
    Providing Efficient Methods for Auditing 
Shared Data in the Cloud 

 
 
                    Neha Sharon  A, Burugapalli  Roja       Bhavya N Javagal    

Department of Computer Science and Engineering      Asst Prof,Dept of CSE 

T John Institute of  Technology       T.John  Institute Of Technology  

Bangalore,India         Bangalore,India  

  
       

Abstract - With data storage and sharing services in the 

cloud, users can easily modify and share data as a group. To 

ensure shared data integrity can be verified publicly, users in 

the group need to compute signatures on all the blocks in 

shared data. Different blocks in shared data are generally 

signed by different users due to data modifications performed 

by different users. For security reasons, once a user is revoked 

from the group, the blocks which were previously signed by 

this revoked user must be re-signed by an existing user. The 

straightforward method, which allows an existing user to 

download the corresponding part of shared data and re-sign it 

during user revocation, is inefficient due to the large size of 

shared data in the cloud. This paper proposes a novel public 

auditing mechanism for the integrity of shared data with 

efficient user revocation in mind. By utilizing the idea of 

proxy re-signatures, the cloud is allowed to re-sign blocks on 

behalf of existing users during user revocation, so that existing 

users do not need to download and re-sign blocks by 

themselves. In addition, a public verifier is always able to 

audit the integrity of shared data without retrieving the entire 

data from the cloud, even if some part of shared data has been 

re-signed by the cloud. Moreover, this mechanism is able to 

support batch auditing by verifying multiple auditing tasks 

simultaneously. Experimental results show that this 

mechanism can significantly improve the efficiency of user 

revocation. 

 
 

1. INTRODUCTION  
WITH  data storage and sharing services (such as Drop-

box  and  Google  Drive)  provided  by  the cloud, people 
can easily work together as a group by sharing data with 
each other. More specifically, once a user creates shared 
data in the cloud, every user in the group is able to not only 
access and modify shared data, but also share the latest ver-
sion of the shared data with the rest of the group. Although 
cloud providers promise a more secure and reliable envi-
ronment to the users, the integrity of data in the cloud may 
still be compromised, due to the existence of hard-
ware/software failures and human errors [2], [3]. To protect 
the integrity of data in the cloud, a number of mechanisms 
[3]–[15] have been proposed. In these mechanisms, a signa-
ture is attached to each block in data, and the integrity of 
data relies on the correctness of all the signatures. One of 
the most significant and common features of these mecha-
nisms is to allow a public verifier to efficiently check data 
integrity in the cloud without downloading the entire data, 
referred to as public auditing (or denoted as Provable Data 
Pos-session [3]). This public verifier could be a client who 
would like to utilize cloud data for particular purposes (e.g., 
search, computation, data mining, etc.) or a third-party audi-
tor (TPA) who is able to provide verification services on 

data integrity to users. Most of the previous works [3]–[13] 
focus on auditing the integrity of personal data. Different 
from these works, several recent works [14], [15] focus on 
how to preserve identity privacy from public verifiers when 
auditing the integrity of shared data. Unfortunately, none of 
the above mechanisms, considers the efficiency of user rev-
ocation when auditing the correctness of shared data in the 
cloud. 

With shared data, once a user modifies a block, she also 
needs to compute a new signature for the modified block. 
Due to the modifications from different users, dif-ferent 
blocks are signed by different users. For security reasons, 
when a user leaves the group or misbehaves, this user must 
be revoked from the group. As a result, this revoked user 
should no longer be able to access and modify shared data, 
and the signatures generated by this revoked user are no 
longer valid to the group [16]. Therefore, although the con-
tent of shared data is not changed during user revocation, 
the blocks, which were previously signed by the revoked 
user, still need to be re-signed by an existing user in the 
group. As a result, the integrity of the entire data can still be 
verified with the public keys of existing users only. 

Since shared data is outsourced to the cloud and users no 
longer store it on local devices, a straightforward method to 
re-compute these signatures during user revo-cation (as 
shown in Fig. 1) is to ask an existing user (i.e., Alice) to 
first download the blocks previously signed by the revoked 
user (i.e., Bob), verify the correctness of these blocks, then 
re-sign these blocks, and finally upload the new signatures 
to the cloud. However, this straightforward method may 
cost the existing user a huge amount of communication and 
computation re-sources by downloading and verifying 
blocks, and by re-computing and uploading signatures, es-
pecially when the number of re-signed blocks is quite large 
or the mem-bership of the group is frequently changing. To 
make this matter even worse, existing users may access 
their data sharing services provided by the cloud with re-
source-limited devices, such as mobile phones, which fur-
ther prevents existing users from maintaining the correct-
ness of shared data efficiently during user revocation. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1



 

 

   CLOUD    

              

A A A A A B A B B B   Before BOB is 
revoked 

 

           { 1. Download 
blocks 

 

        A
LICE 

2. Verify blocks  

            3. Re-compute 
signatures 

 

            4. Upload signa-
tures 

 

   CLOUD    

    

A A A A A A A A A A   After BOB is 
revoked 

 

 

A A block signed by ALICE  B A block signed by BOB 

 

Fig. 1. Alice and Bob share data in the cloud. When Bob 
is revoked, Alice re-signs the blocks that were previously 
signed by Bob with her private key. Clearly, if the cloud 
could possess each user’s private key, it can easily finish the 
re-signing task for existing users without asking them to 
download and re-sign blocks. However, since the cloud is 
not in the same trusted domain with each user in the group, 
outsourcing every user’s private key to the cloud would 
introduce significant security issues. Another important 
problem we need to consider is that the re-computation of 
any signature during user revocation should not affect the 
most attractive property of public auditing — audit-ing data 
integrity publicly without retrieving the entire data. There-
fore, how to efficiently reduce the significant burden to ex-
isting users introduced by user revocation, and still allow a 
public verifier to check the integrity of shared data without 
downloading the entire data from the cloud, is a challenging 
task.Moreover, our proposed mechanism is scalable, which 

