

Provider Independent Model For Developing Cloud Applications

Suja P. Mathews, MCA, Mphil

Associate Professor

Jyoti Nivas College, Bangalore

Sunu George, MCA, Mphil

Department of Computer Science

Assumption HSS Varandarappilly, Thrissur

Abstract

Enterprises are increasingly looking at reducing IT

capital and operating expenses and the Cloud

Computing paradigm is an ideal platform for

achieving this. Cloud Computing is a paradigm shift

from the traditional in-house infrastructure setup to a

shared and dynamically provisioned computing

infrastructure, which also provides on-demand

scaling. Cloud provides a pay-as-you-go model that

offers computing resources as a service which

significantly cuts on IT capital expenses and enables

control the operating expenses effectively. A major

issue which is a deterrent to this move is that the

current application architectures does not have the

necessary elements to address elasticity,

virtualization and payment. The cloud applications

should be designed considering these elements.

Further, there is no generic cloud software

architecture for designing and building applications

utilizing the capabilities of the cloud. To top it all,

each cloud service provider follows different

standards which dictate how the applications should

be written for each platform/provider. This

essentially binds the cloud applications and users to

a particular provider, since switching becomes very

expensive without the software being designed to be

portable. This paper will focus on defining a model

for developing applications that are provider

agnostic, and also presents the main cloud design

elements. It also shows the set of configuration rules

and the semantic interpretation. It provides an

abstract architecture of the system which is

important to tackle platform specific issues later.

This separation of concerns allows for better

maintainability, and facilitates applications

portability.

1. Introduction

 Cloud computing is a general term for

anything that involves delivering hosted services over

the Internet. These services are broadly divided into

three categories: Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-

Service (SaaS). Cloud Services are sold on demand,

its elastic, and fully managed by the provider.

Innovations in virtualization and distributed

computing, and ever-improving access to high speed

internet have accelerated interest in cloud computing.

 The economics of cloud computing has

several driving factors like the pricing models of the

service providers, the fluctuating business demands

and the high cost of switching between providers.

The pricing models and provider switchability

depends on the service model. IaaS provides a simple

virtual server instance, PaaS provides a set of

software and product development tools or APIs on

the provider's infrastructure and SaaS provides the

server infrastructure, the software products and APIs,

and also a front end portal for the end user. SaaS

hosted services can be anything from web-based

email (Google Mail for enterprises) to inventory

control and database processing.

 When a end customer uses a PaaS or SaaS

cloud infrastructure provided by a service provider,

switching to another provider involves re-

implementing several layers of the software to delink

from the current providers APIs and move on to

using the new provider's APIs and services. This may

even impact the workflows defined within the

companies, and the cost of switching becomes very

high.

 While there are several compelling use cases

– like elastic infrastructure, pay as you use, load

spikes handling, extremely low upfront capital

expenditure and risk mitigation of underutilization or

under provisioning - that favour cloud computing, the

above mentioned factor is a major block in migration

to cloud by several companies.

 This paper addresses the issue of vendor

lock-in by proposing a model to standardize cloud

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

platform (provider) independent application

development and inter-operability between different

cloud platforms. Some of the cloud development

environments like Microsoft Azure and Google

Cloud do share some common components which

can also be leveraged to ensure the inter-operability.

The aim of this paper is to define a model, a high

level architecture and the related design pattern. This

should enable cloud users to design “cloud platform

independent” applications without sacrificing the

benefits of cloud infrastructure.

3. Need for Provider Independent Model

In this section we will investigate the need

for this model, and identify the differences between

this model and the Service-oriented-architecture

(SOA) reference model.

 SOA is an umbrella that describes any kind

of service. A cloud application is a service. A cloud

application reference model is a SOA model that

conforms to the SOA meta-model. This makes cloud

applications SOA applications. A cloud application is

a SOA application that runs under a specific

environment, which is the cloud computing

environment (platform). This environment is

characterized by horizontal scalability, rapid

provisioning, ease of access, and flexible prices.

While SOA is a business model that addresses the

business process management, cloud architecture

addresses many technical details that are environment

specific, which makes it more a technical model.

