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Abstract - With data storage and sharing services in the
cloud, users can easily modify and share data as a group. To
ensure shared data integrity can be verified publicly, users in
the group need to compute signatures on all the blocks in
shared data. Different blocks in shared data are generally
signed by different users due to data modifications performed
by different users. For security reasons, once a user is revoked
from the group, the blocks which were previously signed by
this revoked user must be re-signed by an existing user. The
straightforward method, which allows an existing user to
download the corresponding part of shared data and re-sign it
during user revocation, is inefficient due to the large size of
shared data in the cloud. This paper proposes a novel public
auditing mechanism for the integrity of shared data with
efficient user revocation in mind. By utilizing the idea of
proxy re-signatures, the cloud is allowed to re-sign blocks on
behalf of existing users during user revocation, so that existing
users do not need to download and re-sign blocks by
themselves. In addition, a public verifier is always able to
audit the integrity of shared data without retrieving the entire
data from the cloud, even if some part of shared data has been
re-signed by the cloud. Moreover, this mechanism is able to
support batch auditing by verifying multiple auditing tasks
simultaneously. Experimental results show that this
mechanism can significantly improve the efficiency of user
revocation.

1. INTRODUCTION

WITH data storage and sharing services (such as Drop-
box and Google Drive) provided by the cloud, people
can easily work together as a group by sharing data with
each other. More specifically, once a user creates shared
data in the cloud, every user in the group is able to not only
access and modify shared data, but also share the latest ver-
sion of the shared data with the rest of the group. Although
cloud providers promise a more secure and reliable envi-
ronment to the users, the integrity of data in the cloud may
still be compromised, due to the existence of hard-
ware/software failures and human errors [2], [3]. To protect
the integrity of data in the cloud, a number of mechanisms
[3]-[15] have been proposed. In these mechanisms, a signa-
ture is attached to each block in data, and the integrity of
data relies on the correctness of all the signatures. One of
the most significant and common features of these mecha-
nisms is to allow a public verifier to efficiently check data
integrity in the cloud without downloading the entire data,
referred to as public auditing (or denoted as Provable Data
Pos-session [3]). This public verifier could be a client who
would like to utilize cloud data for particular purposes (e.g.,
search, computation, data mining, etc.) or a third-party audi-
tor (TPA) who is able to provide verification services on

Bhavya N Javagal
Asst Prof,Dept of CSE
T.John Institute Of Technology
Bangalore,India

data integrity to users. Most of the previous works [3]-[13]
focus on auditing the integrity of personal data. Different
from these works, several recent works [14], [15] focus on
how to preserve identity privacy from public verifiers when
auditing the integrity of shared data. Unfortunately, none of
the above mechanisms, considers the efficiency of user rev-
ocation when auditing the correctness of shared data in the
cloud.

With shared data, once a user modifies a block, she also
needs to compute a new signature for the modified block.
Due to the modifications from different users, dif-ferent
blocks are signed by different users. For security reasons,
when a user leaves the group or misbehaves, this user must
be revoked from the group. As a result, this revoked user
should no longer be able to access and modify shared data,
and the signatures generated by this revoked user are no
longer valid to the group [16]. Therefore, although the con-
tent of shared data is not changed during user revocation,
the blocks, which were previously signed by the revoked
user, still need to be re-signed by an existing user in the
group. As a result, the integrity of the entire data can still be
verified with the public keys of existing users only.

