Quality Engineering for Plantation White Sugar with Taguchi Quality Function Approach – A Case Study in Pg.Xyz

Nita Marikena¹, Sukaria Sinulingga², Nazaruddin³ ^{1,2,3} Magister in Industrial Engineering, Faculty of Engineering, Universitas Sumatera Utara, Prof. T. Maas Street, Kampus USU

Abstract – Sugar is one of the basic human needs. Sugar consumed daily is Plantation White Sugar (Gula Kristal Putih/GKP). Therefore the role of sugar is very important in human life. As a food product must meet the quality standards that have been set so it is worth to be consumed. Quality engineering in this research is done by using two approaches: Taguchi Quality Loss Function and Capability Process.

Based on the results of the research on PG.XYZ, sugar quality parameters that are beyond the specification limits of SNI 3140.3: 2010 are the turbidity, the particle size distribution, the polarization and the moisture content. Such deviation causes the hidden cost of losses to be borne by the company due to the non-conformity of value generated by PG.XYZ against SNI 3140.3: 2010. The amount of Quality Loss Function generated PG.XYZ the moisture content losses are in the highest order of Rp.697,244.49 / kg followed by the turbidity Rp. 39,659.45 / kg, polarization Rp.6,758.15 / kg, and particle size distribution Rp. 1,633.71 / kg. Based on the calculation of the ability of the process, then as a whole needs to make improvements to the process of making white crystal sugar and increase the performance of plant equipment.

Keyword: Taguchi Quality Loss Function, Capability Process, Plantation White Sugar

L

INTRODUCTION

Sugar is one of the basic human needs as energy for the human body. The function of sugar is as a sweet taste converter for food and drink. As a food product, of course, must meet the quality standards that have been set so it is worth to be consumed and provide benefits for the health of the body. Sugar consumed daily is Plantation White Sugar (Gula Kristal Putih/GKP).

In AFTA (ASEAN Free Trade Agreement), sugar commodity becomes one of commodities that enter into highly sensitive list. In order to compete with imported sugar, Indonesia's production quality requires a significant increase for both the agricultural, industrial or sugar factory, technology and government policy.

The Regulation of the Minister of Agriculture No. 68 / Permentan / OT.140 / 6/2013 concerning Compulsory Enforcement of National Standard of Plantation White Sugar. Based on SNI 3140.3: 2010 Plantation White Sugar, the quality requirements for plantation white sugar can be seen in TABLE I. [1]

Table I. Quality Requirement	For Plantation	White Sugar
Based On Sni	3140.3:2010	

No	Characteristics	Unit	Requirement					
INO.	Characteristics	Unit	GKP 1	GKP 2				
1.	Colour							
1.1	Crystal colour	CT	4,0-7,5	7,6 - 10,0				
1.2	Turbidity (ICUMSA)	IU	81 - 200	201 - 300				
2	Particle size distribution	mm	0,8 - 1,2	0,8 - 1,2				
3	Moisture content (b/b)	%	Max 0,1	Max 0,1				
4	Polarization (°Z, 20°C)	"Z"	Min 99,6	Min 99,5				
5	Ash Conductivity (b/b)	%	Max 0,10	Max 0,15				
6	Food Additives							
6.1	Sulphur dioxide (SO ₂)	mg/kg	Maks 30	Max 30				
7	Metal Contaminants							
7.1	Lead (Pb)	mg/kg	Max 2	Max 2				
7.2	Copper (Cu)	mg/kg	Max 2	Max 2				
7.3	Arsenic (As)	mg/kg	Max 1	Max 1				

PT.XYZ is one of the sugar factories in Indonesia which was established as one of the realization of the sugar industry development target set by the government in order to achieve national sugar self-sufficiency. Based on the Regulation of the Minister of Trade No.24 / M-DAG / PER / 4/2016 concerning Standardization of Trade Sector regulating the supervision of compulsory SNI for domestic production or imported goods traded domestically, PG.XYZ shall pay attention to the quality of plantation white sugar produced.

