International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

RDC Based Decentralized Data Storage In Cloud Computing

Jijin Somant™, M. Premkumart, K. Ambikal*!
[i2lpervasive Computing Technology, B!Asst. Prof. Computer Science and Engineering
BIT Campus, Anna University, Tiruchirappalli

Abstract

Cloud computing is an internet based computing
where the resources are delivered as if it were an
entity. Cloud service providers provide services for
users to access their services from anywhere using
internet. Users can thereby reduce the expenditure
by converting capital expenditure into operational
expenditure. But users’ fear of losing control over
their data leads to a prompt towards the
transparent usage of their data in the cloud. Also
checking the integrity of data stored remotely on
un-trusted cloud servers has emerged as a critical
issue. The accountability and auditing based
framework in the cloud provides a user centric
solution which monitor usage of user’s data in the
cloud. The resulting enhanced cloud information
accountability framework is a highly distributed,
powerful and lightweight framework featured with
transparent auditing and remote integrity checking
mechanism. The programmable capability of JAR
file is leveraged to create a dynamic and travelling
object for keeping track of usage of data. The push-
pull auditing mechanism is provided to strengthen
users control over their data in the cloud. A
dynamic and remote integrity checking mechanism
is also provided to periodically check integrity of
outsourced data stored in cloud server.

1. Introduction

Cloud computing is a compilation of
existing technologies and techniques, packaged
within a new infrastructure archetype that offers

improved scalability, business agility, elasticity,
reduced management costs, faster startup time and
just-in-time availability of resources. Cloud can be
rapidly deployed with low startup costs or capital
investments. It provides an on demand self-service
where service costs are measured based on usage or
subscription. The characteristics such as ubiquitous
network access, location independent resource
pooling, multi-tenant sharing of services or
resources and rapid elasticity makes cloud
computing more convenient for the users who
access the cloud services.

Along with these conveniences users also
facing some issues related cloud computing.
Clients have no idea or control over what happens
inside a cloud. They even don know in which
machine their data are stored and which entity is
handling their data. Even if the cloud provider is
honest, it can have malicious system
administrative, who can tamper with the VMs and
violate confidentiality and integrity. Clouds are still
subject to traditional data confidentiality,
availability, privacy issues and integrity, plus some
additional attacks.

Most security problems stem from Loss of
control, Lack of trust and Multi-tenancy. These
problems exist mainly in third party management
models. Consumer’s loss of control since his data,
applications, resources are located with service
provider. Also user identity management is handled
by and security policies, user access control rules
and enforcement are managed by the CSP.
Consumer relies on the Cloud Service Provider to
ensure data security and privacy, resource
availability and monitoring and repairing of
Services or resources.

www.ijert.org

1951

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

Lack of trust arises since cloud relies on third party
management schemes. Since tenants share a pool of
resources and have opposing goals there may arise
conflicts among them due to their difference in
interests. The issues mostly need to solve are, can
tenants get along together and ‘play nicely’?, if
they can’t, can we isolate them?, and how to
provide separation between tenants?

The solution to the aforementioned issues
is a transparent framework which monitors the
usage of user’s data in the cloud. The closed
environment approaches mainly developed for
centralized system or data base won’t adapt with
cloud environment. This is because of two reasons
such as data outsourcing and the nature of entities
in cloud. The data is outsourced from cloud service
providers to other entities. The entities can leave or
join the cloud whenever in a flexible manner. So
the traditional approaches can’t handle the complex
task delegation chain efficiently. CSP is beneficial
and can concentrate on the core business due to
data outsourcing. But outsourcing makes the
sensitive data of user out of control of the cloud
service provider. This causes a security risk in the
integrity and confidentiality of users’ sensitive data
in the cloud.

Since data is outsourced into public cloud
it should be protect from unauthorised access.
Confidentiality can be maintained by using
cryptographic algorithms. The access control and
authorization policies can be included to avoid
unauthorized access. A remote integrity checking
mechanism and a push-pull auditing mechanism
can strengthen user’s control over their data in the
cloud.

