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Abstract ─ In this paper, reconstruction of a spectrum from 

recurrent nonuniformly sampled signal using FFT for known 

nonuniform sampling ratios is described.  Recurrent 

nonuniform sampling occurs in a very high-speed waveform 

digitizing system with interleaved A/D converters.  We 

developed a reconstruction algorithm using FFT by deriving the 

relationship between the DTFT of a uniformly sampled signal 

and the DTFT of a nonuniformly sampled signal.  A spectrum 

was reconstructed using the proposed algorithm and the result 

was compared to one existing algorithm that uses an alternative 

DTFT.  The proposed method performed equally at lower 

computational complexity. 

  

Index Terms ─ Recurrent Nonuniform Sampling, Spectrum 

Reconstruction, FFT. 

 

I. INTRODUCTION 
 

N this paper, reconstruction of a spectrum from recurrent 

nonuniform sampling using FFT for known nonuniform 

sampling ratios is described.  Recurrent nonuniform sampling 

occurs in a very high-speed waveform digitizing system with 

interleaved A/D converters [1]–[4]. 

 

 
 

Fig. 1. Very high-speed waveform ADC system. 

 

As shown in Fig. 1, to increase the sampling frequency N 

A/D converters are used.  Sampling frequency of each A/D 

converter is 1/NT [Hz] and the resulting sampling frequency 

of the high-speed waveform digitizer is 1/T [Hz].  Ideally 

each delay is exactly T seconds.  However, due to the 

imperfection of the delays, the actual delay at the n-th 

converter is given by (n+rn)T where rn are termed the 

nonuniform sampling ratios and should be zero for uniform 

sampling.  Recurrent nonuniform sampling of a continuous-

time signal is shown in Fig. 2 when 3 A/D converters are 

used. 
 

 
Fig. 2.  Recurrent nonuniform sampling.  T is the sampling interval 

for uniform sampling, rn are the nonuniform sampling ratios.  

There is a periodic nonuniform sampling pattern.  In this 

case the period N is 3. 

 

A continuous-time signal x(t) is nonuniformly sampled at 

 

 
( ) ( )n nkN n T r T kN n r T      (1) 

 

where k in general goes from −∞ to ∞, n ranges from 0 to 

N−1, and T is the average sampling interval. 

 Recurrent nonuniform sampling is described in the 

literature [1]−[7].  In particular, an algorithm to reconstruct a 

spectrum from a nonuniformly sampled signal for known 

nonuniform sampling ratios is proposed in [4] where an 

alternative transform is used.  The method to estimate 

nonuniform sampling ratio or sampling time offset is 

presented in [8].  In this paper, we derived a relationship 

between the discrete-time Fourier Transform (DTFT) of a 

uniformly sampled signal and the DTFT of a nonuniformly 

sampled signal.  Our derivation closely followed the one 

presented in [4].  Using the relationship an algorithm for 

reconstruction of spectrum using FFT is proposed.  The 

development of the algorithm also followed the one described 

in [4].  The experiment verified that the proposed method 

showed the identical performance at much lower 

computational complexity compared to the result described in 

[4]. 

The paper is organized as follows.  In section 2, a 

relationship between the DTFT of a uniformly sampled signal 

and the DTFT of a nonuniformly sampled signal is derived 
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and the new algorithm that can take advantage of FFT is 

described.  In section 3, experimental comparison between 

the proposed method and the existing one is made in terms of 

performance and computational complexity.  Finally, a 

conclusion is made in section 4. 

II. RECONSTRUCTION METHOD USING FFT 
 

The discrete-time Fourier transform (DTFT) of a uniformly 

sampled discrete-time signal or sequence, x[kN+n] = 

x(kNT+nT), is 
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where θ (= ωT) is termed the digital frequency (or normalized 

frequency) in radians.  Most literature use X(ejθ) rather than 

X(θ) to denote the DTFT.  However, we would like to use X(θ) 

for convenience.  The DTFT of the nonuniformly sampled 

sequence is 
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where the nonuniformly sampled sequence is expressed as 
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Using the inverse DTFT formula the DTFT of the 

nonuniformly sampled sequence becomes 
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where X(λ) is the DTFT of the uniformly sampled sequence 

as in (2) except that θ is replaced by λ [rad].  By changing the 

order of the summations and manipulating exponents, 
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A train of unit impulse functions of t with the period P can be 

expressed in terms of its own Fourier series so that 
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where δ(t) is the unit impulse function, and the right hand 

side of the equation is the expression of the Fourier series. 