 

 
 

CLOUD  
 A A A A A B A B B B  Before Bob is revoked 

           Cloud re-signs blocks with 

            a re-signing key 

    CLOUD   

             

 A A A A A A A A A A  After Bob is revoked 

A A block signed by Alice  B A block signed by Bob 

 
 

Fig. 2. When Bob is revoked, the cloud re-signs the 
blocks that were previously signed by Bob with a re-signing 
key.indicates it is not only able to efficiently support a large 
number of users to share data and but also able to han-dle 
multiple auditing tasks simultaneously with batch auditing. 
In addition, by taking advantages of Shamir Secret Sharing 
[18], we can also extend our mechanism into the multi-
proxy model to minimize the chance of the misuse on re-
signing keys in the cloud and improve the reliability of the 
entire mechanism. 

 

The remainder of this paper is organized as follows: In 
Section 2, we present the system model, security model and 
design goals. Then, we introduce several preliminar-ies in 
Section 3. Detailed design and security analysis of our 
mechanism are presented in Section 4 and Section 5. We 
discuss the extension of our mechanism in Section 6, and 
evaluate the performance of our mechanism in Section 7 
and Section 8. Finally, we briefly discuss related work in 
Section 9, and conclude this paper in Section 10. 

 
   2.PROBLEM STATEMENT  
 

In this section, we describe the system and security 
model, and illustrate the design objectives of our pro-posed 
mechanism. 

 
2.1 System and Security Model 
 

As illustrated in Fig. 3, the system model in this paper 
includes three entities: the cloud, the public verifier, and 
users (who share data as a group). The cloud offers data 
storage and sharing services to the group. The public verifi-
er, such as a client who would like to utilize cloud data for 
particular purposes (e.g., search, computation, data mining, 
etc.) or a third-party auditor (TPA) who can provide verifi-
cation services on data integrity, aims to check the integrity 
of shared data via a challenge-and-response protocol with 
the cloud. In the group, there is one original user and a 
number of group users. The original user is the original 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2



owner of data. This original user creates and shares data 
with other users in the group through the cloud. Both the 
original user and group users are able to access, download 
and modify shared data. Shared data is divided into a num-
ber of blocks. A user in the group can modify a block in 
shared data by performing an insert, delete or update opera-
tion on the block. 

In this paper, we assume the cloud itself is semi-trusted, 
which means it follows protocols and does not pollute data 
integrity actively as a malicious adversary, but it 

 

 
Fig. 3. The system model includes the cloud, the public verifier, and 

users. 

 

may lie to verifiers about the incorrectness of shared da-
ta in order to save the reputation of its data services and 
avoid losing money on its data services. In addition, we also 
assume there is no collusion between the cloud and any user 
during the design of our mechanism. Generally, the incor-
rectness of share data under the above semi-trusted model 
can be introduced by hardware/software failures or human 
errors happened in the cloud. Con-sidering these factors, 
users do not fully trust the cloud with the integrity of shared 
data. 

When a user in the group leaves or misbehaves, the group 

needs to revoke this user. Generally, as the creator of shared 

data, the original user acts as the group manager and is able 

to revoke users on behalf of the group. Once a user is 

revoked, the signatures computed by this revoked user 

become invalid to the group, and the blocks that were 

previously signed by this revoked user should be re-signed 

by an existing user’s private key, so that the correctness of 

the entire data can still be verified with the public keys of 

existing users only. 

 
Alternative Approach. Allowing every user in the group to 

share a common group private key and sign each block with 

it, is also a possible way to protect the integrity of shared 

data [19], [20]. However, when a user is revoked, a new 

group private key needs to be securely distributed to every 

existing user and all the blocks in the shared data have to be 

re-signed with the new private key, which increases the 

complexity of key management and decreases the efficiency 

of user revocation. 

 

2.2 Design Objectives 
 

Our proposed mechanism should achieve the follow-ing 
properties: (1) Correctness: The public verifier is able to 
correctly check the integrity of shared data. (2)  

Efficient and Secure User Revocation: On one hand, once a 

user is revoked from the group, the blocks signed by the 

revoked user can be efficiently re-signed. On the other hand, 

only existing users in the group can generate valid 

signatures on shared data, and the revoked user can no 

longer compute valid signatures on shared data.  
(3) Public Auditing: The public verifier can audit the 
integrity of shared data without retrieving the entire data 
from the cloud, even if some blocks in shared data have 
been re-signed by the cloud. (4) Scalability: Cloud data can 
be efficiently shared among a large number of users, and the 
public verifier is able to handle a large number of auditing 
tasks simultaneously and efficiently. 

 
   3. PRELIMINARIES  
 

In this section, we briefly introduce some prelimi-naries, 
including bilinear maps, security assumptions, 
homomorphic authenticators and proxy re-signatures. 

 
3.1 Bilinear Maps  

Let G1 and G2 be two multiplicative cyclic groups of 

prime order p, g be a generator of G1. Bilinear map e is a 

map e: G1 × G1 → G2 with the following properties: 1) 

Computability: there exists an efficient algorithm for 

computing map e. 2) Bilinearity: for all u, v ∈  G1 and a, b 

∈  Zp, e(ua, vb) = e(u, v)ab. 3) Non-degeneracy: e(g, g) 6= 

1. 
3.2 Security Assumptions 
 

The security of our mechanism is based on the follow-ing 
security assumptions.  