2. Related Works

Storing user’s data in a third party’s cloud
server causes serious concern over data
confidentiality. Data confidentiality can be
protected by general encryption schemes. But only
using conventional security measures, the issues in
cloud environment cannot be handled.
Accountability is an alternative to the traditional

encryption schemes. P.T. Jaeger et al [5] explore
nature of cloud computing, policy issues and
problems of information policy. Authors in [5]
examine the policy issues such as privacy,
reliability, security, regulation, and access that arise
in respond to rapid technological changes.

In the development of trust during human
interaction, accountability plays an important role.
Accountability acts as an alternative to traditional
security algorithms. R. Jagadeesan, A. Jeffrey, C.
Pitcher, and J. Riely, in [6] gave an idea about how
to develop foundations for distributed
accountability systems.

Pearson and Charlesworth [13] propose a
combined approach of procedural and technical
solutions for demonstrating accountability to
provide a solution to privacy and security issues
within the cloud. Maintaining privacy while
outsourcing data or using virtualization are seldom
possible using conventional security measures in
cloud computing. So Pearson and Charlesworth
[13] propose an accountability concept that
addresses privacy and security issues in the cloud.
The idea is to ensuring protection of data by
enforcing commitments to responsible data
handling.

Data security is crucial when storing data
in a third-party storage space. D. Boneh and M.K.
Franklin [2] explained a pairing based
cryptographic system in their paper. IBE is a public
key cryptography where encryption is done using
any string which is publicly known. IBE is
followed in our paper for providing security to the
data files. IBE is composed of four sub algorithms
namely Setup, Extract, Encrypt and Decrypt [2]. A.
Pretschner, et al in [12] explained about the
requirements needed for usage control.

Q. Wang, et al [16] narrates about the
need of a Third Party Auditor (TPA) to verify the
integrity of user’s data in the cloud. Remote data
integrity checking is critical in cloud computing to
verify integrity of users’ data in the remote server.
Public verifiability of dynamic data can be done
using their approach. Ateniese, Giuseppe, et al [1]
proposes a novel model for verifying integrity
checking and robust auditing remotely using PDP
and FEC techniques. This approach is adopting in

www.ijert.org

1952

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

our paper to strengthen the data integrity. Client
can challenge upon their data in remote server to
provide a proof of possession. Client pre-computes
metadata for each block of data and store data in
data centers along with these metadata.

3. Enhanced CIA Framework

Enhanced Cloud Information
Accountability Framework is an extension to the
novel Cloud Information Accountability
Framework. CIA is a highly distributed lightweight
framework that provides an end to end
accountability [15]. This framework had developed
for solving some issues like users fear of losing
control over their data in the cloud. Users fear
includes confidentiality, availability, privacy and
security issues and integrity.

Confidentiality: Users’ fear of losing control over
their data in the cloud includes whether their
sensitive data remain confidential or whether the
cloud compromises the leakage of the client data.
User cannot ensure whether the cloud provider
itself is honest and won’t peek into the data or not.

Integrity: User may fear whether the cloud provider
is doing the computations correctly or not. Users
may need to ensure that the cloud provider really
stored their data without tampering with it.

Availability: When the provider is attacked in a
Denial of Service attack whether the critical
systems go down at the client or users data will be
available without get tampered. Users also fear
about whether their data will be safe when cloud
provider goes out of business.

Auditability: Entity outside the organization now
stores and computes data since data is outsourced
to other entities for cloud owners beneficial. These
entities can join or leave the cloud in a flexible
manner. The data’s can be either inside or outside
the particular organization. It is difficult to audit
data held outside organization in a cloud.

Security: Security is one of the most difficult tasks
to implement in cloud computing. The attacks that
can happen in the application side and in the
hardware components make the security

implementation more difficult. Entity outside the
organization now stores and computes data, and so
attackers can target the communication link
between cloud provider and client.