 By substituting P with 2π/N, one obtains 
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By replacing t in equation (8) with (λ−θ) and plugging it into 

equation (6) one obtains 
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Let us assume that a particular frequency θ0 is inside the 

interval [0, 2π/N).  Using the sifting property equation (9) 

becomes when N is even 
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When N is odd, equation (9) becomes 
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We would like to continue with the case when N is even.  Let 

us consider the frequency θ0 + 2π/N.  With this frequency 

equation (9) becomes by the same way as in (10) 
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In general, for m = 0 to N−1, 
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Equation (13) can be rewritten as 
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Let us define the following. 
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In other words, B(k, m) for m = 0, 1, , N−1 is the DFT of the 

sequence given by 
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where k = −N/2, −(N/2−1), , 0, 1, , N/2−2, N/2−1. 

Now equation (14) becomes 
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Equation (17) can be rewritten as 
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In matrix form, equation (18) becomes 
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The reconstruction of X, X̂ , can be obtained by 

 

 1ˆ X Α X . (21) 

 

In practice, instead of finding the inverse matrix and 

multiplying it to the vector, equation (20) is solved using 

Gaussian elimination for X. 

An algorithm to reconstruct the spectrum from the 

nonuniformly sampled signal is as follows. 

1) Compute the DFT, ( )X k , of the nonuniformly sampled 

signal using FFT by padding appropriate number of zeros 

as necessary.  Now the number of the DFT coefficients is 

LN. 

2) Do the following for l = 0, 1, 2, ⋯, L−1. 

i) Let θ0 = 2

LN
l   and compute B(k, m) using DFT as in 

equation (15). 

ii) Form matrix A(l) using equations (19) and (20). 

iii) Solve the following for reconstruction of the DFT, 

X̂ , using Gaussian elimination. 
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3) The resulting DFT sequence, 

 ˆ ˆ ˆ ˆ ˆ(0), (1), , ( 1), ( ), , ( 1)X X X N X N X LN   is the 

reconstruction of the spectrum. 
 

III. EXPERIMENTAL RESULT 

 

In [4], an alternative discrete-time Fourier transform, 

( )dX  , is defined as follows and the procedure similar to one 

described in the previous section is used for reconstruction of 

the spectrum. 

 

 

1
( )

0

( ) ( ) n

N
j kN n r

d n

k n

X x kNT nT r T e
 

   

 

     (22) 

  

In [4] instead of constructing a new N by N matrix equation 

for each l as in (21), only one N by N inverse matrix is used 

in all l.  However, FFT cannot be used to compute the 

alternative DFT and that results in heavy computational 

complexity. 

The following continuous-time signal as in [4] was used for 

our experiment. 

 

 
( ) sin(2 )x t t   (23) 

 

The average sampling interval T = 0.11 [sec], the number of 

A/D converters N = 8, and the number of samples LN = 512 

(L = 64) in this experiment.  The rn are chosen as follows. 

 

 rn = {0.1, −0.26, 0.12, −0.14, 0.15, 0.22, −0.11, 0.13} (24) 
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Fig. 3. Plots of reconstructed, nonuniform, and true spectra. 

 

 

The plots of reconstructed, nonuniform, and true spectra are 

shown in Fig. 3 which is identical to the result obtained using 

the algorithm described in [4].  TABLE 1 shows the number 

of complex multiplications required for reconstruction. 
 

 
TABLE 1. Required number of complex multiplications 

 Proposed method Method in [4] 

To compute ( )X k  or 

( )dX k  

2log ( )
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2( )LN for 

alternative DFT 
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When L = 64, N = 8 and the number of samples LN = 512, the 

proposed method needs 21,440 complex multiplications If we 

use FFT to build N×N matrices while the method of [4] needs 

266,768 multiplications.  The complexity ratio is about 12.4.  

The ratio will increase as the number of samples increases (or 

L increases). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

 

In this paper, we derived a relationship between the DTFT of 

a uniformly sampled signal and the DTFT of a nonuniformly 

sampled signal.  Using the relationship an algorithm for 

reconstruction of a spectrum from the nonuniformly sampled 

signal using FFT is developed.  The experiment verified that 

the proposed method showed identical performance at much 

lower computational complexity compared to an existing 

method. 
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