Since shared data is outsourced to the cloud and users no
longer store it on local devices, a straightforward method to
re-compute these signatures during user revo-cation (as
shown in Fig. 1) is to ask an existing user (i.e., Alice) to
first download the blocks previously signed by the revoked
user (i.e., Bob), verify the correctness of these blocks, then
re-sign these blocks, and finally upload the new signatures
to the cloud. However, this straightforward method may
cost the existing user a huge amount of communication and
computation re-sources by downloading and verifying
blocks, and by re-computing and uploading signatures, es-
pecially when the number of re-signed blocks is quite large
or the mem-bership of the group is frequently changing. To
make this matter even worse, existing users may access
their data sharing services provided by the cloud with re-
source-limited devices, such as mobile phones, which fur-
ther prevents existing users from maintaining the correct-
ness of shared data efficiently during user revocation.
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Fig. 1. Alice and Bob share data in the cloud. When Bob
is revoked, Alice re-signs the blocks that were previously
signed by Bob with her private key. Clearly, if the cloud
could possess each user’s private key, it can easily finish the
re-signing task for existing users without asking them to
download and re-sign blocks. However, since the cloud is
not in the same trusted domain with each user in the group,
outsourcing every user’s private key to the cloud would
introduce significant security issues. Another important
problem we need to consider is that the re-computation of
any signature during user revocation should not affect the
most attractive property of public auditing — audit-ing data
integrity publicly without retrieving the entire data. There-
fore, how to efficiently reduce the significant burden to ex-
isting users introduced by user revocation, and still allow a
public verifier to check the integrity of shared data without
downloading the entire data from the cloud, is a challenging
task.Moreover, our proposed mechanism is scalable, which
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Cloud re-signs blocks with
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Fig. 2. When Bob is revoked, the cloud re-signs the
blocks that were previously signed by Bob with a re-signing
key.indicates it is not only able to efficiently support a large
number of users to share data and but also able to han-dle
multiple auditing tasks simultaneously with batch auditing.
In addition, by taking advantages of Shamir Secret Sharing
[18], we can also extend our mechanism into the multi-
proxy model to minimize the chance of the misuse on re-
signing keys in the cloud and improve the reliability of the
entire mechanism.

The remainder of this paper is organized as follows: In
Section 2, we present the system model, security model and
design goals. Then, we introduce several preliminar-ies in
Section 3. Detailed design and security analysis of our
mechanism are presented in Section 4 and Section 5. We
discuss the extension of our mechanism in Section 6, and
evaluate the performance of our mechanism in Section 7
and Section 8. Finally, we briefly discuss related work in
Section 9, and conclude this paper in Section 10.

2.PROBLEM STATEMENT

In this section, we describe the system and security
model, and illustrate the design objectives of our pro-posed
mechanism.

2.1 System and Security Model

As illustrated in Fig. 3, the system model in this paper
includes three entities: the cloud, the public verifier, and
users (who share data as a group). The cloud offers data
storage and sharing services to the group. The public verifi-
er, such as a client who would like to utilize cloud data for
particular purposes (e.g., search, computation, data mining,
etc.) or a third-party auditor (TPA) who can provide verifi-
cation services on data integrity, aims to check the integrity
of shared data via a challenge-and-response protocol with
the cloud. In the group, there is one original user and a
number of group users. The original user is the original
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owner of data. This original user creates and shares data
with other users in the group through the cloud. Both the
original user and group users are able to access, download
and modify shared data. Shared data is divided into a num-
ber of blocks. A user in the group can modify a block in
shared data by performing an insert, delete or update opera-
tion on the block.

In this paper, we assume the cloud itself is semi-trusted,
which means it follows protocols and does not pollute data
integrity actively as a malicious adversary, but it
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Fig. 3. The system model includes the cloud, the public verifier, and
users.

may lie to verifiers about the incorrectness of shared da-
ta in order to save the reputation of its data services and
avoid losing money on its data services. In addition, we also
assume there is no collusion between the cloud and any user
during the design of our mechanism. Generally, the incor-
rectness of share data under the above semi-trusted model
can be introduced by hardware/software failures or human
errors happened in the cloud. Con-sidering these factors,
users do not fully trust the cloud with the integrity of shared
data.

When a user in the group leaves or misbehaves, the group
needs to revoke this user. Generally, as the creator of shared
data, the original user acts as the group manager and is able
to revoke users on behalf of the group. Once a user is
revoked, the signatures computed by this revoked user
become invalid to the group, and the blocks that were
previously signed by this revoked user should be re-signed
by an existing user’s private key, so that the correctness of
the entire data can still be verified with the public keys of
existing users only.

Alternative Approach. Allowing every user in the group to
share a common group private key and sign each block with
it, is also a possible way to protect the integrity of shared
data [19], [20]. However, when a user is revoked, a new
group private key needs to be securely distributed to every
existing user and all the blocks in the shared data have to be
re-signed with the new private key, which increases the
complexity of key management and decreases the efficiency
of user revocation.

