Quasi Nonexpansive Sequences
In Dislocated Quasi - Metric Spaces

K. P. R. Sastry 1, S. Kalesha Vali 2, Ch. Srinivasa Rao 3 and M.A. Rahamatulla 4
1 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India,
2 Department of Mathematics, JNTUK University College of Engineering, Vizianagaram - 535 003, A.P., India,
3 Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam -530 001, India
4 Department of Mathematics, Al-Aman College of Engineering, Visakhapatnam – 531 173, India

Abstract:
We introduce the notion of a quasi - nonexpansive sequence with respect to a non - empty subset of a dislocated quasi - nonexpansive metric space and extend the results of M.A.Ahmed and F.M.Zeyada [1] to such sequences.

Mathematical Subject Classification: 47 H 10, 54H25.

Key Words:
Dislocated quasi - nonexpansive w.r.to F , quasi – metric spaces , asymptotically regular , decreasing sequences and metric spaces.

1. INTRODUCTION

M.A.Ahmed and F.M.Zeyada [1] established the convergence of a sequence \(\{x_n\} \), in a dislocated - quasi metric space \((X,d)\) if a map \(T : X \rightarrow X \) is quasi – nonexpansive with respect to \(\{x_n\} \). We observe that the role played by the map \(T \) in proving the convergence, is meagre. Consequently, we introduce the notion of a quasi – nonexpansive sequence with respect to a non empty subset of a dislocated quasi metric space and establish the convergence of such sequences under certain conditions.

These results extend the results of [1].

We begin with various definitions

Definition 1.1:
Let \(X \) be a non - empty set and let \(d : X \times X \rightarrow [0,\infty) \) be a function called a distance function satisfying one or more of (1.1.1) – (1.1.5).

(1.1.1): \(d(x,x) = 0 \) \(x \in X \).
(1.1.2): \(d(x,y) = d(y,x) = 0 \Rightarrow x = y \) \(x \neq y \in X \).
(1.1.3): \(d(x,y) = d(y,x) \forall x, y \in X \).
(1.1.4): \(d(x,y) \leq d(x,z) + d(z,y) \forall x, y, z \in X \).
(1.1.5): \(d(x,y) \leq \max\{d(x,z), d(z,y)\} \forall x, y, z \in X \).
(i) If \(d \) satisfies (1.1.2) and (1.1.4) then \(d \) is called a dislocated quasi metric (or) \(dq \)-metric and \((X,d) \) is called a \(dq \)-metric space.

(ii) If \(d \) satisfies (1.1.2), (1.1.3) and (1.1.4) then \(d \) is called a dislocated metric and \((X,d) \) is called a dislocated metric space.

(iii) If \(d \) satisfies (1.1.1), (1.1.2) and (1.1.4) then \(d \) is called a quasi metric (or) \(q \)-metric and \((X,d) \) is called a quasi metric space (or) \(q \)-metric space.

(iv) If \(d \) satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then \(d \) is called a metric and \((X,d) \) is called a metric space.

(v) If \(d \) satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then \(d \) is called an ultra metric and \((X,d) \) is called an ultra metric space.

We observe that every ultra metric is a metric.

Let \(D \) be a subset of a quasi metric space \((X,d) \) and \(T : D \to X \) be any mapping. Assume that \(F(T) \) is the set of all fixed points of \(T \). For a given \(x_0 \in D \), the sequence of iterates \(\{x_n\} \) is defined by

\[
(1) \quad x_n = T(x_{n-1}) = T^n(x_0), \quad \text{where } n \in N \text{ and } N \text{ is the set of all positive integers}.
\]

Definition 1.2: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])

A sequence \(\{x_n\} \) in a dislocated quasi metric space \((X,d) \) is called Cauchy, if to each \(\varepsilon > 0 \), there exists \(n_0 \in N \), such that for all \(m,n \geq n_0 \), \(d(x_m,x_n) < \varepsilon \).

Definition 1.3:

A sequence \(\{x_n\} \) in a dislocated quasi metric space \((X,d) \) is said to be dislocated quasi-convergent (or) \(dq \)-convergent to \(x \), if

\[
\lim_{n \to \infty} d(x_n,x) = \lim_{n \to \infty} d(x,x_n) = 0.
\]

In this case \(x \) is called a dislocated quasi-limit (or) \(dq \)-limit of \(\{x_n\} \) and we write \(x_n \to x \). It can be shown that \(dq \)-limit of a sequence \(\{x_n\} \), if exists is unique.

Note: In a dislocated quasi metric space, when we talk of \(dq \)-convergence or \(dq \)-limit, we conveniently drop the prefix “ \(dq \)” in the absence of any ambiguity.