This framework scenario is designed in
such a way that it can overcome the issues that are
commonly arising in distributed data sharing in the
cloud. Access control, usage control and
authentication policies are combined in this
framework to provide a combined and efficient
accountability in the cloud storage. To strengthen
the control over users’ data in the cloud an end to
end auditing using push pull mechanism is
provided. End to end accountability is ensured by
implementing policies such as access control
policy, authentication policy and automated
logging. Distributed auditing mechanism fulfils the
accountability by strengthen users control over
their data in the cloud. To verify the integrity of
their data in remote server, the owner can challenge
for the proof of possession using a combined PDP
and FEC mechanism. The techniques used in this
framework are described below.

3.1 Identity Based Encryption

IBE is a public-key encryption system
in which an arbitrary string can be used as the
public key. Any identity provided by the receiver is
used as the public key to encrypt the data that is
sent by the sender. Identity-Based Encryption
(IBE) dramatically simplifies the process of
securing sensitive communications. IBE is working
as depicted in Figure 1.

Alice encrypts the email using Bob’s e-
mail address, “bob@b.com”, as the public
key. Upon receiving the message, Bob can contact
the key server. The key server communicates with
a directory or other external authentication source
to authenticate Bob’s identity and establish any
other policy elements. After authenticating Bob, the
key server then returns the private key, for
decrypting the message. This private key can be
used to decrypt all future messages received by
Bob. Identity- based encryption scheme is

www.ijert.org

1953

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

Key Server

5

@ |1d ®
: @
@ Bob Privale Key for
Encrypt with Pubic Key: Authenticates bob@b.com
“Name = bob@b.com”

e & 3
Send Secure E-mall

B
Alice Bob

Figure 1. IBE Encryption Scheme.

specified by four randomized algorithms such as
Setup, Extract, Encrypt and Decrypt.

Setup: Input a security parameter k and returns
system parameters and master-key. Description of a
finite message space M and a finite cipher text
space C are the system parameters. System
parameters are publicly known, while the master-
key is generated and known to the Private Key
Generator (PKG).

Extract: Input the master-key, a security parameter,
and an arbitrary ID, and output a private key d. A
private key from the given public key is extracted
in Extract algorithm. The private decryption key d
is derived from the arbitrary string ID that is used
as a public key.

Encrypt: Takes security parameter, 1D, and plain
text and returns a cipher text.

Decrypt: Takes security parameter, cipher text and
the private key d and return plain text. Decrypt a
cipher text if have private key for identity. Public
key are arbitrary string from system identities.

Chosen cipher text security: Chosen cipher text
security is the standard approach of security for a
public key encryption scheme. Hence, it is natural

to require that an IBE scheme also satisfy this
strong mode of security.

3.2. Automated Logging

A log record is automatically generated
each time an access to the data is done by any of
the entity. The generated log record is stored in a
log file after encrypting it using the public key
distributed by the data owner. The entity that
accesses the data in the cloud sign the record for
strengthen the security. Automated logging is done
by extending the programmable capability of JAR
file. The data is enclosed in a nested JAR file
namely logger, along with authentication policy,
access control policy and automated logging as in
Figure 2.

/C')uter JAR \

Authentication Policy

Access Control Policy

/—Inner JAR —\\

Encrypted Data

Automated Logging

N\ "~

Figure 2. Logger.

Each log record r; generated by logger
components is individually uploaded into the log
file after encryption. The generated log record has
the form mentioned bellow.

ri=<ID, Act, T, Loc, h((ID, Act, T, Loc)|ri-1]...|ry),
sig>.

Here, r; indicates that an entity
identified by ID has performed an action Act on the
user’s data at time T at location Loc. The
component h((ID, Act, T, Loc)|r-1]...|r1)

www.ijert.org

1954

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

corresponds to the checksum of the records
preceding the newly inserted one. Act has one of
the following four values: view, download, timed-
access, and Location-based-access.

Auditing

Enhanced cloud information
accountability provides a distributed end to end
auditing algorithm for getting log files regarding
the data owner’s data from cloud server and end
user. Push mode auditing and pull mode auditing
are the two modes of auditing mechanisms.

