
RRayleigh Wave Propagation in a 
Rotating Functionally Graded Fiber-

Reinforced Medium Subject to 
Magnetic and Gravitational Fields

Madhumita Kundu1, Biswajit Saha2, Sakti Pada Barik3∗

1Department of Mathematics, Makhla Debiswari Vidyaniketan, Hooghly, West Bengal 
712245, India

2Department of Physics, Gobardanga Hindu College, 24-Parganas (N), 743273, India
 3Department of Mathematics, Gobardanga Hindu College, 24-Parganas (N), 743273, India

Abstract

An analytical investigation is conducted on Rayleigh wave propagation in a rotating fiber-

reinforced functionally graded (FG) half-space subjected to magneto-gravitational effects.

The orientation of the magnetic field is configured to facilitate a two-dimensional treatment of

the governing equations. A transcendental dispersion equation is established, which is shown

to reduce to well-known classical solutions under limiting conditions. Finally, parametric

studies are performed to quantify the influence of rotation, gravity, and material grading on

the phase velocity, with the findings presented graphically.

Keywords: Rayleigh waves; Fiber-reinforced medium; Functionally graded material; Mag-

netic permeability; Electrical conductivity; Rotational effect; Gravity field; Wave velocity.

Introduction

The analysis of stress and deformation in fiber-reinforced composites has remained a focal

point of solid mechanics research for over thirty years. Although reinforcing techniques have

historical precursors, the evolution of modern materials science has necessitated more so-

phisticated applications for advanced engineering structures. The core design objective is

the optimization of tensile properties and load-carrying capacity without incurring significant
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mass penalties. An FRC typically comprises a dispersed fiber phase and a continuous matrix

phase, separated by an interphase region; the specific spatial orientation of the fibers—be

it unidirectional, random, or woven—dictates the material’s macroscopic anisotropy. The-

oretical foundations in the continuum modeling of such media were established by Belfield

et al.[1], following foundational work by Spencer [2], Pipkin [3], and Rogers [4, 5]. In many

instances, these composites are modeled as transversely isotropic elastic media, a framework

supported by the variational approaches of Hashin and Rosen [15] for deriving effective elas-

tic moduli.

The mechanical performance of fiber-reinforced composites can be significantly enhanced

through the incorporation of functional gradation. Over recent decades, functionally graded

materials (FGMs) have undergone rapid development and are increasingly utilized across

diverse engineering sectors. Unlike conventional layered laminates, FGMs are spatially het-

erogeneous composites characterized by a continuous and gradual variation in the volume

fraction of their constituent phases. First conceptualized in 1984 by researchers in Sendai,

Japan (Yamanouchi et al. [7]; Koviani [6]), these materials have since garnered extensive

academic attention. By virtue of their continuously varying macroscopic properties, FGMs

offer superior mechanical advantages over traditional laminates, particularly in the mitiga-

tion of interfacial thermal stress concentrations. Consequently, they are uniquely suited for

extreme operating environments, with applications spanning aerospace thermal protection

systems, thermoelectric generators, automotive braking components, and biocompatible im-

plants. Notable contributions include the work of Abd-Alla et al. [37], who examined radial

vibrations in rotating, functionally graded orthotropic half-spaces under gravitational influ-

ence, and Gunghas et al. [38], who explored the synergistic effects of rotation and magnetic

fields on thermoelastic solids. Furthermore, Barik et al. [35, 36] addressed various contact

mechanics problems within this framework. The convergence of mechanical anisotropy in

fiber-reinforced media with functional gradation remains a critical frontier in modern en-

gineering research, as underscored by the studies of Sahu [28],, Deresiewicz [30], Markham

[31], and Zorammuana [32].

