Realistic Simulation for Vehicular Ad-hoc Network Using ZigBee Technology

Mamta A. Ramteke
M-Tech CSE, Rajiv Gandhi College of Engg. R & T, Chandrapur, RTM, Nagpur University

Mr. R. K. Krishna,
Rajiv Gandhi College of Engg. R & T, Chandrapur, RTM, Nagpur University

Abstract—One emerging, new type of ad-hoc network is the Vehicular Ad-Hoc Network (VANET), in which vehicles constitute the mobile nodes in the network. Due to the prohibitive cost of deploying and implementing such a system in real world, most research in VANET relies on simulations for evaluation. A key component for VANET simulations is a realistic vehicular mobility model that ensures conclusions drawn from simulation experiments will carry through to real deployments. Vehicular Ad Hoc Network (VANET) is a form of Mobile Ad Hoc Networks (MANET). The field of VANETs started gaining attention in 1980s and has now been an active field of research and development. VANETs provide us with the infrastructure for developing new systems to enhance drivers’ and passengers’ safety and comfort. In after month of accident, it can be vital to maintain communication with trapped miners and rescuers, and to establish and track their position. VANETs are distributed self organizing networks formed between moving vehicles equipped with wireless communication devices. But the WSN has its own limitation, such as not having enough bands to communicate and transfer image data efficiently, so, how to overcome the limitation and provide one communication with wide band is concerned. [9] VANETs possess a few distinguishing characteristics from MANETs. These are:

1 Highly dynamic topology.
2 Patterned Mobility.
3 Propagation Model.
4 Unlimited Battery Power and Storage.
5 On-board Sensors.

There are many routing protocols that have been proposed and assessed to improve the efficiency of VANET. In this paper, I discuss the choice of working frequency for wireless system and node deployment then I introduce the wireless system that invent using ZigBee technology which is called the ZigBee standard use two routing protocol in routing layer in order to establish the network and transfer the data among sensor node thus routing protocol are Ad Hoc on-demand distance vector (AODV) [10]. So, I am trying to analyze the performance of one of the routing protocols AODV with respect to various parameters like Throughput, Packet size, Packet drops, End to End delay etc. in three different scenarios of node density. The performance of the proposed protocol has been studied using simulation tools mainly Network Simulator (NS) and MOVE (MObility model generator for VEHicular networks) over SUMO (Simulation of Urban Mobility). The paper is organized in five sections. The next section describes VANET routing protocols in which AODV is described in detail. In section III we discuss research methodology used for carrying out the experiment. Section IV shows the results and analysis made and last section covers the conclusion part.

I. INTRODUCTION

Recent advances in wireless networks have led to the introduction of a new type of networks called Vehicular Ad Hoc Networks (VANETs). VANETs [1] is the subclass of Mobile Ad Hoc Networks (MANETs). It deploys the concept of continuously varying vehicular motion. VANETs provide us with the infrastructure for developing new systems to enhance drivers’ and passengers’ safety and comfort. In after month of accident, it can be vital to maintain communication with trapped miners and rescuers, and to establish and track their position. VANETs are distributed self organizing networks formed between moving vehicles equipped with wireless communication devices. But the WSN has its own limitation, such as not having enough bands to communicate and transfer image data efficiently, so, how to overcome the limitation and provide one communication with wide band is concerned. [9] VANETs possess a few distinguishing characteristics from MANETs. These are:

1 Highly dynamic topology.
2 Patterned Mobility.
3 Propagation Model.
4 Unlimited Battery Power and Storage.
5 On-board Sensors.

There are many routing protocols that have been proposed and assessed to improve the efficiency of VANET. In this paper, I discuss the choice of working frequency for wireless system and node deployment then I introduce the wireless system that invent using ZigBee technology which is called the ZigBee standard use two routing protocol in routing layer in order to establish the network and transfer the data among sensor node thus routing protocol are Ad Hoc on-demand distance vector (AODV) [10]. So, I am trying to analyze the performance of one of the routing protocols AODV with respect to various parameters like Throughput, Packet size, Packet drops, End to End delay etc. in three different scenarios of node density. The performance of the proposed protocol has been studied using simulation tools mainly Network Simulator (NS) and MOVE (MObility model generator for VEHicular networks) over SUMO (Simulation of Urban Mobility). The paper is organized in five sections. The next section describes VANET routing protocols in which AODV is described in detail. In section III we discuss research methodology used for carrying out the experiment. Section IV shows the results and analysis made and last section covers the conclusion part.
II ZigBee Overview