2.2 Design Objectives

Our proposed mechanism should achieve the follow-ing
properties: (1) Correctness: The public verifier is able to
correctly check the integrity of shared data. (2)

Efficient and Secure User Revocation: On one hand, once a
user is revoked from the group, the blocks signed by the
revoked user can be efficiently re-signed. On the other hand,
only existing users in the group can generate valid
signatures on shared data, and the revoked user can no
longer compute valid signatures on shared data.

(3) Public Auditing: The public verifier can audit the
integrity of shared data without retrieving the entire data
from the cloud, even if some blocks in shared data have
been re-signed by the cloud. (4) Scalability: Cloud data can
be efficiently shared among a large number of users, and the
public verifier is able to handle a large number of auditing
tasks simultaneously and efficiently.

3. PRELIMINARIES

In this section, we briefly introduce some prelimi-naries,
including  bilinear  maps,  security  assumptions,
homomorphic authenticators and proxy re-signatures.

3.1 Bilinear Maps

Let G1 and G2 be two multiplicative cyclic groups of
prime order p, g be a generator of G1. Bilinear map e is a
map e: Gl x Gl — G2 with the following properties: 1)
Computability: there exists an efficient algorithm for
computing map e. 2) Bilinearity: forallu,ve Gland a, b
€ Zp, e(ua, vb) = e(u, v)ab. 3) Non-degeneracy: e(g, g) 6=
1.
3.2 Security Assumptions

The security of our mechanism is based on the follow-ing
security assumptions.

Computational Diffie-Hellman (CDH) Problem. Let a,

b € Z«+p, given g, ga, gb € G1 as input, output gab €

Gl.

Definition 1: Computational Diffie-Hellman (CDH)
Assumption. For any probabilistic polynomial time
adversary ACDH, the advantage of adversary ACDH on
solving the CDH problem in G1 is negligible, which is
defined as a ab R

b
P1[ACDH(g,g,g)=(g ):a, b« Zp]<o.

For the ease of understanding, we can also say computing
the CDH problem in G1 is computationally infeasible or
hard under the CDH assumption.

Discrete Logarithm (DL) Problem. Let a € Zx* p, given
g, ga € Gl as input, output a.

Definition 2: Discrete Logarithm (DL) Assumption.
For any probabilistic polynomial time adversary ApL, the
advantage of adversary ApL on solving the DL problem in G1
is negligible, which is defined as

a R =
P1[ADL(g,g)=(a):a«—Zp]<o.
Similarly, we can also say computing the DL problem in G1

is computationally infeasible or hard under the DL
assumption.

3.3 Homomorphic Authenticators

Homomorphic authenticators [3], also called homo-morphic
verifiable tags, allow a public verifier to check the integrity
of data stored in the cloud without down-loading the entire
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data. They have been widely used as building blocks in the
previous public auditing mech-anisms [3]-[15], [19], [20].
Besides unforgeability (only a user with a private key can
generate valid signatures), a homomorphic authenticable
signature scheme, which de-notes a homomorphic
authenticator scheme based on signatures, should also
satisfy the following properties:

Let (pk, sk) denote the signer’s public/private key pair,
o1 denote the signature on block m1 € Zp, and 62 denote
the signature on block m2 € Zp.

- Blockless verifiability: Given o1 and 62, two ran-dom
values al, 02 in Zp and a block m' = alml + a2m2 €
Zp, a verifier is able to check the correctness of block

m’ without knowing m1 and m2.
- Non-malleability: Given m1 and m2, 61 and c2,
two random values a1, o2 in Zp and a block

m =olmi+a2m2 € Zp, auser, who does not

have private key sk, is not able to generate a valid
signature ¢’ on block m’ by combining 1 and ¢2.
Blockless verifiability enables a verifier to audit the
correctness of data in the cloud with only a linear com-
bination of all the blocks via a challenge-and-response
protocol, while the entire data does not need to be down-
loaded to the verifier. Non-malleability indicates that other
parties, who do not possess proper private keys, cannot
generate valid signatures on combined blocks by combining
existing signatures.

3.4 Shamir Secret Sharing

An (s, t)-Shamir Secret Sharing scheme [18] (s > 2t — 1),
first proposed by Shamir, is able to divide a secret @ into s
pieces in such a way that this secret m can be easily
recovered from any t pieces, while the knowledge of any t —
1 pieces reveals absolutely no information about this secret
.

