
Quality-Aware Real-Time Embedded Database

R. Suresh1, Jebin P. L2,G. Kannadhasan3

M.E Embedded System Technologies

S.A Engineering College

Chennai77

Abstract

Recent advances in Embedded system have paved

the way for next generation real-time applications

that are highly data-driven, where data represent

real-world status. An embedded database is an

integral part of such applications or application

infrastructures. Unlike traditional DBMSs,

database functionality is delivered as part of the

application or application infrastructure.

Embedded databases provide an organized

mechanism to access large volumes of data for

applications. Instead of providing full features of

traditional DBMSs, such as complex query

optimization and handling mechanisms, embedded

databases provide minimal functionality such as

indexing, concurrency control, logging, and

transactional guarantees.

Key words: Real-time database, embedded

database, transaction tardiness, sensor data

freshness, QoS management, Multiple

Input/Multiple Output (MIMO) control.

1 INTRODUCTION:
With continuing miniaturization and

increasing computation power, computing systems

are becoming more and more deeply embedded in

everyday life and interact with processes and

events of the physical world. The interaction

between embedded computers and physical

processes usually forms a feedback loop, in which

physical processes affect computation in

computers embedded in devices like automobiles,

and vice versa. Systems featuring such tight

combination of, and coordination between,

systems’ computational and physical elements are

broadly called cyber-physical systems (CPS).

1.1 Overview of QRED:

QRED targets real-time embedded

devices, which have relatively small main memory

compared to their secondary storage. Since the

capacity of the secondary storage is usually far

greater than the size of main memory, databases

bigger than the main memory can be used with

support from the secondary storage.

APPLICATION

QRED

. . .

to n/w

OS

Fig. 1software stack of an embedded system

Fig. 1 shows the software stack of an embedded

system, which runs a real-time application with

support from a RTEDB. A buffer cache is located

in main memory, and it is a cache between the slow

secondary storage and the CPU. The buffer cache is

global, and shared among transactions to reduce the

average response time in accessing data. An I/O

request from application(s) for a data object incurs

I/O operations to the secondary storage only if the

data object is not found in the buffer cache.

2 QOS MANAGEMENT IN QRED
In this we describe our approach to

managing the performance of QRED in terms of

QoS. We define the QoS Queries in 2.1 and metrics

in Section 2.2. An overview of the feedback control

architecture of QRED is given in Section 2.3.

2.1 QoS Queries
There are two approaches for processing

sensor queries: the warehousing approach and the

distributed approach. The warehousing approach

represents the current state of- the-art. In the

warehousing approach, processing of sensor

queries and access to the sensor network are

Buffer cache

Secondary storage

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

separated. (The sensor network is simply used by a

data collection mechanism.) The warehousing

approach proceeds in two steps. First, data is

extracted from the sensor network in a predefined

way and is stored in a database located on a unique

front-end server. Subsequently, query processing

takes place on the centralized database.

 In the distributed approach, the query

workload determines the data that should be

extracted from sensors. The distributed approach is

thus flexible – different queries extract different

data from the sensor network – and efficient – only

relevant data are extracted from the sensor network.

In addition, the distributed approach allows the

sensor database system to leverage the computing

resources on the sensor nodes: a sensor query can

be evaluated at the front-end server, in the sensor

network, at the sensors, or at some combination of

the three.

2.2 QoS Metrics:

The goal of the system is to maintain QoS

at a certain level. The most common QoS metric in

real-time systems is deadline miss ratio. The

deadlines of transactions are application-specific

requirement on the timeliness of the transactions,

and the deadline miss ratio indicates the ratio of

tardy transactions to the total number of

transactions. However, it turns out deadline miss

ratio is problematic in RTEDBs because the rate of

transaction invocation in embedded databases is

very low compared to conventional database

systems, which handle thousands of transactions

per second. For example, a real-time transaction of

a firefighter’s PDA, which checks the status of the

building, can be invoked on a per-second basis.

With such a small number of transactions, the

confidence interval of deadline miss ratio can be

very wide. This makes the deadline miss ratio not

very suitable for a QoS control. Therefore, QRED

controls the QoS based on the average tardiness of

the transactions. For each transaction, we define the

tardiness by the ratio of response time of the

transactionto its respective (relative) deadline.