The propagation of mechanical disturbances in solid media represents a foundational

pillar of physics and engineering. The evolution of wave dynamics is supported by a dis-

tinguished historical framework, with seminal contributions from Poisson, Cauchy, Green,

Lamé, and Stokes, as documented in Love’s classic treatise on the mathematical theory of

elasticity. While classical elasticity provides a robust starting point, it often falls short in

characterizing the elastic response of materials with complex internal microstructures. In

geophysics and seismology, the study of seismic waves—energy disturbances generated by

tectonic shifts or anthropogenic explosions—is essential for modeling Earth’s interior and op-

timizing resource recovery. These waves are fundamentally categorized into body waves and
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surface waves, the latter being primarily responsible for structural damage during seismic

events. Among these, Rayleigh waves (1885) are particularly significant due to their confine-

ment to the free surface and their substantial energy density. Consequently, understanding

the influence of initial stress on Rayleigh wave propagation is of paramount importance for

seismic risk mitigation and structural integrity assessment. Following Rayleigh’s pioneering

work, extensive research has addressed wave behavior in half-spaces and stratified systems

involving inhomogeneous or non-homogeneous media.

The literature regarding surface wave propagation is comprehensive [8, 9, 10, 11]. Unlike

body waves, surface waves are characterized by higher energy concentrations at the interface

and slower propagation speeds. Research by Acharya and Sengupta [12] and others [13, 14]

has examined these characteristics within fiber-reinforced anisotropic media. Because large-

scale geophysical systems are inherently non-inertial, the study of wave motion in rotating

media—pioneered by Schoenberg and Censor [34] —is of paramount importance. Addi-

tionally, magneto-elastic wave propagation represents a critical area of study in earthquake

science, with Acharya and Roy [33] investigating these phenomena in electrically conducting

reinforced media. Theoretical developments by Jassim [16] regarding the inhomogeneous

wave equation, and by Pradhan et al.[19] on anisotropic dynamics, have provided deeper

insights into material reinforcement. The influence of gravitational fields and initial stresses,

first identified by Bromwich [20], Love [21] and Biot [22], remains a focal point in contem-

porary models. Recent studies, such as those by Sethi et al. [40] and Abd-Alla et al. [41],

have integrated rotation, magnetism, and gravity to evaluate Rayleigh wave behavior in or-

thotropic and functionally graded media [39].

This study investigates the propagation of Rayleigh waves within a rotating, fiber-reinforced,

functionally graded elastic medium, accounting for the influences of a magnetic field and

gravity. The magnetic field orientation is assumed to permit a two-dimensional formulation

of the problem. A characteristic wave velocity equation for Rayleigh waves is derived, and

numerical simulations are performed using MATLAB to illustrate the relationship between

wave velocity and wave number. The influence of various governing parameters is analyzed

and represented graphically. Finally, the generalized results are compared with established

literature, with graphical comparisons highlighting the specific impacts of the additional

parameters introduced in this model.

Formulation of the Problem:

Consider a semi-infinite elastic medium composed of a functionally graded fiber-reinforced

material (FGFRM) bounded by a planar surface. A Cartesian coordinate system xyz is

established such that the origin O lies on the boundary surface, with the medium occupying

the region z ≥ 0. The physical model is governed by the following assumptions:

the medium is subjected to a uniform external magnetic field H0 = (0, H0, 0) and a constant
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Figure 1: Geometry of the problem

gravitational force acting in the positive z-direction. Furthermore, the system undergoes

uniform rotation with an angular velocity Ω = (0,Ω, 0). The reinforcing fibers are oriented

parallel to the x-axis, defined by the unit vector a = (1, 0, 0). Finally, the analysis focuses

on elastic wave propagation along the x-axis, where the disturbance is localized near the free

surface z = 0 and vanishes asymptotically as z → ∞.