Cloud platforms are complex environments, which

need to be refined at different levels of granularity.

The cloud hierarchical view (i.e. SaaS, PaaS, IaaS) is

an example of a refinement that uses SOA to describe

the high level services provided over the internet (the

cloud). There is a need to create a modeling language

that is tailored to build efficient, elastic and

autonomous applications from tasks and services

provided by the cloud environment, and to define

patterns that can result in the efficient optimization of

money and resources.

4. Model for Provider independent cloud

applications

 The core of the architecture is formed using

a composable CloudJob unit, which consists of a set

of actions. These actions utilize services to provide

functionalities to meet a requirement. The CloudJob

is mutable and can be replicated to multiple Virtual

Machines to enable scalability. The Jobs should be

stateless, have very little coupling, should be modular

and should have semantic inter-operability. The Jobs

have semantic connections to other jobs in the cloud

through the Roles they play to meet a

functionality/requirement bounded by

Responsibilities.

 CloudJobs can be uniquely identified using

a DNS name provided by a global Dynamic Name

Service (DDNS) service at run time. Such names

assigned to the corresponding Virtual Machines

makes the Job highly available and fault tolerant.

This also enables the cloud application to be

upgraded dynamically without interruptions.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig 1. Architecture for the provider independent model

Every CloudJob has a definition file. This definition file – JobDefinition – contains information about jobs that the

cloud application provides. A JobDefinition contains information about the jobs in the cloud application, which are

determined at design time. A JobDefinition provides the structure of the cloud application, in terms of the provided

jobs, their types and relationships between jobs, in addition to a set of job interfaces and their contracts.

 Elasticity is a key differentiator between a normal application and a cloud application. Cloud applications

must be able to scale up and down seamlessly. This is typically achieved by replicating jobs to several virtual

machines at runtime depending on the dynamics of work demand. JobConfigurationData is where dynamic aspects

of cloud application are determined at runtime. The running application need not be stopped or redeployed to

modify the information in the JobConfigurationData file.

 JobConfigurationData contains information such as the size of the virtual machine (VM_Size), number of

instances of virtual machines (VM_InstanceCount), the database size (VM_DBSize) and internet BandWidth. It could

also contain the location (LocationProximity) where the job instances are to be executed and whether they belong to

the same affinity group or not.

 Another key parameter is the pricing models. Every cloud platform provider have their own unique pricing

models. A typical model is pay-as-you-use based model or variations of this. In some variations, the way in which

resources are allocated varies based on the amount of money (or slabs). It is also possible for a cloud application

developer to allocate resources explicitly. The cloud user can set such parameters and values in the

JobConfigurationData file based on need and budget. Another variant is where the providers use algorithms

(BillingLogic) to dynamically allocate resources based on the cloud user's budget. Instead of setting the load

parameters in the configuration file, the user sets the budget and usage guidelines and the provider automatically

sets the values in the JobConfigurationData file to achieve the best configuration. This JobConfigurationData

configuration file becomes a contract with the cloud user (application developer), and this is represented in the form

of a Service Level Agreement (SLA).

 Job properties can also be modified at runtime and this is achieved through a JobDataInjectionPort. A

JobDataInjectionPort modifies tasks crosscutting properties such as those related to quality of service (QoS). Cloud

platform providers vary in the way they support job modification. This is risky and a source of security breaches,

and hence the level of support varies across providers.

4.1 Classification of CloudJobs

CloudJobs can be classified as CloudFrontJobs, CloudBackgroundJobs, CloudControllerJobs and

CloudPersistenceJobs. Each of the job types are explained in details below.

4.1.1 CloudFrontJob

CloudFrontJob is an an entry point to the cloud application that can handle user requests and distributed by

a load balancer. A CloudFrontJob should support interactive request-response pattern. It is typically a web

application (CFWebJob) hosted on the cloud data centre where a web-server is running. It can also be a web-service

(CFServiceJob) provided by the service provider or third party. A ServiceJob uses the Enterprise Service Bus (EBS)

to discover and access remote or enterprise services.