The essential idea of an (s, t)-Shamir Secret Sharing
scheme is that, a number of t points uniquely defines a t — 1
degree polynomial. Suppose we have the following t — 1
degree polynomial

f(x)= at-1xU L+ . -+ aix + a0,

R *

where at—1, ..., al «€ Zp. Then, the secret is © = a0, and
each piece of this secret is actually a point of polynomial f
(x), i.e. (xi, f (xi)), for 1 < i < s. The secret ® can be
recovered by any t points of this t—1 degree polynomial f (x)
with Lagrange polynomial interpolation. Shamir Se-cret
Sharing is widely used in key management schemes [18]
and secure multi-party computation [21].

t<t +QHCG1+ QS CG1+ 2qRCP, 0> 0/qH OK ,

4 A NEW PROXY RE-SIGNATURE SCHEME

In this section, we first present a new proxy re-signature
scheme, which satisfies the property of block-less
verifiability and non-malleability. Then, we will de-scribe
how to construct our public auditing mechanism for shared
data based on this proxy re-signature scheme in the next
section.

4.1 Construction of HAPS

Because traditional proxy re-signature schemes [17], [22]
are not blockless verifiable, if we directly apply these
proxy re-signature schemes in the public auditing mech-
anism, then a verifier has to download the entire data to
check the integrity, which will significantly reduce the
efficiency of auditing. Therefore, we first propose a
homomorphic authenticable proxy re-signature (HAPS)
scheme, which is able to satisfy blockless verifiability and
non-malleability. Our proxy re-signature scheme includes
five algo-rithms; KeyGen, ReKey, Sign, ReSign and Verify.
De-tails of each algorithm are described in Fig. 4. Similar
as the assumption in traditional proxy re-signature schemes
[17], [22], we assume that private channels (e.g., SSL)
exist between each pair of entities in Rekey, and there is no
collusion between the proxy and any user. Based on the
properties of bilinear maps, the correctness of the
verification in Verify can be presented as

Public Keys: As A requests the creation of system users,
B guesses which one A will attempt a forgery against.
Without loss of generality, we assume the target public key
as pkv and set it as pkv = ga. For all other

non-negligible, then we can find an algorithm to solve
the CDH problem in G1 with a non-negligible probabil-ity,
which contradicts to the assumption that the CDH problem
is computationally infeasible in G1. Therefore, it is
computationally infeasible to generate a forgery of a
signature in HAPS under the CDH assumption.

e(o, g) = e(H(id)w™?, g) = e(H(id)w™, pka).

4.2 Security Analysis of HAPS

Theorem 1: It is computationally infeasible to generate
a forgery of a signature in HAPS as long as the CDH
assumption holds.

Proof: Following the standard security model de-fined
in the previous proxy re-signature scheme [22], the security
of HAPS includes two aspects: external security and
internal security. External security means an exter-nal
adversary cannot generate a forgery of a signature; internal
security means that the proxy cannot use its re-signature
keys to sign on behalf of honest users.

External Security: We show that if a (t, ¢)-algorithm A,
operated by an external adversary, can generate a forgery of
a signature under HAPS with the time of t" and advantage
of ¢ after making at most gn hash queries, gs signing
queries, qr re-signing queries, and requesting at most gk
public keys, then there exists a (t, ¢)-algorithm B that can
solve the CDH problem in G: with where one
exponentiation on G; takes time cg: and one pairing
operation takes time cp . Specifically, on input (g, g, g®),
the CDH algorithm B simulates a proxy re-signature
security game for algorithm A as follows:

Theorem 2: HAPS is a homomorphic authenticable
proxy re-signature scheme.

Proof: As we introduced in Section 3, to prove HAPS
is homomorphic authenticable, we need to show HAPS is
not only blockless verifiable but also non-malleable.
Moreover, we also need to prove that the re-signing per-
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formed by the proxy does not affect these two properties.

Blockless Verifiability. Given user ua’s public key pka, two
random numbers y1, y2 € Z*p, two identifiers id1 and id2, and two
signatures o1 and o2 signed by user ua, a verifier is able to check the
correctness of a block m = yim1 + yamg2 by verifying without
knowing block m1 and block m2. Based on the properties
of bilinear maps, the correctness of the above equation can
be proved as:

e(c1Y! - 62Y2,g) = e(H(id)Y* w¥* ™ H(id2)Y? w¥2™? ,

9= e(H(id)"* H(id2)*> w™ , pka).