Computational  Diffie-Hellman  (CDH)  Problem. Let a, 

b ∈  Z∗ p, given g, ga, gb ∈  G1 as input, output gab ∈  

G1.  
Definition 1: Computational Diffie-Hellman (CDH) 

Assumption. For any probabilistic polynomial time 
adversary ACDH, the advantage of adversary ACDH on 
solving the CDH problem in G1 is negligible, which is 
defined as 

a b ab R   ∗  
P r[ACDH(g, g , g ) = (g  ) : a, b ← Zp] ≤ ǫ. 

 
For the ease of understanding, we can also say computing 
the CDH problem in G1 is computationally infeasible or 
hard under the CDH assumption. 
  

Discrete Logarithm (DL) Problem. Let a ∈  Z∗ p, given 

g, ga ∈  G1 as input, output a. 
Definition 2:  Discrete  Logarithm  (DL)  Assumption.  

For any probabilistic polynomial time adversary ADL, the 

advantage of adversary ADL on solving the DL problem in G1 

is negligible, which is defined as 
a R   ∗  

P r[ADL(g, g ) = (a) : a ← Zp] ≤ ǫ. 
 
Similarly, we can also say computing the DL problem in G1 
is computationally infeasible or hard under the DL 
assumption. 

 
3.3 Homomorphic Authenticators 
 
Homomorphic authenticators [3], also called homo-morphic 

verifiable tags, allow a public verifier to check the integrity 

of data stored in the cloud without down-loading the entire 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3



data. They have been widely used as building blocks in the 

previous public auditing mech-anisms [3]–[15], [19], [20]. 

Besides unforgeability (only a user with a private key can 

generate valid signatures), a homomorphic authenticable 

signature scheme, which de-notes a homomorphic 

authenticator scheme based on signatures, should also 

satisfy the following properties:  
Let (pk, sk) denote the signer’s public/private key pair, 

σ1 denote the signature on block m1 ∈  Zp, and σ2 denote 
the signature on block m2 ∈  Zp.  

• Blockless verifiability: Given σ1 and σ2, two ran-dom 

values α1, α2 in Zp and a block m′ = α1m1 + α2m2 ∈  

Zp, a verifier is able to check the correctness of block 

m′ without knowing m1 and m2. 

•  Non-malleability:  Given m1  and m2, σ1  and σ2, 
two random  values α1,  α2  in  Zp  and  a  block 

m′ = α1m1 + α2m2 ∈ Zp, a user, who does not 

   
have private key sk, is not able to generate a valid 
signature σ′ on block m′ by combining σ1 and σ2.  

Blockless verifiability enables a verifier to audit the 
correctness of data in the cloud with only a linear com-
bination of all the blocks via a challenge-and-response 
protocol, while the entire data does not need to be down-
loaded to the verifier. Non-malleability indicates that other 
parties, who do not possess proper private keys, cannot 
generate valid signatures on combined blocks by combining 
existing signatures. 

 
 

3.4 Shamir Secret Sharing 
 

An (s, t)-Shamir Secret Sharing scheme [18] (s ≥ 2t − 1), 
first proposed by Shamir, is able to divide a secret π into s 
pieces in such a way that this secret π can be easily 
recovered from any t pieces, while the knowledge of any t − 
1 pieces reveals absolutely no information about this secret 
π.  

The essential idea of an (s, t)-Shamir Secret Sharing 
scheme is that, a number of t points uniquely defines a t − 1 
degree polynomial. Suppose we have the following t − 1 
degree polynomial  

f (x) = at−1x
t−1

 + · · · + a1x + a0, 
R ∗  

where at−1, ..., a1 ←∈  Zp. Then, the secret is π = a0, and 

each piece of this secret is actually a point of polynomial f 

(x), i.e. (xi, f (xi)), for 1 ≤ i ≤ s. The secret π can be 

recovered by any t points of this t−1 degree polynomial f (x) 

with Lagrange polynomial interpolation. Shamir Se-cret 

Sharing is widely used in key management schemes [18] 

and secure multi-party computation [21]. 
t ≤ t

′
 + qH cG1 + qS cG1 + 2qRcP , ǫ ≥ ǫ

′
/qH qK , 

 
 4 A  NEW PROXY RE-SIGNATURE SCHEME  
 

In this section, we first present a new proxy re-signature 
scheme, which satisfies the property of block-less 
verifiability and non-malleability. Then, we will de-scribe 
how to construct our public auditing mechanism for shared 
data based on this proxy re-signature scheme in the next 
section. 
 

4.1 Construction of HAPS 
 
Because traditional proxy re-signature schemes [17], [22] 

are not blockless verifiable, if we directly apply these 

proxy re-signature schemes in the public auditing mech-

anism, then a verifier has to download the entire data to 

check the integrity, which will significantly reduce the 

efficiency of auditing. Therefore, we first propose a 

homomorphic authenticable proxy re-signature (HAPS) 

scheme, which is able to satisfy blockless verifiability and 

non-malleability. Our proxy re-signature scheme includes 

five algo-rithms: KeyGen, ReKey, Sign, ReSign and Verify. 