Plantation white sugar is said to have met the quality if the value of test parameters meets the value of test parameters listed in SNI 3140.3: 2010 (TABLE I). The deviation of the test parameter values creates hidden quality costs including consumer dissatisfaction, loss of market share, and the cost of product repairs.

To calculate the hidden losses of plantation white sugar produced by PT.XYZ, the researcher calculated using both approaches of Taguchi Quality Loss Function and Capability Process. Taguchi defines this hidden quality cost as: A number of losses that arise and should be borne by the company if the resulting product deviates from the target value, even though the product is within the limits of the resulting product specification. [2]

Capability Process is a calculation through the comparison between product output with design specifications. If the equipment has the ability to consistently meet the range of expected quality range, then the quality and cost of production can be optimal.

II. RESEARCH METHOD

Methodological steps in this research are as follows: (Figure 1.)

Figure 1. Steps of Research Methodology

III. RESULT AND DISCUSSION

A. Results of Plantation White Sugar Measurement Based on the laboratory test result of plantation white sugar, the results obtained that from 10 (ten) test parameters there are 4 (four) test parameters that are not in accordance with requirements of GKP 2. The test parameters that do not meet the requirements are shown in TABLE II.

B. Identification the characteristics based on SNI 3140.3:2010

Based on the result of the test, the turbidity test parameter is the top of the GKP 2 deviation followed by the particle size distribution, the polarization and the moisture content. The effect of the turbidity, the particle size distribution, the polarization and the moisture content to Plantation White Sugar quality is shown in TABLE III 3.[3][4]

TABLE III. EFFECT CHARACTERISTICS TO PLANTATION WHITE SUGAR QUALITY

No.	Characteristic	Effect to Plantation White Sugar
		Quality
1.	Turbidity	Turbidity that indicates the purity
		and the amount of dirt (clarity of
		sugar solution) contained in the
		sugar. This parameter is very
		useful to determine the price of
		sugar and is needed by the sugar
		processor to be further processed
		into pure sugar (refined sugar).
2.	Particle size	The particle size distribution of
	distribution	plantation white sugar will affect
		the process of storing sugar. Small
		size of plantation white sugar will
		absorb more moisture.
3.	Polarization	Polarization shows the level of
		sucrose contained in the sugar.
		The higher the polarization value
4	M 1 4	the higher the sugar content.
4.	Moisture	The moisture content will
	content	accelerate the growth of
		microorganisms, color changes
		and clumps that will affect the
		decrease of sugar quality.

C. Quality Loss Function

Evaluate the quality level of products using the loss function approach with three types of tolerance:[5]

- 1. The-Nominal-The-Best (N Type).
 - a. When Two-Way Tolerance is Equally Large.

The formula used to determine the loss function is as follows:

$$k = \frac{A}{\Delta^2} \quad (1)$$

$$L = \frac{A}{\Delta^2} v^2 \qquad (2)$$

$$\hat{v}^2 = \frac{1}{n} [(y_1 - m)^2 + (y_2 - m)^2 + \dots + (y_{1n} - m)^2]$$

$$(3)$$

Information:

- $2\Delta =$ tolerance limit
- A = the cost incurred due to the resulting product does not match the specified target
- k = cost coefficient
- v^2 = mean square deviation of product value from the target value m.
- L = quality level or loss function
- M = target
- y = characteristic value
- b. When Plus and Minus Tolerances Are Not Equally Large.