It is clear that HAPS can support blockless verifiability.
Non-malleability. Meanwhile, an adversary, who does not
have private key skA = a, cannot generate a valid signature
o' for a combined block m’ = ylml + y2m2 by combining
ol and 62 with yl and y2. The hardness of this problem
lies in the fact that H must be a one-way hash function
(given every input, it is easy to compute; however, given
the image of a random input, it is hard
to invert).

More specifically, if we assume this adversary can
generate a valid signature ¢ for the combined block m" by
combining o1 and o2, we have

'

9

:G]_yl . Gzyz ‘
" = (Hid

o2 ‘ ‘1))’ H(idz)” w" )a

1

o= (HGd)w™)? |
and we can further learn that H(id) = H(id1)¥? H(id2)Y2 . Then,

that means, given a value of h = H(id1)Y* H(id2)¥? , we can easily
find a block identifier id so that H(id) = h, which contradicts to
the assumption that H is a one-way hash function.

Because the construction and verification of the sig-
natures re-signed by the proxy are as the same as the
signatures computed by users, we can also prove that the
signatures re-signed by the proxy are blockless verifiable
and non-malleable in the same way illustrated above.
Therefore, HAPS is a homomorphic authenticable proxy
re-signature scheme.

5.0VERVIEW

Based on the new proxy re-signature scheme and its
properties in the previous section, we now present To build
the entire mechanism, another issue we need to consider is
how to support dynamic data during public auditing.
Because the computation of a signature includes the block
identifier, conventional methods — which use the index of

a block as the block identifier (i.e., block mj is indexed
with j) — are not efficient for supporting dynamic data [8],
[14]. Specifically, if a single block is inserted or deleted,
the indices of blocks that after this modified block are all
changed, and the change of those indices requires the user
to re-compute signatures on those blocks, even though the
content of those blocks are not changed. Each block is
attached with a signature, a block identifier and a signer
identifier.

By leveraging index hash tables [8], [14], we allow a
user to modify a single block efficiently without chang-ing
block identifiers of other blocks. The details of index hash
tables are explained in Appendix A. Besides a block
identifier and a signature, each block is also attached with a
signer identifier (as shown in Fig. 6). A verifier can use a
signer identifier to distinguish which key is required during
verification, and the cloud can utilize it to determine which
re-signing key is needed during user revocation.

5.1Construction

It includes six algorithms: KeyGen, ReKey, Sign,
ReSign, ProofGen, ProofVerify. Details of are presented
in Fig. 5.

In KeyGen, every user in the group generates his/her
public key and private key. In ReKey, the cloud com-putes
a re-signing key for each pair of users in the group. As
argued in previous section, we still assume that private
channels exist between each pair of entities

Game 1: The public verifier sends an auditing mes-sage
{(, nD}I€eL to the cloud, the auditing proof on correct
shared data M should be {a, B, {idl}1€ L}, which should
pass the verification with Equation (2). How-ever, the
cloud generates a proof on incorrect shared verification
performed by the public verifier, then the cloud wins this

game. Otherwise, it fails.

We first assume that the cloud wins the game. Then,
according to Equation (2), we have
d d

e(Y Bi, g) = Y e(Y H(id)™ - w™i, pki).

i=1 =1 €L
Because {a, B, {idihcL} is a correct auditing proof, we

have

v d wd

o Bio)= o Hian™ - w™, pki).

i=1 i=1 IELi
Based on the properties of bilinear maps, we learn that
Because G; is a cyclic group, then for two elements u, v €
G, there exists x € Zp that v = u*. Without loss of
generality, given u, v, each w® can generated as w™ = U8 v
€ Gy, where & and yi are random values of Z.
Clearly, we can find a solution to the DL problem. Given u,
v =U* € Gy, we can output unless the denominator is zero.
However, as we defined in Game 1, at least one of element
in { ai}i<ica iS NONzero, and yi is a random element of Z,
therefore, the denominator is zero with a probability of 1/p,
which is negligible because p is a large prime. Then, we
can find a solution to the DL problem with a non-negligible
probability of 1 — 1/p, which contradicts to the DL
assumption in G. |

5.2 Efficient and Secure User Revocation

We argue that our mechanism is efficient and secure
during user revocation. It is efficient because when a user
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is revoked from the group, the cloud can re-sign blocks that
were previously signed by the revoked user with a re-
signing key, while an existing user does not have to
download those blocks, re-compute signatures on those
blocks and upload new signatures to the cloud. The re-
signing preformed by the cloud improves the efficiency of
user revocation and saves communication and computation
resources for existing users.