De-tails of each algorithm are described in Fig. 4. Similar 

as the assumption in traditional proxy re-signature schemes 

[17], [22], we assume that private channels (e.g., SSL) 

exist between each pair of entities in Rekey, and there is no 

collusion between the proxy and any user. Based on the 

properties of bilinear maps, the correctness of the 

verification in Verify can be presented as 
Public Keys: As A requests the creation of system users, 

B guesses which one A will attempt a forgery against. 
Without loss of generality, we assume the target public key 
as pkv and set it as pkv = ga. For all other 

non-negligible, then we can find an algorithm to solve 
the CDH problem in G1 with a non-negligible probabil-ity, 
which contradicts to the assumption that the CDH problem 
is computationally infeasible in G1. Therefore, it is 
computationally infeasible to generate a forgery of a 
signature in HAPS under the CDH assumption. 
 

e(σ, g) = e((H(id)w
m

)
a
, g) = e(H(id)w

m
, pkA). 

 
4.2 Security Analysis of HAPS 
 

Theorem 1: It is computationally infeasible to generate 
a forgery of a signature in HAPS as long as the CDH 
assumption holds.  

Proof: Following the standard security model de-fined 
in the previous proxy re-signature scheme [22], the security 
of HAPS includes two aspects: external security and 
internal security. External security means an exter-nal 
adversary cannot generate a forgery of a signature; internal 
security means that the proxy cannot use its re-signature 
keys to sign on behalf of honest users.  

External Security: We show that if a (t′, ǫ′)-algorithm A, 

operated by an external adversary, can generate a forgery of 

a signature under HAPS with the time of t′ and advantage 

of ǫ′ after making at most qH hash queries, qS signing 

queries, qR re-signing queries, and requesting at most qK 

public keys, then there exists a (t, ǫ)-algorithm B that can 

solve the CDH problem in G1 with where one 

exponentiation on G1 takes time cG1 and one pairing 

operation takes time cP . Specifically, on input (g, ga, gb), 

the CDH algorithm B simulates a proxy re-signature 

security game for algorithm A as follows: 

   
Theorem 2: HAPS is a homomorphic authenticable 

proxy re-signature scheme.  
Proof: As we introduced in Section 3, to prove HAPS 

is homomorphic authenticable, we need to show HAPS is 

not only blockless verifiable but also non-malleable. 

Moreover, we also need to prove that the re-signing per-

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4



formed by the proxy does not affect these two properties. 

 

Blockless Verifiability. Given user ua’s public key pkA, two 

random numbers y1, y2 ∈ Z
∗
p, two identifiers id1 and id2, and two 

signatures σ1 and σ2 signed by user ua, a verifier is able to check the 

correctness of a block m
′
 = y1m1 + y2m2 by verifying without 

knowing block m1 and block m2. Based on the properties 

of bilinear maps, the correctness of the above equation can 

be proved as: 

e(σ1
y1  · σ2

y2 , g)  =  e(H(id1)
y1 w

y1 
m1 H(id2)

y2 w
y2m2 , 

g
a
)= e(H(id1)

y1 H(id2)
y2 w

m′ , pkA).  

 

It is clear that HAPS can support blockless verifiability. 

Non-malleability. Meanwhile, an adversary, who does not 

have private key skA = a, cannot generate a valid signature 

σ′ for a combined block m′ = y1m1 + y2m2 by combining 

σ1  and σ2  with y1  and y2. The hardness of this problem 

lies in the fact that H must be a one-way hash function 

(given every input, it is easy to compute; however, given 

the image of a random input, it is hard  
to invert).  

More specifically, if we assume this adversary can 
generate a valid signature σ′ for the combined block m′ by 

combining σ1 and σ2, we have 

 σ
′ = σ1

y1  · σ2
y2   

′ 
  

y1 y2 
= (H(id′ 

1 2 
  

 σ1  · σ2 1)
y H(id2)

y w
m )

a  

σ′ = (H(id
′
)w

m
 )

a     

and we can further learn that H(id
′
) = H(id1)y1 H(id2)y2 . Then, 

that means, given a value of h = H(id1)y1 H(id2)y2 , we can easily 

find a block identifier id
′
 so that H(id

′
) = h, which contradicts to 

the assumption that H is a one-way hash function.  
Because the construction and verification of the sig-

natures re-signed by the proxy are as the same as the 
signatures computed by users, we can also prove that the 
signatures re-signed by the proxy are blockless verifiable 
and non-malleable in the same way illustrated above. 
Therefore, HAPS is a homomorphic authenticable proxy 
re-signature scheme.  
  
   5.OVERVIEW 
 

Based on the new proxy re-signature scheme and its 

properties in the previous section, we now present To build 
the entire mechanism, another issue we need to consider is 
how to support dynamic data during public auditing. 
Because the computation of a signature includes the block 
identifier, conventional methods — which use the index of 

a block as the block identifier (i.e., block mj is indexed 

with j) — are not efficient for supporting dynamic data [8], 
[14]. Specifically, if a single block is inserted or deleted, 
the indices of blocks that after this modified block are all 
changed, and the change of those indices requires the user 
to re-compute signatures on those blocks, even though the 
content of those blocks are not changed. Each block is 
attached with a signature, a block identifier and a signer 
identifier. 

 
By leveraging index hash tables [8], [14], we allow a 

user to modify a single block efficiently without chang-ing 
block identifiers of other blocks. The details of index hash 
tables are explained in Appendix A. Besides a block 
identifier and a signature, each block is also attached with a 
signer identifier (as shown in Fig. 6). A verifier can use a 
signer identifier to distinguish which key is required during 
verification, and the cloud can utilize it to determine which 
re-signing key is needed during user revocation. 
 
5.1Construction  
 

It includes six algorithms: KeyGen, ReKey, Sign,  
ReSign, ProofGen, ProofVerify. Details of are presented 
in Fig. 5.  

