
 Query Processing of XML Data Warehouse Using

XML Pattern Matching Techniques

 1.

Ms. P. Kavitha,
2.
Mrs. S. Vydehi

1.

 M.Phil Scholar, Department of Computer Science,Dr.SNS Rajalakshmi College of Arts and Science, Coimbatore-49.
2.
Professor & Head of the Department,Department of Computer Science,Dr.SNS Rajalakshmi College of Arts and Science,

Coimbatore-49.

Abstract— Data warehousing systems are used by managers and

analysts to acquire, integrate and analyze information flexibly

from different sources. XML has become a standard for data

exchange over the Internet. Mostly XML data’s are used in B2B

and B2C communication. So there is a need of integrating XML

data into warehousing systems. An effective well-formed XML

document structure helps convert data into useful information

that can be processed quickly and efficiently. The XML query

languages like XQL (XML Query Language), XML-QL(a query

language for XML), XPath (Extensible path language), XQuery

(Extensible Query language) represent queries on XML data as

twigs(small tree patterns). This paper describe XML query

processing which is the procedure to find all the occurrences of

twig patterns efficiently on XML data warehouse. This paper also

presents the review of different XML pattern matching

techniques in data warehousing.

Keywords— XML, XML data warehouse, Pattern Matching

Algorithms.

I. INTRODUCTION

A. XML

 XML is the Extensible Markup Language.XML improves the

functionality of the Web by identifying information in a more

accurate, flexible, and adaptable way. It is not a fixed format

like HTML, where as HTML is a single, predefined Markup

Language. XML is used for describing other languages which

lets user designs their own markup languages for limitless

different types of documents. XML can do this because it's

written in SGML, the international standard meta language for

text document markupXML structures can nest, so they can be

used to store and identify any kind of hierarchical information

especially long, deep, or complex document sets or data

sources, which makes it ideal for an information-management

back-end to serving the Web. XML is also used for enclosing

or encapsulating information in order to pass it between

different computing systems.

B. Data Warehouse

A data warehouse is a relational database designed for analysis

and query rather than for transaction processing. A data

warehouse is specifically structured for querying and

reporting. Data warehouse contains historical data which is

derived from transaction data. It can also include data from

different sources. It enables an organization to consolidate the

data from many sources.

A data warehouse environment which includes the

applications that manage the process of gathering data and

delivering it to business users. The applications like

extraction, transportation, transformation, and loading (ETL)

solution, an online analytical processing (OLAP) engine,

client analysis tools. The data warehouse focuses on data

storage but managing the data dictionary is also an essential

component of a data warehousing system.

 Types of Data Stored in a Data Warehouse

Historical Data

A data warehouse contains many years of historical data. The

amount of data which is decided to make available is based on

the available disk space and the analysis type supported by the

user. These data’s can come from transactional database or

other sources.

Derived Data

Derived data is generated from existing data or a data

transformation. The existing data uses mathematical operation.

The derived data is created when database maintenance

operation is performed or generated at run-time in response to

a query.

Metadata

Metadata is defined as data about data. The data which is used

to represent other data is called metadata. Metadata is the

summarized data which leads us to the detailed data. In terms

of data warehouse the metadata is defined as follows.

1242

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20694

 Metadata is a road map to data warehouse.

 Metadata in data warehouse defines the warehouse

objects.

 The metadata act as a directory. This directory helps

the decision support system to locate the contents of

data warehouse.

C. XML Data Warehouse

Data warehousing system is a set of technologies and tools

that enable users and analysts to integrate and analyze

information flexibly coming from different data sources. The

database which is specialized for complex analysis of

historical data, called a data warehouse. In Recent days many

industries prefer XML data exchange format. These results the

organisations want to find ways to manipulate and manage

XML efficiently within their data warehouses. Many leading

industries like finance, healthcare and other already having the

production environments that leverage both relational and

XML database technologies. Increasing use of XML, lot of

valuable external data sources will be available in XML

format on the Internet. The possibility of integrating available

XML data into data warehouses will play an important role in

providing enterprise managers with up-to-date and

comprehensive information about their business domain.

D. XML Pattern Matching

The extensible markup language XML has a new standard for

information exchange and representation on the internet. With

the increasing use of XML for data representation, there is a

lot of interest in query processing over data. The data objects

are written in a variety of languages (XPath, XQuery) are

typically trees [1]. For querying the data from xml data

sources the pattern matching is used. Twig pattern matching is

referred as finding all the instances of the query tree

embedded in the XML data tree. So there is need for efficient

pattern matching algorithms on large volume of XML data for

evaluating tree patterns (twigs).