The user revocation is secure because only existing users
are able to sign the blocks in shared data. As analyzed in
Theorem 1, even with a re-signing key, the cloud cannot
generate a valid signature for an arbitrary block on behalf
of an existing user. In addition, after being revoked from
the group, a revoked user is no longer in the user list, and
can no longer generate valid signatures on shared data.

5.3 Limitations and Future Work

Remind that in Section 2, we assume there is no collusion
between the cloud and any user in the design of our
mechanism as the same as the assumption in some traditional
proxy re-signatures [17], [22]. The reason is that, in our
current design, if a revoked user (e.g., Bob with private key
skp) is able to collude with the cloud, who possesses a re-
signing key (e.g., rka—b = ska/skp, then the cloud and Bob
together are able to easily reveal the private key of an existing
user (e.g., Alice’s private key ska).

To overcome the above limitation, some proxy re-signature
schemes with collusion resistance in [22], which can generate a re-
signing key with a revoked user’s public key and an existing user’s
private key, would be a possible solution. Specifically, a resigning key
is computed as rka—b = pkS€p? by Alice, then even the cloud (with
rka—b) and Bob (with pkp) collude together, they cannot compute the
private key of Alice (i.e., ska) due to the hardness of computing the
DL problem in G1.

Unfortunately, how to design such type of collusion-
resistant proxy re-signature schemes while also sup-porting
public auditing (i.e., blockless verifiability and non-
malleability) remains to be seen. Essentially, since
collusion-resistant proxy re-signature schemes generally
have two levels of signatures (i.e., the first level is signed
by a user and the second level is re-signed by the proxy),
where the two levels of signatures are in different forms
and need to be verified differently, achieving blockless
verifiability on both of the two levels of signatures and
verifying them together in a public auditing mechanism is
challenging. We will leave this problem for our future
work.

6. EXTENSION

In this section, we will utilize several different meth-ods
to extend our mechanism in terms of detection probability,
scalability and reliability.

6.1 Detection Probability

As presented in our mechanism, a verifier selects a
number of random blocks instead of choosing all the blocks
in shared data, which can improve the efficiency of
auditing. Previous work [3] has already proved that a
verifier is able to detect the polluted blocks with a high

probability by selecting a small number of random blocks,
referred to as sample strategies [3]. More specif-ically,
when shared data contains n = 1, 000, 000 blocks,

If 1% of all the blocks are corrupted, a verifier can detect
these polluted blocks with a probability greater than 99%
or 95%, where the number of selected blocks c is 460 or
300, respectively. Further discussions and analyses about
sample strategies can be found in [3].

To further reduce the number of the undetected pol-luted
blocks in shared data and improve the detection probability,
besides increasing the number of random selected blocks in
one auditing task mentioned in the last paragraph, a verifier
can also perform multiple auditing tasks on the same
shared data. If the detection probability in a single auditing
task is Ps , then the total detection probability for a number
of t multiple auditing
tasks is

PM=1-(1-Ps)t.
For instance, if the detection probability in a single auditing
task is Ps = 95%, then the total detection probability with two
different auditing tasks on the same shared data is Pm =
99.75%. Note that to achieve a higher detection probability,

both of the two methods require a verifier to spend more
communication and computation cost during auditing.

the properties of bilinear maps. With batch auditing, a
public verifier can perform multiple auditing tasks
simultaneously. Compared to the batch auditing in [7],
where the verification metadata (i.e, signatures) in each
auditing task are generated by a single user, our batch
auditing method needs to perform on multiple auditing
tasks where the verification metadata in each auditing task
are generated by a group of users. Clearly, designing batch
auditing for our mechanism is more complicated and
challenging than the one in [7].