The formula used to determine the loss function is as follows:

$$k = \frac{A}{\Delta^{2}} \quad (4)$$

$$L(y) = \left[\frac{A_{1}}{\Delta^{2}_{1}} \sum' (y-m)^{2}\right] \quad if \ y \le m \ (5)$$

$$L(y) = \left[\frac{A_{2}}{\Delta^{2}_{2}} \sum^{"} (y-m)^{2}\right] \quad if \ y > m \ (6)$$

$$L = \frac{1}{n} \left[\frac{A_{1}}{\Delta^{2}_{1}} \sum' (y-m)^{2} + \frac{A_{2}}{\Delta^{2}_{2}} \sum^{"} (y-m)^{2}\right] \quad (7)$$

2. *The-Smaller-The-Better (S Type).* The formula used to determine the loss function is as follows:

$$k = \frac{A}{\Delta^2}$$

$$L = \frac{A}{\Delta^2} \hat{v}_1^2$$

$$\hat{v}_1^2 = \frac{1}{n_1} \sum (y_i^2)$$
(10)

3. The-Larger-The-Better (L Type).

The amount of loss caused by the deviation of the y data on the target value is shown in Figure 5. The formula used to determine the loss function is as follows:

$$k = \frac{A}{\Delta^2} \tag{11}$$

$$L = A\Delta^2 \hat{v}^2 \tag{12}$$
$$\hat{v}^2 = \frac{1}{n_1} \sum_{y^2_i} \tag{13}$$

D. Capability Process [6]

$$C_p = \frac{USL - LSL}{6\sigma}$$
(14)
Cp criteria, as follows:

Cp > 1.33	Capability process is very				
-	good.				
$1,00 \le Cp \le$	Capability process is				
1.33	good, but it needs strict				
	control when Cp				
	approaches 1.00.				
Cp < 1	Capability process is low,				
-	performance needs to be				
	improved through				
	process improvement.				

2. Kane Performance Index, Cpk. $C_{pk} = min\left(\frac{USL-\bar{X}}{3\sigma}, \frac{\bar{X}-LSL}{3\sigma}\right)$

Cpk criteria, as follows:

Cpk < 1The process still produces products that deviate from the specification Cpk > 1The process has

(15)

- produced the product in accordance with the specifications.
- $0 \le Cpk \le 1$ The average process is within the specification limit but there are still those outside of the specification.
- Cpk = CpThe average process is on the specification value
- 3. Process Capability Index Cpm (Taguchi Capability Index)

$C_{pm} = \frac{J_{USL-H}}{6\sqrt{\sigma^2 + (\lambda)^2}}$	$\frac{LSL}{(\overline{k}-T)^2} \tag{16}$						
Cpm criteria, a	s follows:						
Cpm ≥ 2,00	The process is						
	considered capable and competitive.						
$1,00 \leq Cpm \leq 1,99$	$1,00 \le \text{Cpm}$ The process is $\le 1,99$ considered to be						
Cpm < 1,00	is necessary to improve the quality The process is considered incapable and uncompetitive						

- E. **Result and Discussion**
- Quality Loss Function 1. The result of Quality Loss Function calculation is shown in TABLE IV.

TABLE IV. THE RESULT OF QUALITY LOSS FUNCTION CALCULATION

No.	Characteristics	Loss Function (Rp/Kg)					
		Turbidity	Particle size	Polarization	Moisture		
			distribution		content		
1.	Turbidity						
	(Capability						
	Process)						
	Target ≤ 300 IU	39,659.45					
2.	Particle size						
	distribution (The						
	Nominal The						
	Best)						
	0.8 < Target <		1,633.71				
	1.22 mm						
3.	Polarization (The						
	Larger The						
	Better)						
	Target \geq 99.5 "Z:			6,758.15			
4.	Moisture content						
	(The Nominal						
	The Best)						
	0.03 < Target <				697,244.49		
	0.05%						

2. Capability Process

Capability Process calculation results are shown in TABLE V.