A group of companies called the zigbee alliance has introduce anew technology called zigbee is standard for low cost, low power, and low data rate WSNs based on the IEEE 802.15.4 physical (PHY) and medium access control (MAC) layer specification as shown in fig 2, the ZigBee standard has added three layer extract to the MAC and the PHY layers of the IEEE 802.15.4 standard in fig. 2, NLDE is the network layer data entity, MLDE is the MAC layer data entity. NLME is the network layer management entity, and SAP is the service access point and of these are only interfaces between the layer. these layer are the network layer, the application layer, the network layer support three network topology star, tree, and mesh topologies. The network layer is also responsible for the network establishment, maintenance and network routing protocol.

Each ZigBee network should have coordinator this coordinator must be an IEEE 802.15.4 full function device FFD, this coordinator is engaged in coordinating and disconnecting nodes to the WSN. Moreover the ZigBee coordinator is responsible for establishing the network and providing secure and stable link between the network device.

![Fig 1: Stack of ZigBee](image)

![Fig 2: Taxonomy of Various Routing Protocols in VANET](image)

sensor and ID card use battery. The battery life \(T \) can be calculated as follows:

\[
T = C \times \frac{(T_1 + T_2 + T_3)}{(T_1 \times I_1 + T_2 \times I_2 + T_3 \times I_3)}
\]

In this formula, \(T_1 \): data sending time, \(I_1 \): working current, \(T_2 \): waiting time, \(I_2 \): waiting current, \(T_3 \): active current. \(C \): battery capacity. Take ID card as an example, we use the battery CR2450, its capacity is 550mAh. \(T_1 \) is 450μs, \(I_1 \) is 12.5mA, \(T_2 \) is 500ms, \(I_2 \) is 1μA, \(T_3 \) is 600μs, \(I_3 \) is 1.5 mA, so we can calculate \(T = 39149.8 \) h, that is about 4.5 years. Considering real factors, we can confirm that the ID cards can normal work for 3 years. [9]

ZigBee standard use a combination technique of two routing protocols in its routing table; the cluster tree and ADOV routing protocols. these routing protocols cooperate in order to establish the network and send data among the wireless sensor device in the network. [10]

III. ROUTING PROTOCOLS

A routing protocol governs the way of exchanging information in two communication entities; it includes the procedure in establishing a route, decision in forwarding, and action in maintaining the route or recovering from routing failure. Fig. 2 illustrates the taxonomy of these VANET routing protocols which can be classified as topology-based and geographic (position-based) in VANET.
A. AODV

As in VANET, nodes (vehicles) have high mobility and moves with high speed. Proactive based routing is not suitable for it. Proactive based routing protocols may fail in VANET due to consumption of more bandwidth and large table information. AODV is a reactive routing protocol, which operates on hop-by-hop pattern. The Ad hoc On-Demand Distance Vector (AODV) [10] algorithm enables dynamic, self-starting, multi hop routing between participating mobile nodes wishing to establish and maintain an ad hoc network. AODV allows mobile nodes to obtain routes quickly for new destinations, and does not require nodes to maintain routes to destinations that are not in active communication. Route Requests (RREQs), Route Replies (RREPs), and Route Errors (RERRs) are the message types defined by AODV. In AODV routing, upon receipt of a broadcast query (RREQ), nodes record the address of the node sending the query in their routing table (Fig. 3a). This procedure of recording its previous hop is called backward learning. Upon arriving at the destination, a reply packet (RREP) is then sent through the complete path obtained from backward learning to the source (Fig. 3b). At each stop of the path, the node would record its previous hop, thus establishing the forward path from the source. The flooding of query and sending of reply establish a full duplex path. After the path has been established, it is as maintained long as the source uses it. A link failure will be reported recursively to the source and will in turn trigger another query-response procedure to find a new route.