Definition 1.4:

A dislocated quasi metric space \((X,d) \) is complete, if every Cauchy sequence in it is \(dq \)-convergent.

Definition 1.5:

Let \((X,d) \) be a dislocated quasi metric space. Let \(\phi \neq A \subseteq X \).

Then \(d(x,A) = \inf_{a \in A} \{d(x,a), d(a,x)\} \).

Definition 1.6: (M.A.Ahmed and F.M.Zeyada [1], definition 2.1)

Let \((X,d) \) be a quasi-metric space and \(\phi \neq D \subset X \). The mapping \(T : D \to X \) is said to be quasi-nonexpansive w.r.t. a sequence \(\{x_n\} \) of \(D \), if for all \(n \in N \cup \{0\} \) and for every \(p \in F(T) \),

\[
d(x_{n+1},p) \leq d(x_n,p), \quad \text{where } F(T) = \text{the fixed point set of } T.
\]
The following results are proved in (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])

Lemma 1.7: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])
Let \((X, d)\) be a dislocated quasi metric space.
Then every \(dq\)-convergent sequence in \(X\) is Cauchy.
It may be noted that the converse of lemma 1.7 is not true.

Lemma 1.8: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])
Let \((X, d)\) be a dislocated quasi metric space. If \(\{x_n\}\) is a sequence in \(X\)
dq-converging to \(x \in X\), then every subsequence of \(\{x_n\}\) dq-converges to \(x\).

Lemma 1.9: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])
Dislocated quasi-limits in a dq-metric space are unique.
(M.A.Ahmed and F.M.Zeyada [1]) proved the following results.

Theorem 1.10: (M.A.Ahmed and F.M.Zeyada [1], Theorem 2.1)
Let \(\{x_n\}\) be a sequence in a subset \(D\) of a q-metric space \((X, d)\) and
\(T: D \to X\) be a map such that \(F(T) \neq \phi\). Then
(a) \(\lim_{n \to \infty} d(x_n, F(T)) = 0\) if \(\{x_n\}\) converges to a unique point in \(F(T)\);
(b) \(\{x_n\}\) converges to a unique point in \(F(T)\) if \(\lim_{n \to \infty} d(x_n, F(T)) = 0\),
\(F(T)\) is a closed set, \(T\) is quasi-nonexpansive w.r.t \(\{x_n\}\) and \(X\) is complete.

Theorem 1.11: (M.A.Ahmed and F.M.Zeyada [1], Theorem 2.2)
Let \(\{x_n\}\) be a sequence in a subset \(D\) of a complete q-metric space \((X, d)\) and
\(T: D \to X\) be a map such that \(F(T) \neq \phi\) is a closed set. Assume that
(i) \(T\) is quasi-nonexpansive w.r.t \(\{x_n\}\);
(ii) \(\lim_{n \to \infty} d(x_n, x_{n+1}) = 0\);
(iii) if the sequence \(\{y_n\}\) satisfies \(\lim_{n \to \infty} d(y_n, y_{n+1}) = 0\), then
\[\lim\inf_{n} d(y_n, F(T)) = 0\] or \(\lim\sup_{n} d(y_n, F(T)) = 0\).
Then \(\{x_n\}\) converges to a unique point in \(F(T)\).

Note: The presence of conditions (ii) and (iii) guarantees that \(\lim_{n \to \infty} d(x_n, F(T)) = 0\).
We show in Example 2.6 that condition (ii) alone may not guarantee that
\(\lim_{n \to \infty} d(x_n, F(T)) = 0\).

2. MAIN RESULTS
In this section, we introduce the notion of a quasi-nonexpansive sequence with respect
to a non-empty subset of a dislocated quasi-nonexpansive metric space and extend
the results in [1] to such spaces.

Definition 2.1:
Let \((X, d)\) be a dislocated quasi metric space, \(\phi \neq F \subset X\) and \(\{x_n\} \subset X\)
such that \(x_n \notin F, \forall n = 1, 2, 3, \ldots\),
Then \(\{x_n\}\) is said to be quasi-nonexpansive w.r.t \(F\), if
\[d(x_{n+1}, p) \leq d(x_n, p)\]
and
\[d(p, x_{n+1}) \leq d (p, x_n) \forall p \in F \text{ and } n = 1, 2, 3, \ldots,\]
Lemma 2.2:
Let \((X, d)\) be a dislocated quasi metric space, \(\phi \neq F \subseteq X\) and \(\{x_n\} \subset X\), \(x_n \notin F \ \forall \ n\). Suppose that \(\{x_n\}\) is quasi-nonexpansive w.r.to \(F\). Then
\[
\lim_{n \to \infty} d(x_n, F) = 0 \Rightarrow d(x_n, x_{n+1}) \to 0 \quad \text{and} \quad d(x_{n+1}, x_n) \to 0.
\]