IV.CONCLUSION

The result of measurement of plantation white characteristic, the turbidity is in the order of the most inconsistency with the requirements of GKP 2 followed by the type of particle size distribution, the polarization and the moisture content. Based on the calculation of quality loss function, moisture content losses are in the highest order of Rp.697,244.49/ kg followed by the turbidity Rp. 39,659.45/kg, polarization Rp.6,758.15/kg, and particle size distribution Rp. 1,633.71/kg. This is due to the greater deviation of the value generated from the target, the hidden quality cost will be greater even though the value is still within the limits of GKP 2 requirements. Judging from the calculation of overall process capability for Cp value, low capability process, performance needs to be improved through process improvement. For Cpk value, production process still produce product not yet according to specification. For

Cpm value, process is considered incapable and

uncompetitive.

TABLE V. CAPABILITY PROCESSCALCULATION RESULTS

Characteristics		The Result			Amolysis	
Specific	Specifications		СрК	СрМ	Analysis	
Turbidity	$m_1 = 201$	0.227	-1.606	0.036	Capability process is low, The	
(IU)					process still produces products that	
					deviate from the specification, The	
					process is considered incapable	
					and uncompetitive	
	$m_2 = 300$	0.227	-1.606	0.046		
Particle size	$m_1 = 0.8$	1.021	-0.540	0.537	Capability process is good, The	
distribution					process still produces products that	
(mm)					deviate from the specification, The	
					process is considered incapable	
					and uncompetitive	
	$m_2 = 1,2$	1.021	-0.540	0.131		
Polarization	$m_1 = 0.03$	0.033	-0.308	0.022	Capability process is low, The	
(%)					process still produces products that	
					deviate from the specification, The	
					process is considered incapable	
					and uncompetitive	
	$m_2 = 0,05$	0.033	-0.308	0.024		
Moisture	$m_1 = 99,5$	0.033	-0.600	0.218	Capability process is low, The	
content					process still produces products that	
("Z")					deviate from the specification, The	
1					process is considered incapable	
1	100	0.000	0 600	0.000	and uncompetitive	
	$m_2 = 100$	0.033	-0.600	0.098		

REFERENCES

- SNI 3140.3:2010, Gula Kristal Bagian 3 : Putih, Badan Standarisasi Nasional, ICS 67.180.10
- [2] Kim M W and W M Liao 1994 Estimating Hidden Qulity Costs With Quality Loss Functions, Accounting Horizons (March): 8-18
- [3] Chitpraset, P. Dan Chedchant J. 2006. Effects of Grain Size, Reducing Sugar Content, Temperature and Pressure on Caking of Raw Sugar Katsetsart Journal (Nat. Sci.) 40 : 141 – 147.
- [4] Engida E, Bultosa G, Bussa N 2013 Physicochemical Quality of Ethiopian Plantation Sugar grom Three Sugar Factories, International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013, ISSN 2250-3153
- [5] Taguchi G, Elsayed A, Elsayed, Thomas C. Hsiang 1989 *Quality Engineering in Productions System* (New York: Mc Graw-Hill Book Company)
- [6] Wooluru Y, Swamy D.R, Nagesh P 2014 The Process Capability Analysis-A Tool For Process Performance Measure and Metric- A Case Study, International

