacity [W]	Nominal Efficiency [W/W]
T CORRIDOR UNIT HEATER COIL	Coil:Heating:Electric		882.95	1.00
G CORRIDOR UNIT HEATER COIL	Coil:Heating:Electric		0.00	1.00
M CORRIDOR UNIT HEATER COIL	Coil:Heating:Electric		0.00	1.00
SPLITSYSTEMAC:01_UNITARY_PACKAGE_HEATCOIL	Coil:Heating:Fuel		5225.73	0.80
SPLITSYSTEMAC:10_UNITARY_PACKAGE_HEATCOIL	Coil:Heating:Fuel		10419.55	0.80

Zone Sensible Heating

	Calculated Design Load [W]	User Design Load [W]	User Design Load per Area [W/m2]	Calculated Design Air Flow [m3/s]
G SW APARTMENT	2390.37	3179.20	36.03	0.105
G NW APARTMENT	2384.26	3171.07	35.93	0.105
OFFICE	4122.72	5483.21	62.13	0.180

Zone Sensible Cooling

	Calculated Design Load [W]	User Design Load [W]	User Design Load per Area [W/m2]	Calculated Design Air Flow [m3/s]	User Design Air Flow [m3/s]
G SW APARTMENT	1292.10	1718.49	19.47	0.084	0.112
G NW APARTMENT	1182.28	1572.43	17.82	0.077	0.102
OFFICE	2228.20	2963.51	33.58	0.145	0.193

Fans

	Туре	Total Efficiency [W/W]	Delta Pressure [pa]	Max Air Flow Rate [m3/s]		Rated Power Per Max Air Flow Rate [W-s/m3]		End Use
T CORRIDOR UNIT HEATERFAN	Fan:ConstantVolume	0.54	49.80	0.03	2.80	92.87	1.00	Unit Heater Fans
G CORRIDOR UNIT HEATERFAN	Fan:ConstantVolume	0.54	49.80	0.00	0.00		1.00	Unit Heater Fans
M CORRIDOR UNIT HEATERFAN	Fan:ConstantVolume	0.54	49.80	0.00	0.00		1.00	Unit Heater Fans
SPLITSYSTEMAC:01_UNITARY_PACKAGE_FAN	Fan:OnOff	0.54	622.00	0.14	162.67	1159.91	1.00	Unitary Fans
SPLITSYSTEMAC:10_UNITARY_PACKAGE_FAN	Fan:OnOff	0.54	622.00	0.30	353.46	1159.91	1.00	Unitary Fans
SPLITSYSTEMAC:11_UNITARY_PACKAGE_FAN	Fan:OnOff	0.54	622.00	0.28	322.90	1159.91	1.00	Unitary Fans

CONCLUSION

We find that the interior temperature of room is lesser when two of the sides of walls are covered with drapes. The maximum drop in temperature was during 12pm, of about 3.3 deg celcius.

This drop in temperature reduces energy consumption which in turn saves a large amount of money for redeveloped Dharavi township.

The shift towards blue side in the PMV values also indicate the comfort.

The desired temperature band for calculations was taken as 18-26 degree Celsius.

The required HVAC loads were calculated for thermal comfort of 5 people in each apartment which was airconditioned for 18hrs during weekends and 16 hours during working days.

It is observed that the room's consumption is decreased especially during the summer due to the temperatue drop by evapotranspiration of green drapes of Vernonia Elaegnifolia which in turn reduces the internal temperature within rooms.

It is found that annual reduction in electricity bill of Rs 39936 was observed which is USD614.41 each year per household. Therefore for the 14000 households in Dharavi the savings would be USD8,601,740 annually.

ACKNOWLEDGEMENT

A project provides us an opportunity to have a greater understanding of the subject and explore beyond the book. On this occasion, we would like to express our heartfelt gratitude to out faculty, Dr. Satyajit Ghosh for his guidance and encouragement throughout this project.

ISSN: 2278-0181 Vol. 7 Issue 05, May-2018

Vol. 7 Issue 05, May-2018

Additionally, we are grateful to the VIT University Management and our School Deanfor giving us an opportunity to carry out this project. It has enhanced our practical knowledge and exemplified the process of making an engineer.

REFERENCES

- [1] The credibility of slums: Informal housing and urban governance in India
- [2] Numerical study of mixed convective heat transfer coefficient for building cluster
- [3] Analysis of Convective Heat Transfer in Building Facades in Street Canyons
- [4] Study on heat transfer experiments and mathematical models of the energy pile of building
- [5] Froude –Stanton modeling of heat and mass transfer in large vertical spaces of high-rise buildings
- [6] Electricity access in urban slum households of Bangladesh: A case of Dhaka