Proof:
Let \(\epsilon > 0\). Then there exists \(p \in F\) and positive integer \(M\) such that
\[
d(x_M, p) < \frac{\epsilon}{2} \quad \text{and} \quad d(p, x_M) < \frac{\epsilon}{2} \quad \forall \ n \geq M.
\]∴ \(\{x_n\}\) is quasi-nonexpansive w.r.to \(F\),
\[
d(x_{n+1}, p) \leq d(x_n, p) \leq \cdots \leq d(x_M, p) < \frac{\epsilon}{2}
\]
and
\[
d(p, x_{n+1}) \leq d(p, x_n) \leq \cdots \leq d(p, x_M) < \frac{\epsilon}{2}
\]
Now
\[
d(x_n, x_{n+1}) \leq d(x_n, p) + d(p, x_{n+1})
\]
\[
< \frac{\epsilon}{2} + \frac{\epsilon}{2}
\]
\[
= \epsilon \quad \forall \ n \geq M.
\]
and
\[
d(x_{n+1}, x_n) \leq d(x_{n+1}, p) + d(p, x_n)
\]
\[
< \frac{\epsilon}{2} + \frac{\epsilon}{2}
\]
\[
= \epsilon \quad \forall \ n \geq M.
\]
∴ \(d(x_n, x_{n+1}) \to 0\) and \(d(x_{n+1}, x_n) \to 0\).

Lemma 2.3:
Suppose \(\{x_n\}\) is quasi-nonexpansive w.r.to \(F\). Then
\[
\lim_{n \to \infty} d(x_n, F) = 0 \Rightarrow \{x_n\}\ is a Cauchy sequence.
\]

Proof:
Let \(\epsilon > 0\). Then there exists \(a\) positive integer \(M\) such that
\[
d(x_n, F) < \frac{\epsilon}{2} \quad \forall \ n \geq M.
\]
Now
\[
d(x_M, F) < \frac{\epsilon}{2} \Rightarrow \exists \ p \in F \ \exists \ d(x_M, p) < \frac{\epsilon}{2} \quad \text{and} \quad d(p, x_M) < \frac{\epsilon}{2}
\]
∴ \(d(x_n, p) \leq d(x_M, p) < \frac{\epsilon}{2}\)
and
\[
d(p, x_n) \leq d(p, x_M) < \frac{\epsilon}{2} \quad \forall \ n \geq M.
\]
Now suppose \(m, n \geq M\). Then
\[
d(x_m, x_n) \leq d(x_m, p) + d(p, x_n)
\]
\[
< \frac{\epsilon}{2} + \frac{\epsilon}{2}
\]
\[
= \epsilon
\]
and
\[d(x_n, x_m) \leq d(x_m, p) + d(p, x_n) \]
\[< \frac{\epsilon}{2} + \frac{\epsilon}{2} \]
\[= \epsilon \]
\[\therefore \{ x_n \} \text{ is a Cauchy sequence.} \]

Lemma 2.4:

Let \((X, d)\) be a dislocated quasi metric space and \(\{x_n\}\) be a sequence in \(X\). Assume that \(F\) be a non-empty subset of \(X\). If \(\{x_n\}\) is quasi-nonexpansive w.r.t \(F\), then \(d(x_n, F)\) is a monotonically decreasing sequence in \([0, \infty)\).

Proof:

Since \(\{x_n\}\) is quasi-nonexpansive w.r.t \(F\),
\[d(x_{n+1}, p) \leq d(x_n, p) \rightarrow (2.4.1) \text{ for all } n \in N \cup \{0\} \text{ and for every } p \in F. \]
From (2.4.1), taking the infimum over \(p \in F\), we get that
\[d(x_{n+1}, F) \leq d(x_n, F) \text{ for all } n \in N \cup \{0\}. \]
Hence \(\{d(x_n, F)\}\) is a monotonically decreasing sequence in \([0, \infty)\).

Lemma 2.5:

Let \((X, d)\) be a dislocated quasi metric space and \(\{x_n\}\) be a sequence in \(X\).
Suppose \(\{x_n\}\) is quasi-nonexpansive w.r.t \(F \neq \phi\) satisfying \(\lim_{n \to \infty} d(x_n, F) = 0\).
Then \(\{x_n\}\) is a Cauchy sequence.