In KeyGen, every user in the group generates his/her 
public key and private key. In ReKey, the cloud com-putes 
a re-signing key for each pair of users in the group. As 
argued in previous section, we still assume that private 
channels exist between each pair of entities 
 

Game 1: The public verifier sends an auditing mes-sage 

{(l, ηl)}l∈L to the cloud, the auditing proof on correct 

shared data M should be {α, β, {idl}l∈L}, which should 

pass the verification with Equation (2). How-ever, the 

cloud generates a proof on incorrect shared verification 

performed by the public verifier, then the cloud wins this 

game. Otherwise, it fails.  
We first assume that the cloud wins the game. Then, 

according to Equation (2), we have  
d d 

e(
Y

 βi, g) = 

Y
 e( 

Y
 H(idl)

ηl
  · w

α′
i , pki). 

i=1 i=1   l∈Li  

Because {α, β, {idl}l∈L} is a correct auditing proof, we 

have 
 

d d 
Y Y   Y 

e(   βi, g) =    e( H(idl)
ηl  · w

αi , pki). 
i=1 i=1   l∈Li 

 
Based on the properties of bilinear maps, we learn that 

Because G1 is a cyclic group, then for two elements u, v ∈ 

G1, there exists x ∈ Zp that v = ux. Without loss of 

generality, given u, v, each wπi can generated as wπi = uξi vγi 

∈ G1, where ξi and γi are random values of Zp.  
Clearly, we can find a solution to the DL problem. Given u, 

v = ux ∈ G1, we can output unless the denominator is zero. 

However, as we defined in Game 1, at least one of element 

in { αi}1≤i≤d is nonzero, and γi is a random element of Zp, 

therefore, the denominator is zero with a probability of 1/p, 

which is negligible because p is a large prime. Then, we 

can find a solution to the DL problem with a non-negligible 

probability of 1 − 1/p, which contradicts to the DL 

assumption in G1.  

 
5.2 Efficient and Secure User Revocation 
 

We argue that our mechanism is efficient and secure 
during user revocation. It is efficient because when a user 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5



is revoked from the group, the cloud can re-sign blocks that 
were previously signed by the revoked user with a re-
signing key, while an existing user does not have to 
download those blocks, re-compute signatures on those 
blocks and upload new signatures to the cloud. The re-
signing preformed by the cloud improves the efficiency of 
user revocation and saves communication and computation 
resources for existing users.  

The user revocation is secure because only existing users 
are able to sign the blocks in shared data. As analyzed in 
Theorem 1, even with a re-signing key, the cloud cannot 
generate a valid signature for an arbitrary block on behalf 
of an existing user. In addition, after being revoked from 
the group, a revoked user is no longer in the user list, and 
can no longer generate valid signatures on shared data. 

 
5.3 Limitations and Future Work 
 

Remind that in Section 2, we assume there is no collusion 

between the cloud and any user in the design of our 

mechanism as the same as the assumption in some traditional 

proxy re-signatures [17], [22]. The reason is that, in our 

current design, if a revoked user (e.g., Bob with private key 

skb) is able to collude with the cloud, who possesses a re-

signing key (e.g., rka→b = ska/skb, then the cloud and Bob 

together are able to easily reveal the private key of an existing 

user (e.g., Alice’s private key ska).  
To overcome the above limitation, some proxy re-signature 

schemes with collusion resistance in [22], which can generate a re-

signing key with a revoked user’s public key and an existing user’s 

private key, would be a possible solution. Specifically, a resigning key 

is computed as rka→b = pkSK
b

a by Alice, then even the cloud (with 

rka→b) and Bob (with pkb) collude together, they cannot compute the 

private key of Alice (i.e., ska) due to the hardness of computing the 

DL problem in G1.  
Unfortunately, how to design such type of collusion-

resistant proxy re-signature schemes while also sup-porting 
public auditing (i.e., blockless verifiability and non-
malleability) remains to be seen. Essentially, since 
collusion-resistant proxy re-signature schemes generally 
have two levels of signatures (i.e., the first level is signed 
by a user and the second level is re-signed by the proxy), 
where the two levels of signatures are in different forms 
and need to be verified differently, achieving blockless 
verifiability on both of the two levels of signatures and 
verifying them together in a public auditing mechanism is 
challenging. We will leave this problem for our future 
work. 
 
   6. EXTENSION  
 

In this section, we will utilize several different meth-ods 
to extend our mechanism in terms of detection probability, 
scalability and reliability. 

 
6.1 Detection Probability 
 

As presented in our mechanism, a verifier selects a 
number of random blocks instead of choosing all the blocks 
in shared data, which can improve the efficiency of 
auditing. Previous work [3] has already proved that a 
verifier is able to detect the polluted blocks with a high 

probability by selecting a small number of random blocks, 
referred to as sample strategies [3]. More specif-ically, 
when shared data contains n = 1, 000, 000 blocks, 
If 1% of all the blocks are corrupted, a verifier can detect 
these polluted blocks with a probability greater than 99% 
or 95%, where the number of selected blocks c is 460 or 
300, respectively. Further discussions and analyses about 
sample strategies can be found in [3].  

To further reduce the number of the undetected pol-luted 
blocks in shared data and improve the detection probability, 
besides increasing the number of random selected blocks in 
one auditing task mentioned in the last paragraph, a verifier 
can also perform multiple auditing tasks on the same 
shared data. If the detection probability in a single auditing 

task is PS , then the total detection probability for a number 
of t multiple auditing 
tasks is 

PM = 1 − (1 − PS )
t
. 