Another QoS metric, which may pose conflicting

requirements, is data freshness. QRED supports the

desired data freshness in terms of perceived

freshness (PF)

Where Nfresh is the fresh data accessed by real-

time transactions, and N access is the total data

accessed by real-time transactions. When

overloaded, the data freshness could be sacrificed

in order to improve the tardiness as long as the data

freshness is within the user-specified bounds.

2.2.1 I/O Deadline and CPU Deadline:

The definition of tardiness is extended to

tardiness in I/O and CPU as follows:

However, assigning the same static slack factor for

both I/O and CPU deadline can be problematic

since the ideal slack times for I/O operations and

computation change as the system status changes.

To this end, QRED dynamically adjusts I/O and

CPU deadlines at each sampling period by

Algorithm 1.

Input: average tardiness i/o and tardiness cpu

Data: State variables Ti/o and Tcpu

If tardiness i/o ≥ tardiness cpu then

 Ti/o + +; Tcpu = 0;

 δd=α * Ti/o;

 Increase deadline i/o by δd%

Else

 Tcpu + +; Ti/o = 0;

 δd=α * Tcpu;

 Decrease deadline i/o by δd%

End

Deadline cpu=deadline –deadline i/o

In Algorithm 1, I/O and CPU deadlines are

adjusted by δd% on every sampling period. In a

normal state, δd is set to a small number to prevent

the high oscillation of deadlines; α is a constant

factor and set to 1 in our testbed. However, as a

specific resource is being overloaded for

consecutive sampling periods, δd increases

multiplicatively to speed up the adaptation of

pseudodeadlines. Since the sum of the I/O deadline

and the CPU deadline is equal to the deadline of the

transaction, the multiplicative increase of one

pseudodeadline implies the multiplicative decrease

of the other pseudodeadline.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

2.3 QoS Management Architecture

Fig 2 QoS management architecture of QRED

Fig. 2 shows the QoS management

architecture of QRED. It consists of the MIMO

feedback controller, QoS Manager, performance

monitor, transaction handler, admission controller,

and ready queue. Admitted transactions are placed

in the ready queue. Fig. 2 shows three separate

queues in the ready queue. Temporal data updates

are scheduled in Q0 and receive the highest

priority. Q1 handles real-time user transactions.

Non real-time transactions in Q2 have the lowest

priority and they are dispatched only if Q0 and Q1

are empty. The transaction handler manages the

execution of the transactions. It consists of a

freshness manager (FM), a unit managing the

concurrency control (CC), a basic scheduler (SC),

and a buffer manager (BM). Transactions in each

queue are scheduled in FCFS manner. The FM

checks the freshness of a data object before

accessing it, using the time stamp and the absolute

validity interval of the data.

The monitor computes the I/O and CPU

tardiness, i.e., the difference between the desired

I/O (and CPU) response time and the measured I/O

(and CPU) response time at each sampling instant.

Based on the errors, the MIMO feedback controller

computes the required buffer hit ratio adjustment

(Δhit ratio) and CPU load adjustment (Δcpu load).

The QoS manager estimates the required buffer

size adjustment and update rate adjustment based

on Δhit ratio and Δcpu load. Update transactions

waiting in the ready queues are discarded according

to their update rates. The buffer cache size is

adapted by the BM in the transaction handler as

requested by the QoS manager.

3 IMPLEMENTATION
Commonly, embedded databases are used

as components of open systems consisting of many

other interacting software components and

applications, instead of as isolated monolithic

databases.

3.1 Hardware and Software:
The hardware platform used in the tested

is the MSP430 which is ultra low power controller

and PIC16F877A. The MSP debug stack is

officially supporting the following Operating

Systems:

 Windows XP SP3, 32- and 64-bit

 Windows Vista, 32- and 64-bit

 Windows 7, 32- and 64-bit

 Linux Ubuntu 10.04

 Linux Suse 10.3

QRED is an extension of Berkeley DB and QeDB,

which is a popular open source embedded database.

Berkeley DB provides robust storage features as

found in traditional database systems, such as

ACID transactions, recovery, locking,

multithreading for concurrency, and slave-master

replication for high availability. However, QeDB

does not provide the QoS support in terms of

transaction tardiness and data freshness, which is

the main objective for the design of QRED.