More concretely, if the total number of auditing tasks
received in a short time is t, then the size of the group for
each task is dj , for j € [1, t], each auditing message is
represented as {(1, nj)herj , for j € [1, t], each au-diting
proof is described as {a; , Bj , {idji}eLj }, where
0 = (s, .., i ) and Bj = By, ..., Biiqj ), for j € [1, 1], and
all the existing users’ public keys for each group are
denoted as (pKj, ..., pKjdj ), for j € [1, t]. Based on the
properties of bilinear maps, the public verifier can perform
batch auditing as below.

6.2 Scalability

Now we discuss how to improve the scalability of our
proposed mechanism by reducing the total number of re-
signing keys in the cloud and enabling batch auditing for
verifying multiple auditing tasks simultaneously.
~ Reduce the Number of Re-signing Keys. As de-scribed
in, the cloud needs to establish and main-tain a re-signing
key for each pair of two users in the group. Since the
number of users in the group is denoted as d, the total
number of re-mgnmg keys for the group is d(d — 1)/2.
Clearly, if the cloud data 1s shared by a very large number
of users, e.g. d = 200, then the total’ numbér of re-signing
ke%s that the cloud has to securely store and manage 1s 19,
900, which significantly increasés the complexity of key
management in cloud.

To reduce the total number of re-signing keys required in
the cloud and improve the scalability of our mech-anism,
the original user, who performs as the group manager, can
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keep a short priority list (PL) with only a small subset of
users instead of the entire PL with all the users in the
group. More specifically, if the total number of users in the
group is still d = 200 and the size of a short PL is d =5,
which means the cloud is able to convert signatures of a
revoked user only into one of these five users shown in the
short PL, then the total number of re-signing keys required
with the short PL of 5 users is 990. It is only 5% of the
number of re-signing keys with the entire PL of all the 200
users.

Batch Auditing for Multiple Auditing Tasks. In many
cases, the public verifier may need to handle multiple
auditing tasks in a very short time period. Clearly, asking
the public verifier to perform these au-diting requests
independently (one by one) may not be efficient. Therefore,
to improve the scalability of our public auditing
mechanism in such cases, we can further extend to support
batch auditing [7] by utilizing (3) where 0j € Z*p, for j € [1,
t], is a random chosen by the public verifier. The correctness of
the above equation is based on all the t auditing proofs are correct.
The left hand side (LHS) of this equation can be expended as
according to the security analysis of batch verification in
[25], the probability that the public verifier accepts an
invalid auditing proof with batch auditing is 1/p (since

randoms (01, .., Ot) are elements of Zp), which is
negligible. Therefore, if the above equation holds, then the
public verifier believes all the t auditing proofs are correct.

_ One of the most important advantages of batch au-diting
is that it is able to reduce the total number of pairing
operations, which are the most time consuming 0£erat|ons
during verification. According to Equation (3), batch
auditing can reduce the total number of pairing operations
for t auditing tasks to td + 1, while verifying these t
auditing tasks independently requires td + t pairing
operations. Moreover, if all the t auditing tasks are all from
the same group, where the size of the group is d and all the

existing users public keys for the group are (pki, ..., pkd),
then batch auditing on t auditing tasks can be further
optimized as follows In this case, the total number of
pairing operations during batch auditing can be
significantly reduced to

6.3 Reliability

In our mechanism, it is very important for the cloud to
securely store and manage the re-signing keys of the group,
so that the cloud can correctly and successfully convert
signatures from a revoked user to an existing user when it
is necessary. However, due to the existence of internal
attacks, simply storing these re-signing keys in the cloud
with a single re-signing proxy may some-times allow
inside attackers to disclose these re-signing keys and
arbitrarily convert signatures on shared data, even no user
is revoking from the group. Obviously, the arbitrary misuse
of re-signing keys will change the own-ership of
corresponding blocks in shared data without users’
permission, and affect the integrity of shared data in the
cloud. To prevent the arbitrary use of re-signing keys and
enhance the reliability of our mechanism, we propose an
extended version of our mechanism, denoted as, in the

multi-proxy model.