1.<?xml version="1.0" encoding="UTF−8"?>

2.<Book>

3.<author>jane</author>

4.<title> XML </title>

5.</Book>

6.</xml>

Figure 1.4.1: Example XML document

 book

 title author

 XML Jane

Figure 1.4.2 Example XML tree model

An XML query pattern can be represented as a rooted, labelled

tree (Twig), for example Fig 1.4.2 shows an example XPath

query:

 Book [title = ‟XML‟] // author [. =’’Jane‟]

A query tree pattern can be decomposed into a set of basic P-C

and A-D relationship between pairs and nodes [4]. The above

example query are the ancestor-descendent relationship (book,

author) and the parent-child (book, title) and (title, XML) and

(author, Jane).The xml query languages such as XPath and

XQuery which is used to represent the queries as ordered

labelled small trees(twigs). Finding all distinct matching’s of a

twig pattern is a core operation in an XML query evaluation.

E. Existing Techniques of XML Pattern Matching

In the early days, many research efforts made on storing and

querying XML data using RDBMS. In relational approaches,

they shred XML data into relational tables, and XML queries

are converted into SQL statements to query the database. The

node-based approach [5], the edge-based approach and the

path-based approach shred XML documents based on tree

components. But, they all suffer from efficiency problems

when dealing with structural search. The schema-aware de-

composition methods are efficient than schema less method,

but they are still not efficient for structural search. Later, many

native approaches are proposed to process twig pattern queries

like the navigational approach, subsequence matching

approach, structural join based approach.

 Later an improved stack-based structural join algorithm is

proposed by Al-Khalifa et al.. This algorithm decomposes a

twig pattern into a set of binary relationships, i.e., parent-child

and ancestor-descendant relationships. Twig pattern matching

is done by matching every binary relationship and combining

these basic binary matches. The main problem of those

approaches is that the intermediate result size may be very

large, even when the input and final result sizes are more

manageable. To overcome this limitation problem, Bruno et al.

[5] proposed a holistic twig join algorithm called TwigStack,

which avoids an unnecessarily large intermediate result

produced. However, TwigStack algorithm is only optimal for

twig pattern queries with ancestor descendent relationships.

II. VARIOUS XML PATTERN MATCHING TECHNIQUES

A. TwigStack

Bruno et al. proposed a “holistic” XML twig pattern matching

method called TwigStack. If all edges in query pattern are

ancestor – descendant (A-D) relationships, Twigstack

algorithm ensures that each root – to – leaf intermediate

solution is merge – joinable. The TwigStack algorithm is used

to evaluate twig patterns that operate in two phases. In first

phase, some solutions to individual query root-to-leaf paths

are computed. In second phase, the computed solutions are

merge-joined to compute the answers to the twig query.In

TwigStack each root-to-leaf solution is merge-joinable with at

least one solution to each of the other root-to-leaf query paths.

The algorithm might produce some extraneous intermediate

solutions where the twig pattern contains a parent-child edge

between two nodes.

Drawbacks

 TwigStack is optimal, in terms of the size of the

intermediate solutions.

 TwigStack has been proved to be I/O optimal in

terms of output sizes for queries with only A-D

edges.

 The algorithm cannot control the size of intermediate

results for queries with parent-child (P-C) edges.

1243

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20694

 TwigStack outputs many intermediate paths that are

not merge-joinable .

 The main reason for bad performance is that in the

TwigStack, it assumes that all edges in queries are A-

D relationships and therefore output many useless

intermediate results when queries contain P-C

relationships.

B. OrderedTJ

In OrderedTJ, if the order of the children accords with the

order of corresponding query nodes an element contributes to

final results. OrderedTJ is I/O optimal among all sequential

algorithms that read the whole input. The optimality of

OrderedTJ [3] allows the existence of parent-child edges in

first branching edge and the non-branching edges.

Consider an ordered twig pattern Y and an XML database D, a

match of Y in D is identified by a mapping from the nodes in

Y to the elements in D, such that:

 (i)The corresponding database elements must satisfy the

query node name predicates; and, (ii) the corresponding

database elements must satisfy the parent-child and ancestor-

descendant relationships between query nodes; and (iii) the

corresponding database elements must satisfy the order of

query sibling nodes.

 Based on the containment labelling scheme, given any query

node p and its right-sibling r, their corresponding elements,

say ep and er, must satisfy that ep.end<er.start. Here, we do

not allow ep to be an ancestor of er.

Drawbacks

 OrderedTJ output much less intermediate results.

 OrderedTJ scales linearly with the size of the

database.

 OrderedTJ is not optimal and outputting less useless

intermediate results.

C. TJFast

I have presented two holistic algorithms for answering XML

twig queries in the above sections. The same containment

labelling scheme is used by those two algorithms [4]. While

the containment scheme preserves the positional information

within the hierarchy of an XML document, we observe that

this is not the only labelling scheme that can be used for XML

twig query processing. Indeed, there are at least two

limitations in the containment scheme.

1. The information contained by a single containment label is

too limited. For example, from any single containment label

we cannot get the path information.

2. When element names are unknown or do not matter

wildcard steps in XPath are commonly used.

If the branching nodes consist of wildcards then the

containment labelling scheme is difficult to answer queries.