 
For instance, if the detection probability in a single auditing 

task is PS = 95%, then the total detection probability with two 

different auditing tasks on the same shared data is PM = 
99.75%. Note that to achieve a higher detection probability, 
both of the two methods require a verifier to spend more 
communication and computation cost during auditing. 
 
the properties of bilinear maps. With batch auditing, a 
public verifier can perform multiple auditing tasks 
simultaneously. Compared to the batch auditing in [7], 
where the verification metadata (i.e, signatures) in each 
auditing task are generated by a single user, our batch 
auditing method needs to perform on multiple auditing 
tasks where the verification metadata in each auditing task 
are generated by a group of users. Clearly, designing batch 
auditing for our mechanism is more complicated and 
challenging than the one in [7].  

More concretely, if the total number of auditing tasks 

received in a short time is t, then the size of the group for 

each task is dj , for j ∈  [1, t], each auditing message is 

represented as {(l, ηj|l)}l∈Lj , for j ∈  [1, t], each au-diting 

proof is described as {αj , βj , {idj|l}l∈Lj }, where  
αj = (αj|1, ..., αj|dj ) and βj = (βj|1, ..., βj|dj ), for j ∈ [1, t], and 
all the existing users’ public keys for each group are 
denoted as (pkj|1, ..., pkj|dj ), for j ∈ [1, t]. Based on the 
properties of bilinear maps, the public verifier can perform 
batch auditing as below. 
 

 
6.2 Scalability  
 

Now we discuss how to improve the scalability of our 
proposed mechanism by reducing the total number of re-
signing keys in the cloud and enabling batch auditing for 
verifying multiple auditing tasks simultaneously.  

Reduce the Number of Re-signing Keys. As de-scribed 
in, the cloud needs to establish and main-tain a re-signing 
key for each pair of two users in the group. Since the 
number of users in the group is denoted as d, the total 
number of re-signing keys for the group is d(d − 1)/2. 
Clearly, if the cloud data is shared by a very large number 
of users, e.g. d = 200, then the total number of re-signing 
keys that the cloud has to securely store and manage is 19, 
900, which significantly increases the complexity of key 
management in cloud.  

To reduce the total number of re-signing keys required in 
the cloud and improve the scalability of our mech-anism, 

the original user, who performs as the group manager, can 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

6



keep a short priority list (PL) with only a small subset of 

users instead of the entire PL with all the users in the 
group. More specifically, if the total number of users in the 

group is still d = 200 and the size of a short PL is d
′
 = 5, 

which means the cloud is able to convert signatures of a 

revoked user only into one of these five users shown in the 

short PL, then the total number of re-signing keys required 
with the short PL of 5 users is 990. It is only 5% of the 

number of re-signing keys with the entire PL of all the 200 
users.  

Batch Auditing for Multiple Auditing Tasks. In many 
cases, the public verifier may need to handle multiple 
auditing tasks in a very short time period. Clearly, asking 
the public verifier to perform these au-diting requests 
independently (one by one) may not be efficient. Therefore, 
to improve the scalability of our public auditing 
mechanism in such cases, we can further extend to support 

batch auditing [7] by utilizing (3) where θj ∈ Z∗p, for j ∈ [1, 
t], is a random chosen by the public verifier. The correctness of 
the above equation is based on all the t auditing proofs are correct. 
The left hand side (LHS) of this equation can be expended as 

according to the security analysis of batch verification in 
[25], the probability that the public verifier accepts an 
invalid auditing proof with batch auditing is 1/p (since 

randoms (θ1, ..., θt) are elements of Zp), which is 

negligible. Therefore, if the above equation holds, then the 
public verifier believes all the t auditing proofs are correct.  

One of the most important advantages of batch au-diting 
is that it is able to reduce the total number of pairing 
operations, which are the most time consuming operations 
during verification. According to Equation (3), batch 
auditing can reduce the total number of pairing operations 
for t auditing tasks to td + 1, while verifying these t 
auditing tasks independently requires td + t pairing 
operations. Moreover, if all the t auditing tasks are all from 
the same group, where the size of the group is d and all the 
existing users public keys for the group are (pk1, ..., pkd), 
then batch auditing on t auditing tasks can be further 
optimized as follows In this case, the total number of 
pairing operations during batch auditing can be 
significantly reduced to 
 
6.3 Reliability  
 

In our mechanism, it is very important for the cloud to 

securely store and manage the re-signing keys of the group, 

so that the cloud can correctly and successfully convert 

signatures from a revoked user to an existing user when it 

is necessary. However, due to the existence of internal 

attacks, simply storing these re-signing keys in the cloud 

with a single re-signing proxy may some-times allow 

inside attackers to disclose these re-signing keys and 

arbitrarily convert signatures on shared data, even no user 

is revoking from the group. Obviously, the arbitrary misuse 

of re-signing keys will change the own-ership of 

corresponding blocks in shared data without users’ 

permission, and affect the integrity of shared data in the 

cloud. To prevent the arbitrary use of re-signing keys and 

enhance the reliability of our mechanism, we propose an 

extended version of our mechanism, denoted as, in the 

multi-proxy model.  
By leveraging an (s, t)-Shamir Secret Sharing (s ≥ 2t − 

1) [18] and s multiple proxies, each re-signing key is 
divided into s pieces and each piece is distributed to one 
proxy. These multiple proxies belong to the same cloud, 
but store and manage each piece of a re-signing key 
independently (as described in Fig. 8). Since the cloud 

needs to store keys and data separately [23], the cloud also 
has another server to store shared data and corresponding 
signatures. In each proxy is able to convert signatures with 
its own piece, and as long as t or more proxies (the 
majority) are able to correctly convert signatures when user 
revocation happens, the cloud can successfully convert 
signatures from a revoked user to an existing user. Similar 
multi-proxy model was also recently used in the cloud to 
secure the privacy of data with re-encryption techniques 
[26].  