Proof:

Since \(\{x_n\}\) is a quasi-nonexpansive w.r.t \(F \neq \phi\), to each \(\epsilon > 0\), there exists \(p \in F\) and positive integer \(M\) such that
\[d(x_m, p) < \frac{\epsilon}{2} \text{ and } d(p, x_n) < \frac{\epsilon}{2} \forall m, n \geq M. \]
Suppose \(m, n \geq M\). Then
\[d(x_m, x_n) \leq d(x_m, p) + d(p, x_n) \]
\[< \frac{\epsilon}{2} + \frac{\epsilon}{2} \]
\[= \epsilon \]

and
\[d(x_n, x_m) \leq d(x_m, p) + d(p, x_n) \]
\[< \frac{\epsilon}{2} + \frac{\epsilon}{2} \]
\[= \epsilon \]
\[\therefore \{x_n\} \text{ is a Cauchy sequence.} \]

The following example shows that converse of Lemma 2.5 is not true.

Example 2.6:

\(X = \{(-1,0), (1,0)\}\) and the segment \([0,1) , (0,2)]\) of the \(Y\)-axis \(d\) is the usual Euclidean distance in \(R^2\).
\(F = \{(-1,0), (1,0)\}\), \(x_n = (0, 1+ \frac{1}{n})\), \(n = 1, 2, 3 \ldots\)
Then \(\{x_n\}\) is dislocated quasi-nonexpansive w.r.t \(F\)
\(d(x_n, F) \geq d(x_{n+1}, F)\).
\[d(x_n, x_{n+1}) \to 0 \quad \text{and} \quad x_n \to (0,1) \notin F. \]

Now we state and prove our first main result, which is an extension of Theorem 1.10 to quasi–nonexpansive sequences.

Theorem 2.7:

Let \{x_n\} be a sequence in a subset \(D\) of a dislocated quasi–metric space \((X, d)\) and \(\phi \neq F \subset D \quad (x_n \notin F \forall n). \) Then

(a) \(\lim_{n \to \infty} d(x_n, F) = 0, \) if \{x_n\} converges to a point in \(F\)

(b) \{x_n\} converges to a unique point in \(F, \) if \(\lim_{n \to \infty} d(x_n, F) = 0, \)

\(F\) is a closed set, \(\{x_n\}\) is quasi–nonexpansive w.r.t \(F\) and \(X\) is complete.

Proof of (a):

Since \{x_n\} converges to a point in \(F,\) there exists a point \(p \in F\) such that

\[\lim_{n \to \infty} d(x_n, p) = 0 \quad \text{and} \quad \lim_{n \to \infty} d(p, x_n) = 0 \]

\[\therefore \text{Given } \epsilon > 0, \text{ there exists a positive integer } M \text{ such that} \]

\[d(x_n, p) < \frac{\epsilon}{2} \quad \text{and} \quad d(p, x_n) < \frac{\epsilon}{2} \quad \text{for every } n \geq M. \]

\[\therefore d(p, p) \leq d(p, x_n) + d(x_n, p) \]

\[< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n \geq M. \]

\[\therefore d(p, p) < \epsilon \quad \text{for every } \epsilon > 0, \]

\[\therefore d(p, p) = 0. \]

Now

\[d(x_n, F) \leq d(x_n, p) < \frac{\epsilon}{2} \quad \forall \quad n \geq M. \]

\[\therefore \lim_{n \to \infty} d(x_n, F) = 0 \]

\[\therefore \text{(a) holds.} \]

Proof of (b):

Let \((X, d)\) be a complete dislocated quasi–metric space and \{x_n\} be a sequence in \(X\) and \(\phi \neq F \subset X. \) Assume that \{x_n\} is quasi–nonexpansive w.r.t \(F,\) \(F\) is closed and \(\lim_{n \to \infty} d(x_n, F) = 0.\) Then \{x_n\} is a Cauchy sequence by lemma 2.5, hence there exists \(p\) such that \{x_n\} converges to \(p.\)

Let \(\epsilon > 0.\) There exists a positive integer \(M\) such that

\[d(x_n, F) < \frac{\epsilon}{2} \quad \text{for every } n \geq M \quad \text{and} \]

\[d(x_n, p) < \frac{\epsilon}{2} \quad \text{and} \quad d(p, x_n) < \frac{\epsilon}{2} \quad \forall \quad n \geq M. \]

\[\therefore \text{There exists } q_M \in F \text{ such that} \]

\[d(x_M, q_M) < \frac{\epsilon}{2} \quad \text{and} \quad d(q_M, x_M) < \frac{\epsilon}{2} \]

\[\therefore d(p, q_M) \leq d(p, x_M) + d(x_M, q_M) \]