4.1.2 CloudBackgroundJob

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

CloudBackgroundJob is a background job of the CloudFrontJob on the cloud data centre. It is not directly

accessible from outside the cloud data centre and does general development work and supports other jobs by

performing a particular functionality. The CloudBackgroundJob should support event driven messaging and

communication patterns. A typical example of CloudBackgroundJob is Grid computing.

4.1.3 CloudControllerJob

This task manages aspects cutting across the cloud, such as those related to monitoring cloud resources,

which includes computing and storage instances and a load balancer to ensure resource utilization and performance.

It also provides for logging, maintaining QoS of the cloud application, deployments of application, dynamically

add/remove instances based on metrics, launching instances, login to instances, and job properties changes through

the JobDataInjectionPort. CloudControllerJobs can be accessed directly through a web portal or a specific

API (i.e. REST, SOAP). Communication with CloudControllerJobs should be secure by using certificate

based SSL over HTTP or public key algorithms.

4.1.4 CloudPersistenceJob

Managing storage accounts is the main role of CloudPersistenceJobs. They manage the access control and

login to cloud storages. A cloud storage (e.g., blob, table, queue) does not have any access control mechanism. The

persistence job is responsible for providing the authorization and authentication services. CloudPersistenceJobs

create containers, which are similar to folders but with no nesting (multiple level hierarchy). Containers can be

accessed through a unique Uniform Resource Identifier (URI). CloudPersistenceJobs assign persistency to

containers and give them a unique URI that is either privately or publicly accessible. The CloudPersistenceJob

supports three main types of cloud storages that are reliable, scalable, simple, inexpensive and have better

performance under the cloud environment. These types are: unstructured data (BlobStorage), structured data

(TableStorage) and asynchronous messaging (QueueStorage).

BlobStorage: Blobs are unstructured large data files and their meta-data. It can be stored as a sequence of blocks or

pages. The BlobStorage is the simplest and largest cloud storage unit. Cloud drive storages are blobs.

TableStorage: Tables are structured data files, that are more complex than blobs, but different than relational

database tables. Cloud tables are simpler and make them suitable for huge scalability to support any number of

simultaneous tasks. A cloud table consists of a set of entities and its associated properties. The cloud table uses two

types of keys: partition keys and row keys. They do not support SQL queries, have no schema and use optimistic

concurrency for updates and deletions. Cloud tables are mostly similar to data sheet tables.

QueueStorage: This is a scalable messages storage, which supports the polling based model used in message

passing between tasks. A message can be stored for long periods (i.e. days) before it is read and then removed from

the queue. Cloud queues are different from conventional queuing systems and the major differences are given

below. It must support fault tolerance. When a message read is read from the queue, it does not delete the message

from the queue, which is unlike conventional queues. The message will be in hidden mode until it is successfully

processed. The processing job must delete the message after successful processing. The QueueStorage is the main

communication mechanism between CloudFrontJobs and CloudBackgroundJobs, and this makes it one of the most

frequently used design patterns in the cloud. The main advantages of this pattern is that the end-user need not wait a

long time for the job to process the message, and also makes the scalability much easier.

Relationships between jobs are determined by JobEndPoints. JobEndPoints are ports through which a

CloudJob connects to other jobs or to the environment. Each CloudJob has one or more JobEndPoints. An

JobEndPoint can be classified based on several criteria like - whether it is publicly visible (external) or only

accessible within the Cloud Application (internal), load balanced at the network level or not, or whether it allows

inbound or outbound communication. Each JobEndPoint uses an access mechanism, which uses a semantic

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

interaction pattern for the coordination of message exchange. These patterns are built using specific protocols that

determine the syntax and semantics of the messages that are exchanged between the two communication parties.

4.2 Message Exchange Mechanisms

Message Exchange Mechanisms (MEM) can be classified into two main categories, one-way or two-way.

The one-way MEM is referred to as the event driven MEM, or publish subscribe (pub/sub), in which the

participating parties are not fully aware of each other. A temporary storage in the form of a queue is used to

accomplish this. One party will push a message, and the second will pull it from the queue. This is one of the

common communication mechanisms between CloudFrontJobs and CloudBackgroundJobs. On the other hand, the

two-way MEM is usually referred to as request/response MEM. It can be either synchronous (blocking) or

asynchronous (non-blocking). This is an interactive communication that is usually needed when there is a direct

interaction with the user. CloudFrontJobs must support this type of interaction with the application user.