Based on the aforementioned assumptions, the displacement field is uniform along any line

parallel to the y-axis. Consequently, all field variables are independent of the y coordinate,

rendering the problem two-dimensional in the x− z plane. Since the medium is assumed to

be rotating with angular velocity Ω in an applied magnetic field of intensity H0, an induced

magnetic field h = (0, h, 0), an induced electric field E and a current density J will be

developed. If μe is the magnetic permeability of the medium then the total magnetic field

in the medium is B = μeH, where H = H0 + h is the magnetic field arising from applied

magnetic field H0 and induced field h. Denoting the displacement vector by u = u(x, t),

the simplified system of the equations of electrodynamics for a slowly moving homogeneous

electrically conducting medium, may be written as

∇× h = J+ ε0Ė

∇× E = −μeḣ (1)

∇ · h = 0

E = −u̇×B
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where ∇ is the Hamilton’s operator, ε0 is the electrical permeability, and u is the dynamic

displacement vector. Here we ignore the small effect of temperature radiant on the current

density vector J . The deformation is supposed to be small and dynamic displacement vector

is actually measured from a steady state reformed position.

Following Belfield et al. [1], the stress–strain relations for linearly fiber–reinforced elastic

medium may be expressed in tensor form as

τij = λεkkδij + 2μT εij + α (akamεkmδij + aiajεkk)

+ 2(μL − μT ) (aiakεkj + ajakεki) + β (akamaiajεkm)
(2)

where τij are the Cartesian components of the stress tensor, εij are the strain components

related to the displacement vector ui. λ, μT are elastic constants, α, β, (μL − μT ) are rein-

forcement parameters, and a = (a1, a2, a3) such that a21 + a22 + a23 = 1.

In the absence of body forces, the elastodynamic equations for the rotating medium take

the following form:

τij,j + Fi = ρ (üi + (Ω× (Ω× u))i + 2(Ω× u̇)i) , (3)

where ρ denotes the material density. The body force components arising from the applied

magnetic field and gravitational effects are given by

F = J × B + ρg(w,x, 0,−u,x), u = (u1, u2, u3) = (u, 0, w). (4)

By combining equations (1)–(3), and upon neglecting the cross-products of h and u (along

with their derivatives), the governing elastodynamic equations for the rotating, fiber-reinforced

medium subjected to magneto-gravitational effects are given by:

∂τ11
∂x

+
∂τ13
∂z

+ μ0(J ×H)1 + ρg
∂w

∂x
= ρ

[
ü− Ω2u+ 2Ω

∂w

∂t

]
, (5)

∂τ21
∂x

+
∂τ23
∂z

+ μ0(J ×H)2 = ρv̈, (6)

∂τ31
∂x

+
∂τ33
∂z

+ μ0(J ×H)3 − ρg
∂u

∂x
= ρ

[
ẅ − Ω2w − 2Ωu̇

]
. (7)

To account for the functionally graded nature of the medium, the constitutive elastic param-

eters, the reinforcement coefficients, and the mass density are assumed to vary exponentially

with the vertical coordinate z. This spatial distribution is modeled as:

λ = λ̂ekz, α = α̂ekz, β = β̂ekz, ρ = ρ̂ekz, μL = μ̂Le
kz, μT = μ̂T e

kz, (8)

where k is real constant.

Assuming the fibers are aligned with the x-axis a = (1, 0, 0), the constitutive equations
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provide the relevant components of the stress tensor as follows:

τ11 =
[
(λ̂+ 2α̂ + 4μ̂L − 2μ̂T + β̂)ε11 + (λ̂+ α̂)(ε22 + ε33)

]
ekz, (9)

τ22 =
[
(λ̂+ α̂)ε11 + (λ̂+ 2μ̂T )ε22 + λ̂ε33

]
ekz, (10)

τ33 =
[
(λ̂+ α̂)ε11 + λ̂ε22 + (λ̂+ 2μ̂T )ε33

]
ekz, (11)

τ12 = 2μ̂Lε12e
kz, τ13 = 2μ̂Lε13e

kz, τ23 = 2μ̂T ε23e
kz. (12)

For brevity, the hats on the dimensionless parameters are suppressed hereafter. Upon ap-

plying equations (9)–(12) to (5)–(7), and taking

h = −H0 (u,x + w,z). (13)

the governing dynamical equations are obtained as follows:

(A11 + μ0H
2
0 ) u,xx + (B2 + μ0H

2
0 )w,xz + μL u,zz − ε0μ

2
0H

2
0 ü

+ ρg w,x + μLk (w,x + u,z) = ρ
(
ü− Ω2u+ 2Ωẇ

) (14)

μL v,xx + μT v,zz + k μT v,z = ρ v̈ (15)

(A22 + μ0H
2
0 )w,zz + (B2 + μ0H

2
0 ) u,xz + μL w,xx − ε0μ

2
0H

2
0 ẅ

− ρg u,x + k(λ+ α) u,x + kA22 w,z = ρ
(
ẅ − Ω2w − 2Ωu̇

) (16)

where

A11 = λ+ 2α + 4μL − 2μT + β, A22 = λ+ 2μT , B2 = λ+ α + μL.

For Rayleigh waves we concentrate only on eqn (14) and eqn (16) which reduces to

(C2
1 + C2

A)
∂2u

∂x2
+ (C2

2 + C2
A)

∂2w

∂x∂z
+ c23

(
∂2u

∂z2
+ k

∂u

∂z
+ k

∂w

∂x

)

= (1 + C2
B)

∂2u

∂t2
− Ω2u+ 2Ω

∂w

∂t
− g

∂w

∂x

(17)

(C2
4 + C2

A)
∂2w

∂z2
+ (C2

2 + C2
A)

∂2u

∂x∂z
+ c23

∂2w

∂x2
+

k(λ+ α)

ρ

∂u

∂x
+ kc24

∂w

∂z

= (1 + C2
B)

∂2w

∂t2
− Ω2w − 2Ω

∂u

∂t
+ g

∂u

∂x

(18)

where C2
1 = A11

ρ
, C2

A =
μ0H2

0

ρ
, C2

2 = B2

ρ
, C2

3 = μL

ρ
, C2

B =
ε0μ2

0H
2
0

ρ
, C2

4 = A22

ρ
,

CA = alfven velocity, C4 = P-wave velocity, C0 = velocity of light in vacuum.
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By introducing the dimensionless parameters x̄, z̄, ū, w̄, t̄ such that

x = c1ωx̄, z = c1ωz̄, u = c1ωū, w = c1ωw̄, t = ωt̄

where ωdenotes the wavenumber, the Equations (17) and (18) for the half-space reduce

to

(1 + χH)
∂2ū

∂x̄2
+ (c′22 + χH)

∂2w̄

∂x̄∂z̄
+ c′23

(
∂2ū

∂z̄2
+ κ

∂ū

∂z̄
+ κ

∂w̄

∂x̄

)

= M
∂2ū

∂t̄2
− Γ2ū+ 2Γ

∂w̄

∂t̄
− ḡ

∂w̄

∂x̄

(19)

(c′24 + χH)
∂2w̄

∂z̄2
+ (c′22 + χH)

∂2ū

∂x̄∂z̄
+ c′23

∂2w̄

∂x̄2
+ β′∂ū

∂x̄
+ γ′∂w̄

∂z̄

= M
∂2w̄

∂t̄2
− 2Γ

∂ū

∂t̄
− Γ2w̄ + ḡ

∂ū

∂x̄

(20)

where c′24 =
C2

4

C2
1
, χH =

C2
A

C2
1
, Γ = Ωω, c′22 =

C2
2

C2
1
, c′23 =

C2
3

C2
1
, ḡ = ωg

C1
, β′ = k(λ+α)

C2
1ρ

, γ′ = kC2
4

ρC2
1
= k

ρ
c′24

and M = 1 + χH
C2

1

C2
0
= 1 + C2

B.