The log files that are created when any
of the entities accessing the data owners’ data are
periodically send to them in push mode auditing.
The log files are pushed to the data owner in two
situations. The first one is whenever the time lapse,
which is set at the time of creation of logger by the
data owner, exceeds and the second situation is
whenever the log file is full.

The data owner can retrieve information
about their data at any time on demand in the pull
mode auditing. Whenever the user decides to check
the recent and current access details the user can
send a pull command.

3.3.1L. Push-Pull Auditing Algorithm

A combined design of push mode and

pull=0
rec=<ID, Act, T, Loc>
Isize=sizeof(log)
if((Isize<size)&&(pull==0)) then
log=log+encry(rec)
if(Act==Download|| TimedAccess||
LocationBasedAccess) then
if LogHarmonizer is alive then
push(encry(rec))
else Exit(1) end if
end if
end if
if((Isize>=size)||(pull!=0)) then
if LogHarmonizer is alive then
push(log)

(reset the parameters)

pull mode is push-pull auditing. Whenever the data log= NULL
owners want to audit they can pull the log file from _

both data user and cloud server. Whenever the time pull=0

lapse that is set for periodic pushing exceeds or the .

log file is full, the log file that contain the records else Exit ()
from the beginning to the current is pushed to the end if

data owner and all information in the log file is
erased. The log file information is send back to the
data owner from both the data user and cloud
server assuming that the cloud server cannot be
trusted. The push-pull auditing algorithm is in
Figure 3.

3.4. Remote Data Checking

Remote Data Checking audits status of
massive data and verifies the correctness of data
object on un-trusted cloud storage. Verifying

end if

Figure 3. Push-Pull Auditing Algorithm.

integrity or content for identifying damage is
crucial to repair if any. Retrieving data to the owner
side will cause 1/O burden on server and wasting
network traffic. So checking integrity remotely has
more advantage. User couldn’t trust the cloud
service provider. Charging for terabytes and store

www.ijert.org

1955

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

gigabytes, discarding un-accessed data based on
statistical reports, keeping fewer replicas than
promised, hiding data loss for keeping institutional
reputation and errors that are unnoticed by service
provider were some of the reasons why user
couldn’t trust cloud service providers. RDC
supports outsourced data storage. Provable Data
Possession and other RDC mechanism can provide
a secure and efficient auditing.

Data owner that has stored data at an un-
trusted cloud server can verify that the server
possesses his original data without retrieving it [1].
A probabilistic proof of possession is generated by
sampling random sets of blocks from the data at the
server, which reduces 1/0 costs in this model. A
constant amount of metadata is maintained by the
client to verify the proof. Since this protocol
transmits a small and constant amount of data, it
can minimize network communication. PDP is a
lightweight model for RDC and supports large data
sets. The data owner can challenge a cloud server
to provide a proof of data possession for verifying
that the cloud server possesses the original data
stored by the data owner. RDC can be comprised
diagrammatically as Figure 4.

Setup - :@ @ @

Clientfmay now
delete the file

Challenge
~&

Figure 4. Remote Data Checking.

Spot checking is used for achieving this
goal, in which the data owner randomly samples
small blocks of the data and validate their integrity.
Spot checking allows the client user can detect if
small fraction of the data at the cloud server has
been damaged. Provable data possession for remote
data checking provides proof that a cloud server
possesses a file. This is made possible using
homomorphic verifiable tags [1]. The data owner
pre-computes tags for each block of data and then
stores the data and its tags in the storage server.
Later data owner can validate that the cloud server
possesses the data by generating a challenge

challenge] @
proof of possession
Ty €

against a randomly selected blocks of data. This
model constitutes of two phases namely setup and
challenge. The setup and challenge are
diagrammatically described in Figure 5 and Figure
6.RDC using PDP can be enhanced by integrating
forward error-correcting codes (FECs) with it.

owner generates
metadata (m) and
modifed file (F)

no server

Input file

[N

F

metadata store

Figure 5. RDC Setup.

(1) auditor generates a
random challenge R

- 01

() auditor verifies
server's proof

metadata store

server store

Figure 6. RDC Challenge.