5. Conclusion

 This paper presented a cloud platform provider independent model for building cloud applications. Cloud

computing is a new paradigm for developing elastic and flexible applications with less time to market. The

motivation is to reduce the overhead of developing, configuring, deploying, and maintaining cloud applications.

Currently, there is no common vocabulary, development methodologies, or best practices that distinguish the cloud

development paradigm from the existing ones. There are practically no standardization and common terminologies

to enable portability and migration between different cloud platforms. The lack of software architectural models and

patterns makes cloud application development an ad-hock approach, which is almost entirely driven by the APIs and

design of services provided by a particular vendor. Switching to another provider essentially means rebuilding a

major portion of the cloud application.

In this paper we defined a model that is capable of capturing the syntax and some of the semantics of cloud

applications. This model can be used by developers to better understand cloud applications independent of any

specific cloud development environment. This model is expected to serve as a first step towards building a cloud

modelling language.

Future directions include refining the syntax and defining semantics of the proposed model, mapping the

proposed model to different cloud platforms, and creating a modelling language for building service provider

independent cloud applications.

6. Acknowledgement

If words are considered as symbols of approval and tokens of Acknowledgement, then let the words play the

heralding role of expressing our gratitude.

First and foremost, we are thankful to the Almighty, for his blessings in the successful completion of this

paper.

We would like to express our sincere and hearty thanks to Mr. M J Samuel, M.S BITS Pilani, Engineering

Manager, Celstream Technologies, for his splendid help for the successful completion of our paper.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.

(2009). Above the clouds: A berkeley view of cloud computing. EECS Department, Univer- sity of California, Berkeley, Tech.

Rep. UCB/EECS- 2009-28.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

CA Labs (2009). Cloud computing Web-Services offering and IT management aspects. In OOPSLA09, 14th con- ference

companion on Object Oriented Programming Systems Languages and Applications, pages 27–39.

Charlton, S. (2009). Model driven design and operations for the cloud. In OOPSLA09, 14th conference companion on Object

Oriented Programming Systems Languages and Applications, pages 17–26.

Frey, S. and Hasselbring, W. (2010). Model-Based migra- tion of legacy software systems into the cloud: The CloudMIG

approach. In WSR2010, 12th Workshop Software-Reengineering, pages 1–2.

Google (2010). Google app engine. Retrieved: December 2010, from http://code.google.com/appengine/.

Matthews, C., Neville, S., Coady, Y., McAffer, J., and Bull, I. (2009). Overcast: Eclipsing high profile open source cloud

initiatives. In OOPSLA09, 14th con- ference companion on Object Oriented Programming Systems Languages and Applications,

pages 7–15.

Maximilien, E. M., Ranabahu, A., Engehausen, R., and An- derson, L. C. (2009). Toward cloud-agnostic middle- wares. In

OOPSLA09, 14th conference companion on Object Oriented Programming Systems Languages and Applications, pages 619–

626.

Microsoft (2010). Windows azure microsoft’s cloud ser- vice platform. Retrieved: December 2010, from

http://www.microsoft.com/windowsazure/.

Sirtl, H. (2008). Software plus Services: New IT-and Business Opportunities by Uniting SaaS, SOA and Web 2.0. In IEEE

EDOC’08, 12th International En- terprise Distributed Object Computing Conference, pages 1541–7719.

Tsai, W., Sun, X., and Balasooriya, J. (2010). Service- Oriented Cloud Computing Architecture. In ITNG10, 7th International

Conference on Information Technol- ogy: New Generations, pages 684–689.

Zhang, L. J. and Zhang, J. (2009). Architecture-Driven vari- ation analysis for designing cloud applications. In IEEE CLOUD09,

2nd International Conference on Cloud Computing, pages 125–134.

Zhang, W., Berre, A. J., Roman, D., and Huru, H. A. (2009). Migrating legacy applications to the service cloud. In OOPSLA09,

14th conference companion on Object Oriented Programming Systems Languages and Ap- plications, pages 59–68.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