Fig. 3: AODV route discovery

B. AODV Route Discovery

AODV uses route discovery by broadcasting RREQ to all its neighboring nodes. The broadcasted RREQ contains addresses of source and destination, their sequence numbers, broadcast ID and a counter, which counts how many times RREQ has been generated from a specific node. When a source node broadcast a RREQ to its neighbors it acquires RREP either from its neighbors or that neighbor(s) rebroadcasts RREQ to their neighbors by increment in the hop counter. If node receives multiple route requests from same broadcast ID, it drops repeated route requests to make the communication loop free.

C. AODV Route Table Management

Routing table management in AODV is needed to avoid those entries of nodes that do not exist in the route from source to destination. In AODV Managing routing table information handled with the destination sequence numbers.

D. AODV Route Maintenance

When nodes in the network detects that a route is not valid anymore for communication it delete all the related entries from the routing table for those invalid routes. And sends the RREP to current active neighboring nodes that route is not valid anymore for communication. AODV maintains only the loop free routes.

IV. RESEARCH METHODOLOGY USED

To carry out the experiments those simulations tools are used which can produce realistic mobility model. The various tools used for simulation, simulation configuration, performance metrics used for making various comparisons are discussed in this section.

A. Simulation tools

The simulation module created using TCL makes use of two tools to simulate the implementation and evaluate its performance:

NS2: The Network Simulator (ns2) [16] is a discrete event driven simulator developed at UC Berkeley. We are using Network Simulator NS2 for simulations of protocols. It provides substantial support for simulation of TCP, routing and multicast protocols over wired and wireless networks. Ns- 2 code is written either in C++ and OTCL and is kept in a separate file that is executed by OTCL interpreter, thus generating an output file for NAM (Network animator) [17]. It then plots the nodes in a position defined by the code script and exhibits the output of the nodes communicating with each other. It consists of two simulation tools. The network simulator (ns) contains all commonly used IP protocols. The network animator (NAM) is use to visualize the simulations.

B. Simulation Parameters

Various parameters used for performance evaluation are: 1) Throughput: It is the amount of data per unit time that is delivered from one node to another via a communication link. The throughput is measured in Packets per unit TIL or bits per TIL. TIL is Time Interval Length. More is the throughput of sending and receiving packets better is the performance. Lesser is the throughput of dropping packets better is the performance. 2) Average
throughput: It is the average of total throughput. It is also measured in Packets per unit TIL or bits per TIL.

3) Packet Drop: It shows total number of data packets that could not reach destination successfully. The reason for packet drop may arise due to congestion, faulty hardware and queue overflow etc. Lower packet drop rate shows higher protocol performance.

4) Packet size: Size of packets in bytes.

5) Average simulation End to End delay (End2End delay): This metric gives the overall delay, from packet transmission by the application agent at the source node till packet reception by the application agent at the destination node. Lower delay shows higher protocol performance.

The following equation is used to calculate the average end-to-end delay, Average End to End Delay = (T_DataR – T_DataS), Where T_DataR = Time data packets received at destination node T_DataS = Time data packets sent from source node. The end to end delay is important metrics because VANET needs a small latency to deliver quick messages. It shows the suitability of the protocol for the VANET.

6) Simulation time: Total time taken for simulation. It is measured in seconds.

V. CONCLUSION

The IEEE802.15.4 PHY has been designed for three bands as 868MHz, 915MHz and 2.4GHz. Although above the ground, the 868MHz band is used in Europe, the 915MHz band in North America, Australia, etc., and the 2.4GHz band has been accepted in almost all the countries of the world.

The Ad Hoc On-Demand Distance Vector (AODV) algorithm is an on-demand reactive routing protocol, which means it seeks for routes only when required. AODV makes use of sequence numbers to avoid forming routing loops.

AODV is simulated with realistic mobility model. For this MOVE is used along with NS2 and SUMO. Then graphs are plotted using Tracegraph for evaluation. AODV’s performance is analyzed for three different number of nodes i.e. 4, 10 and 25 nodes with respect to various parameters like throughput, packet size, packet drops, delay time etc.

Since AODV is on-demand techniques, it exhibits the best characteristics of proactive algorithms and is simultaneously responsive to the network needs and conditions. Thus inference can be drawn from the simulation results that AODV protocol is a preferable choice for multi-hop, vehicular environment and is a preferable choice while making real-time tests of vehicular environments.

REFERENCES

[18] www.ZigBee.com