According to the security properties of an (s, t)-Shamir 

Secret Sharing, even up to t−1 proxies are compromised by 

an inside attacker, it is still not able to reveal a re-signing 

key or arbitrarily transform signatures on shared data. For 

most of algorithms are as the same as in, except the two 

algorithms for generating re-signing keys and re-signing 

signatures, denoted as ReKey and ReSign respectively. We 

use to distin-guish them from the corresponding algorithms 

in the single proxy model.  

 
   7. OVERHEAD ANALYSIS  
 

In this section, we evaluate the performance of our 

mechanism in experiments. We utilize Pairing Based 

Cryptography (PBC) Library [27] to implement crypto-

graphic operations in our mechanism. All the experi-ments 

are tested under Ubuntu with an Intel Core i5 2.5 GHz 

Processor and 4 GB Memory over 1, 000 times. In the 

following experiments, we assume the size of an element 

of G1 or Zp is |p| = 160 bits, the size of an element of Zq is 

|q| = 80 bits, the size of a block identifier is |id| = 80 bits, 

and the total number of blocks in shared data is n = 1, 000, 

000. By utilizing aggregation methods from [4], [14], the 

size of each block can be set as 2 KB, then the total size of 

shared data is 2 GB.  
As introduced in Section 1, the main purpose of is to 

improve the efficiency of user revocation. With our 

mechanism, the cloud is able to re-sign blocks for existing 

users during user revocation, so that an existing user does 

not need to download blocks and re-compute signatures by 

himself/herself. In contrast, to revoke a user in the group 

with the straightforward method extended from previous 

solutions, an existing user needs to download the blocks 

were previously signed by the revoked user, verify the 

correctness of these blocks, re-compute signatures on these 

blocks and upload the new signatures. 
 

   8.RELATED WORK  
 

Provable Data Possession (PDP), first proposed by 
Ateniese et al. [3], allows a public verifier to check the 
correctness of a client’s data stored at an untrusted server. 
By utilizing RSA-based homomorphic authenti-cators and 
sampling strategies, the verifier is able to publicly audit the 
integrity of data without retrieving the entire data, which is 
referred to as public verifiability or public auditing. 
Shacham and Waters [4] designed  

 
nication overhead in the phase of data repair, Chen et al. 

[33] introduced a mechanism for auditing the correctness 
of data with the multi-server scenario, where these data are 
encoded with network coding. More recently, Cao et al. 
[11] constructed an LT code-based secure cloud storage 
mechanism. Compared to previous mechanisms [5], [33], 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

7



this mechanism can avoid high decoding computation costs 
for data users and save com-putation resources for online 
data owners during data repair. Recently, Wang et al. [34] 
proposed a certificateless public auditing mechanism to 
reduce security risks in certificate management compared 
to previous certificate-based solutions.  

When a third-party auditor (TPA) is introduced into a 
public auditing mechanism in the cloud, both the content of 
data and the identities of signers are private information to 
users, and should be preserved from the TPA. The public 
mechanism proposed by Wang et al. [7] is able to preserve 
users’ confidential data from the TPA by using random 
maskings. In addition, to operate multiple auditing tasks 
from different users efficiently, they also extended their 
mechanism to support batch auditing. Our recent work [14] 
first proposed a mecha-nism for public auditing shared data 
in the cloud for a group of users. With ring signature-based 
homomorphic authenticators, the TPA can verify the 
integrity of shared data but is not able to reveal the identity 
of the signer on each block. The auditing mechanism in 
[16] is designed to preserve identity privacy for a large 
number of users. However, it fails to support public 
auditing.  

Proofs of Retrievability (POR) [35] is another direction 
to check the correctness of data stored in a semi-trusted 
server. Unfortunately, POR and its subsequent work [36] do 
not support public verification, which fails to satisfy the 
design objectives in our paper. 
  

   9.CONCLUSIONS 
 

In this paper, we proposed a new public auditing 
mechanism for shared data with efficient user revocation in 
the cloud. When a user in the group is revoked, we allow 
the semi-trusted cloud to re-sign blocks that were 
signed by the revoked user with proxy re-signatures. 
Experimental results show that the cloud can improve the 
efficiency of user revocation, and existing users in the 
group can save a significant amount of computation and 
communication resources during user revocation. 

 
REFERENCES 

 
[1] B. Wang, B. Li, and H. Li, “Public Auditing for Shared Data with 

Efficient User Revoation in the Cloud,” in the Proceedings of IEEE 
INFOCOM 2013, 2013, pp. 2904–2912.  

[2] M.  Armbrust,  A.  Fox,  R.  Griffith,  A.  D.  Joseph,  R.  H.  Katz, 
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and  
M. Zaharia, “A View of Cloud Computing,” Communications of the 
ACM, vol. 53, no. 4, pp. 50–58, Apirl 2010.   

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable Data Possession at Untrusted Stores,” 
in the Proceedings of ACM CCS 2007, 2007, pp. 598–610.  

[4] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” in 
the Proceedings of ASIACRYPT 2008. Springer-Verlag, 2008, pp. 
90–107.  

[5] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Storage 
Security in Cloud Computing,” in the Proceedings of ACM/IEEE 
IWQoS 2009, 2009, pp. 1–9.   

[6] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public 
Verifiability and Data Dynamic for Storage Security in Cloud 
Computing,” in the Proceedings of ESORICS 2009. Springer-Verlag, 
2009, pp. 355–370.  

[7] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public 
Auditing for Data Storage Security in Cloud Computing,” in the 
Proceedings of IEEE INFOCOM 2010, 2010, pp. 525–533.  

[8] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic 
Audit Services for Integrity Verification of Outsourced Storage in 
Clouds,” in the Proceedings of ACM SAC 2011, 2011, pp. 1550–
1557.  