\[< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \]

\[d(p, q_M) < \epsilon \]

and similarly we have

\[d(x_{n+1}, F) \leq d(x_{n+1}, P) \leq d(x_n, p) \forall \quad p \in F \]

\[d(x_{n+1}, F) \leq d(x_{n+1}, P) \leq d(x_n, p) \forall \quad p \in F \]
\[d(q_M, p) \leq d(q_M, x_M) + d(x_M, p) \]
\[\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]
\[
\therefore \quad d(q_M, p) < \varepsilon
\]
\[
\therefore \quad p \text{ is a limit point of } F
\]
\[
\therefore \quad p \in F, \text{ since } F \text{ is closed}
\]
Since limits are unique (by lemma 1.9), \(\{x_n\} \) converges to a unique point \(p \in F \).

Hence (b) holds.

The following theorem which is an analogue of Theorem 1.11 establishes the convergence of the sequence.

Theorem 2.8:
Let \((X, d)\) be a complete dislocated - quasi metric space. Assume that \(\{x_n\} \) is a sequence in \(X \) and \(\phi \neq F \subseteq X \). Further assume that there is a mapping \(\phi : [0, \infty) \to [0,1) \) such that \(\phi \) is monotonically increasing and
\[d(x_{n+1}, F) \leq \phi(d(x_n, F)) d(x_n, F) \quad \text{for } n = 1, 2, 3 \ldots \to (2.8.1) \]
Then \(\{x_n\} \) is Cauchy and \(\{x_n\} \) converges to a point \(q \). If further \(F \) is closed then \(q \in F \).

Proof:
By hypothesis
\[d(x_{n+1}, F) \leq \phi(d(x_n, F)) d(x_n, F) \leq d(x_n, F), \]
so that \(\{d(x_n, F)\} \) is decreasing and hence \(\{\phi(d(x_n, F))\} \) is decreasing since \(\phi \) is increasing.
\[
\therefore \quad d(x_{n+1}, F) \leq \phi(d(x_n, F)) d(x_n, F) \leq \phi(d(x_{n-1}, F)) \phi(d(x_{n-1}, F)) \phi(d(x_{n-1}, F)) \ldots \phi(d(x_1, F)) d(x_1, F)
\]
\[
\leq \phi(d(x_1, F)) \phi(d(x_1, F)) \ldots \phi(d(x_1, F)) d(x_1, F)
\]
\[
= (\phi(d(x_1, F)))^n d(x_1, F) \to 0 \text{ as } n \to \infty
\]
(\(\therefore \quad \phi(d(x_n, F) < 1) \)
Thus \(d(x_n, F) \to 0 \) as \(n \to \infty \).

\[
\therefore \quad \text{By lemma 2.5, } \{x_n\} \text{ is Cauchy sequence and hence converges to a point } q
\]
since \(X \) is complete. If \(F \) is closed by (Theorem (2.7) (b)) follows that \(q \in F \).

The following Example shows that

Theorem 2.8 may not hold good if (2.8.1) is replaced by
\[d(x_{n+1}, F) \leq d(x_n, F) \quad \text{for } n = 1, 2, 3, \ldots \to (2.8.2) \]
even if we assume that (even in a metric space)
\[\lim_{n \to \infty} d(x_n, x_{n+1}) = 0 \quad \to (2.8.3) \]

Example 2.9:
Let \(X \) be the subset of \(R \times R \) consisting of the points \((-1,0), (1,0)\) and the segments of the \(Y \) axis joining the two points \((0,1)\) and \((0,2)\).
Hence \(X = \{(-1,0), (1,0) \text{ and } \{(0,y)/1 \leq y \leq 2\}\} \)
Let \(d \) be the Euclidean metric in \(R^2 \).
Take \(F = \{(-1,0), (1,0)\} \) and \(x_n = \{(0,1 + \frac{1}{n})/n = 1, 2, \ldots \} \)
Then \(\{x_n\} \) is quasi - nonexpansive w.r.to to \(F \),
\[d(x_{n+1}, F) \leq d(x_n, F) \quad \text{for } n = 1, 2, 3, \ldots \]
\[d(x_n, x_{n+1}) \to 0, \ F \text{ is closed but } \{d(x_n, F)\} \text{ does not converges to } 0. \]

Acknowledgements:
The fourth author (M.A. Rahamatulla) is grateful to the authorities of AI - Aman College of Engineering, Visakhapatnam and I.H. Farooqui Sir for granting permission to carry on this research. The fourth author is deeply indebted to the authorities of SITAM College of Engineering, Vizianagaram for permitting to use the facilities in their campus while doing the research.

REFERENCES