The data owner stores his data on the
cloud server is ordered collection of blocks F = (b,
.., b ¢). A homomorphic verifiable which is the
building block of PDP is generated for each block
of data and stored on the server together with the
data file F. These tags are the verification metadata
for the data file in the cloud server. Provable Data
Possession Scheme is a collection of four
algorithms, KeyGen, TagBlock, GenProof and
CheckProof.

KeyGen: it is a probabilistic key generation
algorithm that is run by the data owner side in the
setup phase. Takes a security parameter k as input
and returns a pair of public and secret keys.

www.ijert.org

processing

server store

(2) server computes
proof of possession P

1956

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

TagBlock: Algorithm run by the data owner to
generate the verification metadata. It takes a public
key, a secret key, and a data block as input and
returns the tag.

GenProof: Algorithm runs by the server for
generating a proof of possession. It takes a public
key, an ordered collection data blocks, a challenge,
and an ordered collection of verification metadata
corresponding to the data blocks as input and
returns a proof of possession.

CheckProof: Algorithm run by the client in order to
verify the proof of possession. It takes a public key,
a secret key, a challenge, and a proof of possession
as input and returns whether data is modified or
not.

In order to strengthen the Proof of
possession achieved by a RDC, forward error-
correcting codes (FECs) is integrating with RDC
[1].Integrating data checking with FEC improves
possession guarantee. Spot checking in combined
with systematic codes can help to achieve this.
Reed-Solomon coding is a systematic encoding
technique which keeps original file sequential.
Encryption and permutation is the techniques used
in RS codes for encoding of randomly selected
input blocks. The encoding is represented in Figure
7.

4. System Architecture

Enhanced CIA framework composed of
users, data, cloud server, Logger and Log
Harmonizer. Logger is highly attached to the owner
data. For implementing light weight accountability,
the data is enclosed in a nested JAR file and send to
the cloud service provider. The system architecture
can be diagrammatically represented as in Figure 8.

At the beginning both the data user and
the data owner has to register in cloud server. The
cloud server distributes a pair of IBE keys to both
of them. A master Key is also derived from the
existing public key and parameters at the PKG. the
data owner then upload his data in the cloud server
after enclosing it in a JAR file along with

authentication, access control and automated
logging features.

randomly select groups
of k blocks from b

6,4 RS Encoder

encrypt and permute

Figure 7. RS encoding.

The data in the JAR file is kin the
encrypted form using ldentity Based Encryption
technique. Whenever any of the entities access the
JARfile it is automatically logged. The generated
log record is embedded in the log file after
encrypted by the data user using the public key of
the data owner. Before embedding encrypted
record, it should be signed by the data user. The
data is retrieved after decrypting it with the master
key and sent to the data user. The data owner can
audit the log file using push-pull auditing method.
The content in the log file can be decrypted using
master key before auditing. This provide an
efficient accountability upon the data that data
owner has sent to the CSP.

Since the data has been outsourced by the
CSP it might be out of control of cloud service. For
ensuring data integrity a remote data checking is
implemented. The owner can claim for integrity of
data by remotely selecting some blocks of data in
the remote server. The data owner sends a
challenge message after randomly selecting blocks
from his data in the cloud. The cloud server should
provide a proof of possession in reply with the
challenge. The integrity of data is verified using
spot checking mechanism. This process is done by
pre-computing tags for each block of data in the
cloud server for strengthen integrity checking, a
forward error correction is integrated in the PDP.

www.ijert.org

1957

Log File

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

F 3

5\ Cloud Server

Owner Registration

Upload
Log File Reg';;:tinn Get Data
¥
4[Puch-Pull Auditing -]
‘ .
Figure 8. System Architecture.
5. Conclusion We proposed approaches to address the

Enhanced CIA framework provides a
highly distributed data sharing approach that
guarantees the integrity of the user’s data in the
cloud. Our light-weight framework allows the data
owner to not only account and audit his data in
remote server but also ensures the integrity of the
same. Any access to the data in the cloud is
automatically logged so that user can audit the
logged information later. The integrity can be
validated periodically by the data owner himself by
generating challenge upon his data in the remote
server.

small corruption problem for static data in our
paper. If the data needs to be updated the proposed
solution

References

[1] Ateniese, Giuseppe, et al. "Remote data
checking using provable data possession." AC
Transactions on Information and System
Security (TISSEC)14.1 (2011): 12.