3.2 Simulation And Circuit Diagram

Proteus simulation circuit is shown in the

following window. PIC 16F877A is taken as a

system or controller. The PIC uses its internal clock

source operated at 4.0MHz. It has 256 bytes of

internal EEPROM which means only the eight

most significant bits of DS18B20 output is

recorded. This works on the principle of successive

approximation method. ADC initialization takes

place at the ADC selection port RA0, RA1, RA2.

This senses the signal from the sensor node and

stored in the register for processing. To boost up

the input output operation, to achieve high data

freshness, indexing, logging, concurrency control,

in terms of reducing the computation time,

computation power, MSP 430 is used.

Fig 3 PIC16F877A temperature data logger.

The data logger offers three options for

sampling interval i.e. 1sec, which starts data

logging, 1min, which stops data logging and 10

min, which is send/reset for transferring data to pc

through serial port. The following circuit diagram

in fig.4 explains the design simulation of QRED

architecture. This simulation also detects the error

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

and based on the error the control feedback assigns

the required buffer size for each I/O operation.

Fig 4 Simulation circuit diagram with MSP430

3.3 Simulation Results
Simulation results are shown on the LCD

on user demand and periodical alert about the

shooting temperature is made known to the user in

case of potential danger both to the user and fire

men through PDA. The sensor used in this project

is LM35. It is a digital temperature sensor

manufactured by Dallas Semiconductor (now

MAXIM) that can measure temperature ranging

from -55°C to +125°C with an accuracy of ±0.5°C

over the range of -10°C to +85°C. This helps in

safeguarding the lives of firemen who are carrying

out intense operation on a burning building. By

using MSP430 the maximum and minimum

computation power achieved is between 3.6v and

1.8v. The maximum and minimum threshold

voltage is 1.9v and 0.9v.

Fig 4 Alert signal output

4 Conclusions And Future Work

 The main objective of this project is to

establish safety in burning building. The wireless

are more flexible and can avoid the trouble of

rewiring, because wireless network can meet the

moving and changing of topology .It will greatly

improve the performance and efficiency of data

transmission from the high temperature sensor, and

reduce the costs of extending the system. The

application of WSN can realize the real-time

monitoring of working region.

In the future, we plan to enhance

QRED in several different directions through

hardware platform. . A real time clock chip can

also be added in the project to keep record of the

actual time stamp. Experiment results prove that

this QRED works well, and can be put forward to

practical application. This gives desired timelines

of data freshness with improved quality of service

in real time applications. This reduces considerable

CPU and I/O overload in processor and enhances

fast reliable transaction for real time monitoring

system.

5 REFERENCES
1)W. Kang, S. H. Son, J. A. Stankovic, and M.

Amirijoo, “I/O-aware deadline miss ratio

management in real-time embedded databases,” in

The 28th IEEE Real-Time Systems Symposium

(RTSS),

2) J. R. Haritsa, M. Livny, and M. J. Carey,

“Earliest deadline scheduling for real-time database

systems,” in In Proceedings of the 12th Real-

TimeSystems Symposium,

3) S. Chen, J. A. Stankovic, J. F. Kurose, and D.

Towsley, “Performance evaluation of two new disk

scheduling algorithms for real-time systems,” The

Journal of Real-Time Systems,

4) X. C. Song and J. W. S. Liu, “Maintaining

temporal consistency: Pessimistic vs. optimistic

concurrency control,” IEEE Trans. on Knowl.and

Data Eng.,

5) C. Lu, X. Wang, and C. Gill, “Feedback Control

Real-Time Scheduling in ORB Middleware,” Proc.

Ninth IEEE Real-Time and Embedded Technology

and Applications Symp.(RTAS ’03), pp. 37-48,

2003.

6) Y. Lu, T.F. Abdelzaher, and A. Saxena, “Design,

Implementation, and Evaluation of Differentiated

Caching Services,” IEEE Trans. Parallel and

Distributed Systems, vol. 15, no. 5, pp. 440-452,

May 2004.

7) S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,

T. Jayram, and J. Bigus, “Using Control Theory to

Achieve Service Level Objectives in Performance

Management,” Real-Time Systems, vol. 23, nos. 1-

2, pp. 127-141, 2002.

8) S. Nath and A. Kansal, “FlashDB: Dynamic

Self-Tuning Database for NAND Flash,” Proc. Int’l

Conf. Information Processing in Sensor Networks

(IPSN), 2007.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