[9] C. Wang, Q. Wang, K. Ren, and W. Lou, “Towards Secure and 
Dependable Storage Services in Cloud Computing,” IEEE Trans-
actions on Services Computing, vol. 5, no. 2, pp. 220–232, 2011.   

[10] Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and S. Chen, 
“Dynamic Audit Services for Outsourced Storage in Clouds,” 
IEEE Transactions on Services Computing, accepted.   

[11] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. T. Hou, “LT Codes-based 
Secure and Reliable Cloud Storage Service,” in the Proceedings of 
IEEE INFOCOM 2012, 2012, pp. 693–701.   

[12] J. Yuan and S. Yu, “Proofs of Retrievability with Public Verifiabil-ity 
and Constant Communication Cost in Cloud,” in Proceedings of 
ACM ASIACCS-SCC’13, 2013.  

[13] H. Wang, “Proxy Provable Data Possession in Public Clouds,” 
IEEE Transactions on Services Computing, accepted.   

[14] B. Wang, B. Li, and H. Li, “Oruta: Privacy-Preserving Public 
Auditing for Shared Data in the Cloud,” in the Proceedings of IEEE 
Cloud 2012, 2012, pp. 295–302.   

[15] S. R. Tate, R. Vishwanathan, and L. Everhart, “Multi-user Dy-namic 
Proofs of Data Possession Using Trusted Hardware,” in 
Proceedings of ACM CODASPY’13, 2013, pp. 353–364.   

[16] B. Wang, B. Li, and H. Li, “Knox: Privacy-Preserving Auditing for 
Shared Data with Large Groups in the Cloud,” in the Proceedings of 
ACNS 2012, June 2012, pp. 507–525.   

[17] M. Blaze, G. Bleumer, and M. Strauss, “Divertible Protocols and 
Atomic Proxy Cryptography,” in the Proceedings of EUROCRYPT 
98. Springer-Verlag, 1998, pp. 127–144.   

[18] A. Shamir, “How to share a secret,” in Communication of ACM, vol. 
22, no. 11, 1979, pp. 612–613.  

[19] B. Wang, H. Li, and M. Li, “Privacy-Preserving Public Auditing for 
Shared Cloud Data Supporting Group Dynamics,” in the 
Proceedings of IEEE ICC 2013, 2013.   

[20] B. Wang, S. S. Chow, M. Li, and H. Li, “Storing Shared Data on the 
Cloud via Security-Mediator,” in Proceedings of IEEE ICDCS 2013, 
2013.   

[21] M. Li, N. Cao, S. Yu, and W. Lou, “FindU: Private-Preserving Per-
sonal Profile Matching in Mobile Social Networks,” in Proceedings 
of IEEE INFOCOM, 2011, pp. 2435 – 2443.   

[22] G. Ateniese and S. Hohenberger, “Proxy Re-signatures: New 
Definitions, Algorithms and Applications,” in the Proceedings of 
ACM CCS 2005, 2005, pp. 310–319.  

[23] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and  
N. Triandopoulos, “Hourglass schemes: how to prove that cloud 
files are encrypted,” in the Proceedings of ACM CCS 2012, 2012, 
pp. 265–280. 

[24] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure Multi-Owner 
Data Sharing for Dynamic Groups in the Cloud,” IEEE Transactions 
on Parallel and Distributed Systems (TPDS), vol. 24, no. 6, pp. 
1182–1191, 2013.  

[25] A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen, 
“Practical Short Signature Batch Verification,” in Proc. CT-RSA. 
Springer-Verlag, 2009, pp. 309–324.  

[26] L. Xu, X. Wu, and X. Zhang, “CL-PRE: a Certificateless Proxy Re-
Encryption Scheme for Secure Data Sharing with Public Cloud,” in 
the Proceedings of ACM ASIACCS 2012, 2012.  

[27] Pairing Based Cryptography (PBC) Library. [Online]. Available: 
http://crypto.stanford.edu/pbc/   

[28] The Java Pairing Based Cryptography (jPBC) Library Benchmark. 
[Online]. Available: http://gas.dia.unisa.it/projects/ 
jpbc/benchmark.html  

[29] J. Yuan and S. Yu. Efficient Public Integrity Checking for Cloud 
Data Sharing with Multi-User Modification. [Online]. Available: 
http://eprint.iacr.org/2013/484   

[30] D. Boneh, B. Lynn, and H. Shacham, “Short Signature from the Weil 
Pairing,” in the Proceedings of ASIACRYPT 2001. Springer-Verlag, 
2001, pp. 514–532.  

[31] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable 
and Efficient Provable Data Possession,” in the Proceedings of ICST 
SecureComm 2008, 2008.   

[32] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic 
Provable Data Possession,” in the Proceedings of ACM CCS 2009, 
2009, pp. 213–222.  

[33] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data 
Checking for Network Coding-based Distributed Stroage Sys-tems,” 
in the Proceedings of ACM CCSW 2010, 2010, pp. 31–42.  

[34] B. Wang, B. Li, and H. Li, “Certificateless Public Auditing for Data 
Integrity in the Cloud,” in Proceedings of IEEE CNS 2013, 2013, pp. 
276–284.  

[35] A. Juels and B. S. Kaliski, “PORs: Proofs pf Retrievability for Large 
Files,” in Proceedings of ACM CCS’07, 2007, pp. 584–597.  

[36] D. Cash, A. Kupcu, and D. Wichs, “Dynamic Proofs of Retriev-
ability via Oblivious RAM,” in Proceedings of EUROCRYPT 2013, 
2013, pp. 279–295. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

8