[2] Boneh and M.K. Franklin, “ldentity-Based
Encryption from the Weil Pairing,” Proc. Int’l
Cryptology Conf. Advances in Cryptology,
pp. 213-229, 2001.

www.ijert.org

1958

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

R. Corin, S. Etalle, J.I. den Hartog, G.
Lenzini, and I. Staicu, “4 Logic for Auditing
Accountability in Decentralized Systems,”
Proc. TC1 WG1.7 Workshop Formal Aspects
in Security and Trust, pp. 187-201, 2005.

Hsiao-Ying Lin, et al. “A Secure Erasure
Code-Based Cloud Storage System with
Secure Data Forwarding” Parallel and
Distributed Systems, IEEE Transactions on,
Volume 23 (6) Institute of Electrical and
Electronics Engineers —Apr 25, 2012

P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud
Computing and Information Policy:
Computing in a Policy Cloud?,” 1.
Information Technology and Politics, vol. 5,
no. 3, pp. 269-283, 20009.

R. Jagadeesan, A. Jeffrey, C. Pitcher, and J.
Riely, “Towards a Theory of Accountability
and Audit,” Proc. 14™ European Conf.
Research in Computer Security (ESORICS),
pp. 152-167, 2009.

Jijin Soman, “Enhanced Data Sharing by
Decentralized and Lightweight Framework on
Accountability in Cloud Storage” ERES
international journal 2012

W. Lee, A. Cinzia Squicciarini, and E:
Bertino, “The Design and Evaluation of
Accountable Grid Computing System,” Proc.
29th IEEE Int’l Conf. Distributed Computing
Systems (ICDCS °09), pp. 145-154, 20009.

T. Mather, S. Kumaraswamy, and S. Latif,
Cloud Security and Privacy: An Enterprise
Perspective on Risks and Compliance (Theory
in Practice), first ed. O’ Reilly, 2009.

S. Pearson and A. Charlesworth,
“Accountability as a Way Forward for
Privacy Protection in the Cloud,” Proc.
First Int’l Conf. Cloud Computing, 2009.

M. Premkumar, “A Secure Cloud Storage
System with increased Availability and
Robustness” ERES international journal 2012

A. Pretschner, M. Hilty, and D. Basin,
“Distributed Usage Control,” Comm. ACM,
vol. 49, no. 9, pp. 39-44, Sept. 2006.

A. Squicciarini, S. Sundareswaran, and D.
Lin, “Preventing Information Leakage from
Indexing in the Cloud,” Proc. IEEE Int’l Conf.
Cloud Computing, 2010.

[14]

[15]

[16]

[17]

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 5, May - 2013

S. Sundareswaran, A. Squicciarini, D. Lin,
and S. Huang, “Promoting Distributed
Accountability in the Cloud,” Proc. IEEE Int’1
Conf. Cloud Computing, 2011.

Sundareswaran, Smitha, Anna Squicciarini,
and Dan Lin. "Ensuring distributed
accountability for data sharing in the
cloud." Dependable and Secure Computing,
IEEE Transactions on 9.4 (2012): 556-568.

Q. Wang, C. Wang, J. Li, K. Ren, and W.
Lou, “Enabling Public Verifiability and Data
Dynamics for Storage Security in Cloud
Computing,” Proc. European Conf. Research
in Computer Security (ESORICS), pp. 355-
370, 2009.

D.J. Weitzner, H. Abelson, T. Berners-Lee, J.
Feigen-baum, J.Hendler, and G.J. Sussman,
“Information Accountability,” Comm.ACM,
vol. 51, no. 6, pp. 82-87, 2008.

1959