For example, consider an XPath: “//p/*/[q]/r”. where “*”

denotes a wildcard symbol which can match any single

element. The containment labels of p, q and r do not provide

enough information to determine whether they match the

query or not. This is because even if q and r are descendants of

p and their level difference with p is 2, q and r may not be

query answers, as they do not have the common parent.

TJFast operates in two phases. In first phase, solutions to

individual root-leaf path patterns are computed. In second

phase, the computed solutions are merge-joined to compute

the answers to the query twig pattern.

Drawbacks

 TJFast outputs one useless intermediate path and it is

outputs the path solution for all nodes in query.

 It does not produce the individual solution for each

node when there are multiple return nodes in a query.

 TJFast cannot work with ordered restriction and

negation function.

D. TreeMatch

The above algorithms TwigStack, OrderedTJ, and TJFast

requires bounded main memory for small class of queries with

Parent-Child, Ancestor-Descendant relationships.The

functions such as negation, wildcard, order-based functions

and relationships are defined by the XML query languages

like XPath , XQuery. The TreeMatch algorithm defines an

extended XML tree pattern [1] means P-C, A-D, negation,

wildcard and/or order restriction.

The TreeMatch algorithm is proposed to for larger optimal

query classes. It uses encoding technique to match the results

and reduces the useless intermediate results. The TreeMatch

algorithm does not need to de-compose the tree pattern into

linear patterns and do not produce any intermediate results that

are not part of the final results. The TreeMatch algorithm is

applicable when the non-leaf pattern nodes do not have

occurrences with self-containment. The self-containment is

seldom found in real XML documents and such a property can

easily be identified. Therefore, the TreeMatch algorithm is

more efficient than the existing methods under most cases.

Advantages

 The TreeMatch algorithm does not need to de-

compose the tree pattern into linear patterns.

 The TreeMatch algorithm does not produce any

intermediate results that are not part of the final

results,

 The TreeMatch algorithm is applicable when the non-

leaf pattern nodes do not have occurrences with self-

containment.

 The TreeMatch algorithm is more efficient.

III. RESULT

From the above study, when comparing the algorithms

TwigStack, OrederedTJ, TJFast and TreeMatch the first three

techniques of XML pattern matching has some drawbacks on

query processing when comparing to TreeMatch .The

TreeMatch algorithm has more advantages than existing

techniques so here i conclude that when we use TreeMatch

algorithm for query processing of XML data’s it gives good

result and performance even for complex queries.

IV. CONCLUSION

This paper deals with study of different kind of XML pattern

matching algorithms. It first defines the XML, it was designed

to transport and store data, with focus on what data is. Then it

defines the Data warehousing process and the Types of Data

Stored in a Data Warehouse. After that a detailed study of

XML pattern matching and its algorithms and their

1244

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20694

comparison in different perceptions are examined. The

existing methods for tree pattern matching in XML are

typically a decomposition-matching-merging process.

The drawback of the decomposition-matching-merging

method is that the size of intermediate results may be much

larger than the final answers. The decomposition-matching-

merging problem will be overcome by using TreeMatch

algorithm. The previous twigpattern matching algorithms

(TwigStack, OrderedTJ and TJFast) requires more features

than TreeMatch algorithm. From these points we can say that

TreeMatch twig pattern matching algorithm can answer

complicated queries and has good performance. This paper

highlights the concerned issues and challenges which may be

helpful for the upcoming researchers to carry on their work.

REFERENCES

[1] D.Bujji Babu, Dr. R.Siva Rama Prasad, M.Santhosh, Twig Pattern

Matching Algorithms for XML, International Journal of Advanced
Research in Computer Science Engineering , Volume 2, Issue 5, May

2012

[2] J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended xml tree pattern
matching: theories and algorithms. IEEE transactions onknowledge and

data engineering, vol.23, no. 3, march 2011

[3] Iyad Batal, Alexandros Labrinidis QuickStack: A Fast Algorithm for
XML Query Matching, Department of Computer Science University of

Pittsburgh, June 6, 2008

[4] J. Lu, T. Chen, and T. W. Ling, TJFast: Efficient processing of XML
twig pattern matching. Technical report, National university of

Singapore, 2010.

[5] Huayu Wu, Tok Wang Ling, Bo Chen, and Liang Xu, TwigTable: using
semantics in XML twig pattern query processing, School of Computing,

National University of Singapore, 2009.

[6] M.Muthukumaran, R.Sudha. Efficiency of TreeMatch Algorithm in
XML Tree Pattern Matching, IOSR Journal of Computer Engineering

(IOSRJCE) ISSN: 2278-0661 Volume 4, Issue 5 (Sep-Oct. 2012), PP

19-26
[7] Boris Vrdoljak,Marko Banek,Zoran Skočir , A Methodology for

Integrating XML Data into Data Warehouses, University of Zagreb

Faculty of Electrical Engineering and Computing .
[8] Marko Banek, Zoran Skočir and Boris VrdoljakFER, Logical Design of

Data Warehouses from XML, University of Zagreb, Zagreb, Croatia

1245

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20694