By leveraging an (s, t)-Shamir Secret Sharing (s > 2t —
1) _[{8 and s multiple” proxies, each re-signing key is
divided into s pieces and each piece is distributed to one
Broxy. These multiple proxies belong to the same cloud,
but store and manage each piece of a re-signing key
independently (as described in Fig. 8). Since the cloud

needs to store keys and data separately [23], the cloud also
has another server to store shared data and correspondin

signatures. In each proxy is able to convert signatures wit

its own piece, and as long as t or _more proxies (the
majority) are able to correctly convert signatures when user
revocation happens, the cloud can successfully convert
signatures from a revoked user to an existing user. Similar
multi-proxy model was also recently used in the cloud to
fggﬁlre the” privacy of data with re-encryption techniques

According to the security properties of an (s, t)-Shamir
Secret Sharing, even up to t—1 proxies are compromised by
an inside attacker, it is still not able to reveal a re-signing
key or arbitrarily transform signatures on shared data. For
most of algorithms are as the same as in, except the two
algorithms for generating re-signing keys and re-signing
signatures, denoted as ReKey and ReSign respectively. We
use to distin-guish them from the corresponding algorithms
in the single proxy model.

7. OVERHEAD ANALYSIS

In this section, we evaluate the performance of our
mechanism in experiments. We utilize Pairing Based
Cryptography (PBC) Library [27] to implement crypto-
graphic operations in our mechanism. All the experi-ments
are tested under Ubuntu with an Intel Core i5 2.5 GHz
Processor and 4 GB Memory over 1, 000 times. In the
following experiments, we assume the size of an element
of Gy or Zp is |p| = 160 bits, the size of an element of Zq is
|| = 80 bits, the size of a block identifier is |id| = 80 bits,
and the total number of blocks in shared data is n = 1, 000,
000. By utilizing aggregation methods from [4], [14], the
size of each block can be set as 2 KB, then the total size of
shared data is 2 GB.

As introduced in Section 1, the main purpose of is to
improve the efficiency of user revocation. With our
mechanism, the cloud is able to re-sign blocks for existing
users during user revocation, so that an existing user does
not need to download blocks and re-compute signatures by
himself/herself. In contrast, to revoke a user in the group
with the straightforward method extended from previous
solutions, an existing user needs to download the blocks
were previously signed by the revoked user, verify the
correctness of these blocks, re-compute signatures on these
blocks and upload the new signatures.

8.RELATED WORK

Provable Data Possession (PDP), first proposed by
Ateniese et al. [3], allows a public verifier to check the
correctness of a client’s data stored at an untrusted server.
By utilizing RSA-based homomorphic authenti-cators and
sampling strategies, the verifier is able to publicly audit the
integrity of data without retrieving the entire data, which is
referred to as public verifiability or public auditing.
Shacham and Waters [4] designed

nication overhead in the phase of data repair, Chen et al.
[33] introduced a mechanism for auditing the correctness
of data with the multi-server scenario, where these data are
encoded with network coding. More recently, Cao et al.
[11] constructed an LT code-based secure cloud storage
mechanism. Compared to previous mechanisms [5], [33],
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this mechanism can avoid high decoding computation costs
for data users and save com-putation resources for online
data owners during data repair. Recently, Wang et al. [34]
proposed a certificateless public auditing mechanism to
reduce security risks in certificate management compared
to previous certificate-based solutions.

When a third-party auditor (TPA) is introduced into a
public auditing mechanism in the cloud, both the content of
data and the identities of signers are private information to
users, and should be preserved from the TPA. The public
mechanism proposed by Wang et al. [7] is able to preserve
users’ confidential data from the TPA by using random
maskings. In addition, to operate multiple auditing tasks
from different users efficiently, they also extended their
mechanism to support batch auditing. Our recent work [14]
first proposed a mecha-nism for public auditing shared data
in the cloud for a group of users. With ring signature-based
homomorphic authenticators, the TPA can verify the
integrity of shared data but is not able to reveal the identity
of the signer on each block. The auditing mechanism in
[16] is designed to preserve identity privacy for a large
number of users. However, it fails to support public
auditing.

Proofs of Retrievability (POR) [35] is another direction
to check the correctness of data stored in a semi-trusted
server. Unfortunately, POR and its subsequent work [36] do
not support public verification, which fails to satisfy the
design objectives in our paper.

9.CONCLUSIONS

In this paper, we proposed a new public auditing
mechanism for shared data with efficient user revocation in
the cloud. When a user in the group is revoked, we allow
the semi-trusted cloud to re-sign blocks that were
signed by the revoked user with proxy re-signatures.
Experimental results show that the cloud can improve the
efficiency of user revocation, and existing users in the
group can save a significant amount of computation and
communication resources during user revocation.
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