TABLE II. RESULTS OF PLANTATIONT WHITE SUGAR MEASUREMENT

No.	Turbidity	Particle size	Moisture	Polarization	zation No.	Turbidity	Particle size	Moisture	Polarization
	(IU)	(mm)	(%)	("Z")		(IU)	(mm)	(%)	("Z")
1	748.05*	0.75*	0.30*	99.20*	40	822.80*	0.59*	0.10	98.90*
2	987.70*	0.60*	0.36*	99.10*	41	743.70*	0.68*	0.10	99.00*
3	946.10*	0.53*	0.10	99.30*	42	565.70*	0.70*	0.06	99.40*
4	825.10*	0.53*	0.14*	99.00*	43	519.90*	0.69*	0.06	99.00*
5	583.20*	0.76*	0.80*	98.90*	44	811.90*	0.75*	0.08	98.70*
6	524.40*	0.76*	0.04	99.60	45	912.00*	0.68*	0.06	99.00*
7	578.40*	0.74*	0.03	99.40*	46	688.40*	0.64*	0.10	99.20*
8	612.80*	0.76*	0.04	99.40*	47	619.60*	0.69*	0.08	99.10*
9	609.50*	0.67*	0.04	99.20*	48	537.80*	0.70*	0.06	99.30*
10	536.40*	0.64*	0.06	99.40*	49	495.30*	0.59*	0.60	99.10*
11	543.90*	0.75*	0.18*	99.60	50	553.20*	0.74*	0.08	99.20*
12	515.50*	0.84	0.04	99.60	51	667.00*	0.61*	0.09	99.00*
13	524.40*	0.89	0.06	99.50	52	654.40*	0.66*	0.08	98.70*
14	520.00*	0.80	0.06	99.40*	53	770.50*	0.58*	0.14	98.80*
15	452.40*	0.85	0.04	99.50	54	645.60*	0.66*	0.10	99.50
16	467.20*	0.82	0.06	99.60	55	737.60*	0.66*	0.20	99.00*
17	461.90*	0.78*	0.08	99.30*	56	685.40*	0.74*	0.13	98.90*
18	440.40*	0.92	0.04	99.40*	57	656.21*	0.66*	0.07	99.10*
19	445.70*	0.77*	0.06	99.50	58	691.04*	0.74*	1.00	99.20*
20	470.10*	0.69*	0.04	99.60	59	578.38*	0.68*	0.22	99.30*
21	436.50*	1.00	0.04	99.50	60	588.05*	0.71*	0.22	99.10*
22	586.40*	0.73*	0.08	99.40*	61	575.60*	0.77*	0.14	99.10*
23	597.90*	0.88	0.04	99.50	62	614.50*	0.75*	0.10	98.80*
24	409.50*	0.74*	0.04	99.50	63	735.60*	0.71*	0.15	99.00*
25	533.30*	0.84	0.04	99.30*	64	770.50*	0.64*	0.08	98.90*
26	694.80*	0.69*	0.08	98.90*	65	640.30*	0.67*	0.08	99.30*
27	612.90*	0.62*	0.08	99.20*	66	596.20*	0.56*	0.10	98.90*

IJERTV6IS110221

Published by : http://www.ijert.org

	TABLE II. RESULTS OF PLANTATIONT WHITE SUGAR MEASUREMENT									
No.	Turbidity (IU)	Particle size distribution (mm)	Moisture content (%)	Polarization ("Z")	No.	Turbidity (IU)	Particle size distribution (mm)	Moisture content (%)	Polarization ("Z")	
28	589.70*	0.69*	0.06	99.30*	67	683.00*	0.59*	0.08	98.80*	
29	906.80*	0.70*	0.04	99.20*	68	781.00*	0.72*	0.10	98.90*	
30	764.20*	0.60*	0.06	99.30*	69	816.10*	0.66*	0.16	98.70*	
31	727.70*	0.68*	0.06	99.20*	70	661.60*	0.67*	0.10	99.00*	
32	896.70*	0.65*	0.08	99.30*	71	674.30*	0.63*	0.10	98.70*	
33	881.90*	0.69*	0.06	98.90*	72	658.50*	0.65*	0.09	99.00*	
34	904.30*	0.65*	0.54*	98.50*	73	652.60*	0.60*	0.08	99.20*	
35	626.40*	0.59*	0.08	99.10*	74	499.60*	0.62*	0.06	99.20*	
36	770.50*	0.64*	0.12*	99.00*	75	511.10*	0.73*	0.08	99.30*	
37	827.40*	0.57*	0.10	99.00*	76	533.30*	0.71*	0.10	99.00*	
38	906.80*	0.56*	0.11*	98.90*	77	573.60*	0.59*	1.40	99.90*	
39	729 70*	0.67*	0.08	99 10*						

* Test results not complying with the requirements of GKP 2 based on SNI 3140.3: 2010