Boundary Conditions

Assuming that the disturbance is propagating near the surface of the half space in the form of

Rayleigh waves, the boundary conditions at the free surface of the half-space can be written

as:

τ13 = 0, τ33 = 0 on z = 0 (21)

Solution of the Problem:

To solve the governing equations, we seek a harmonic wave solution of the form:

(ū, 0, w̄) = {u(z), 0, w(z)} exp{iω(x− ct)} (22)

where u(z), w(z) are are depth-dependent amplitudes. In this expression, ω is the wave

number associated with a wave length of 2π
ω

and c is the wave speed. By substituting

equation (22) into the equations (19) and (20), we obtain

[
c′23
2

(
D2 + kD) +

{
Mc2 − (1 + χH)

2 + Γ′2}ω2
)
u

+ iω

{
(c′22 + χH)D + ḡ + k

c′23
2

+ 2cΓ′
}
w

]
= 0

(23)
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[
(c′24 + χH)D

2 + {Mω2c2 + Γ2 − ω2c′23 }
]
w + γ′Dw

+
[
(c′22 + χH)iωD − (ḡ′ + 2cΓ + β′)iω

]
u = 0 (24)

where D ≡ d
dz
, Γ′ = Γ

ω
and ḡ′ = ḡ

ω
.

From equations (23) and (24) we get the following equations to determining u(z) or w(z):

{c′23
(
c′24 + χH

)
D4 +

[
c′23 ω

2 + k
(
c′24 + χH

) ]
D3 +

[
c′23 ω

2
(
Mc2 + Γ′2 − c′23

)
+ ω2

(
c′24 + χH

) {
Mc2 − (1 + χH) + Γ′2}+ kδ′ω2 − ω2

(
c′22 + χH

)2 ]
D2 +

[
ω4δ′

{
Mc2 −+Γ′2}

+ k
{
Mc2 + Γ′2 − c′23

}
+ ω2

(
c′22 + χH

) (
2ḡ′ + 4cΓ′ + kc′23 + β′) ]D + ω4

{
Mc2 − (1 + χH)

+ Γ′2 {Mc2 + Γ′2 − c′23
}
+ ω2

(
ḡ′ + kc′23 + 2cΓ′) (ḡ′ + 2cΓ′ + β′)}u(z), w(z) = 0 (25)

Since u, w represent surface waves, we assume that they vanish as z → ∞. Accordingly, we

seek a solution of the form

u(z) =
[
A1e

−iωλ1z +B1e
−iωλ2z

]
eiω(x−ct), (26)

w(z) =
[
A2e

−iωλ1z +B2e
−iωλ2z

]
eiω(x−ct). (27)

Using Eqs. (26) and (27) in Eqs. (23) and (24), and equating the coefficients of e−iωλ1z and

e−iωλ2z to zero we obtain

A2 = k1A1, (28)

B2 = k2B1 (29)

where

ki =
(1 + χH) + λ2

i c
′2
3 −Mc2 + Γ′2 + ik′λi

(c′22 + χH)λi + i
(
ḡ′ + 2cΓ′ + k′) , (i = 1, 2). (30)

and k′ = k
ω
.

Imposing the boundary conditions from Eq. (21) at z = 0 yields the following system of

equations:

(λ1 − k1)A1 + (λ2 − k2)B1 = 0 (31)(
c′22 − c′23 − λ1k1c

′2
4

)
A1 +

(
c′22 − c′23 − λ2k2c

′2
4

)
B1 = 0 (32)

For a non-trivial solution for the constants A1 and B1, the determinant of the coefficients
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must vanish, leading to the characteristic equation:∣∣∣∣∣ λ1 − k1 λ2 − k2
c′22 − c′23 − λ1k1c

′2
4 c′22 − c′23 − λ2k2c

′2
4

∣∣∣∣∣ = 0 (33)

Equation (33) represents the dispersion relation (wave velocity equation) for Rayleigh waves

propagating in a rotating, fiber-reinforced, functionally graded medium subjected to mag-

netic and gravitational fields. In the absence of gravitational effects, this frequency equation

is consistent with the results obtained by Acharya [12]. Furthermore, by neglecting the influ-

ences of gravity, rotation, and the magnetic field, Eq. (33) reduces to the classical Rayleigh

wave velocity equation for an isotropic medium:

(
2− c2

c22

)2

= 4

(
1− c2

c22

) 1
2
(
1− c2

c21

) 1
2

(34)

Numerical Results and Discussions:

The present research examines the collective impact of functionally graded parameters, mag-

netic fields, rotational forces, and gravitational effects on the propagation characteristics of

Rayleigh waves in fiber-reinforced media. To evaluate these effects numerically, three dis-

tinct parameter sets—designated as Fiber-1, Fiber-2, and Fiber-3—were adopted from the

established literature [25, 31, 32] as detailed below.

λ = 9.4× 109 Nm−2, Tμ = 1.89× 109 Nm−2, μL = 2.45× 109 Nm−2,

ρ = 1.7× 103 kgm−3

λ = 5.65× 109 Nm−2, 109 Nm−2= 2.46 , μ = 5.66 10 NmTμ × L × 9 −2,

ρ = 2.26× 103 kgm−3

= 7.59 10 Nm , μ = 3.5 10 Nmλ × 9 −2
T × 9 −2, Lμ = 7.07× 109 Nm−2,

ρ = 1.6× 103 kgm−3

Although the theoretical framework accommodates arbitrary propagation directions, the

numerical computations are restricted to specific orientations to facilitate calculation and

highlight key trends in wave velocity under fibre-reinforced functionally graded character-

istics of the media. Utilizing the aforementioned parameter sets, this numerical analysis

examines the propagation behavior of Rayleigh waves under varying media conditions. Fig-

ures 2–6 present the Raleigh wave velocity plotted against the wavenumber for different

configurations of reinforcement and functional grading.
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Figure 2: Variation of Rayleigh wave velocity for different fiber reinforced media with fixed value of graded
parameter k

Figure 2 displays the variation Rayleigh wave velocity with respect to wavenumber for dif-ferent fibre

reinforce media with a fixed functionally gradation. It indicates that the Rayleigh wave velocity decreases

when the value of wave number increases. We also observe that for a fiber-reinforced medium, the Rayleigh

wave velocity is affected significantly by the rein-forcing parameter. The dispersion curves indicate that the
Rayleigh wave velocity vanishes in the short-wavelength limit as the wavenumber increases (ω −→∞): the

wave velocity approaches to zero. Figure 3 illustrates the influence of the magnetic field on Rayleigh wave

velocity. The velocity decreases with increasing wave number. Furthermore, at a constant wave number, the

Rayleigh wave velocity is found to decrease as the applied magnetic field intensity increases.

Figure 3: Effect of magnetic field on Rayleigh wave velocity.
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The effects of rotation and material density are captured in Figures 4 and 5 respectively, where an increase

in either parameter yields a reduction in wave speed. Figure 6 is plotted to observe the influence of different

gravity parameter on the Rayleigh wave velocity with respect wave number. It is observed that for a

particular value of wave number, Rayleigh wave velocity decreases with the increase of gravitational effects.

Figure 5: Effect of density on Rayleigh wave velocity.

Figure 4: Effect of rotation on Rayleigh wave velocity.
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Figure 6: Effect of gravity on Rayleigh wave velocity.

Figure 7: Effect of functionally graded parameter k on Rayleigh wave velocity
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Finally, Figure 7 demonstrates that the functional gradation parameter (k) significantly

alters the velocity magnitude; specifically, the intensification of material gradation (increased

k) results in a consistent attenuation of the Rayleigh wave velocity.

Conclusion:

The study focuses on how a plane surface wave propagating in a rotating fiber-reinforced

functionally graded (FG) half-space is affected by an applied magnetic field, rotation, density,

gravity, fiber-reinforcing and functionally gradation. A significant observation across these
figures is that as the wavenumber increases (i.e., in the high-frequency limit, ω −→∞),the

wave velocity asymptotically approaches zero. The results indicate that the direct effects of

different parameters on Rayleigh wave velocity are very pronounced.
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