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Abstract—This paper is devoted to the definition of a 

MANFIS (Multi-output Adaptive Neuro-Fuzzy System) 

system combined with PID (Proportional Integral Derivative) 

regulators for the prognostic of failure. The input selection is 

implemented to improve the performance of the prediction 

system. The MANFIS subsystem performs the prediction of 

three interdependent parameters, and the PID controllers 

correct for each parameter the prediction error. For the 

control of the prediction error, we propose PID controllers 

with optimal parameters remaining constant in the medium 

term. Research oriented towards the development of neuro-

fuzzy prediction systems suggests that multi-parameter 

models would be closer to the requirements of real industrial 

systems. Moreover, it emerges from this work that it is also 

necessary to improve the accuracy of these prediction systems 

without necessarily increasing the complexity of the 

algorithm. This is why the prognostic system proposed here 

allows the prediction of three interdependent parameters and 

the control of the prediction error. We will begin the work 

reported here by presenting the place of the prognostic in the 

maintenance activity. A presentation of the predictive system 

of type MANFIS-PID is carried out. The Lorenz dynamic 

system is used to illustrate our prediction architecture. The 

approach for determining the optimal parameters of PID 

controllers is presented. A comparative analysis of the 

prediction error distribution of the MANFIS-PID system and 

its MANFIS subsystem at different horizons of prediction is 

also presented 

Keywords— prognostic;  MANFIS-PID; optimal parameters 

of PID;  prediction Error  

 

I. INTRODUCTION 

Improving reliability has been one of the major 

challenges facing industrial companies of our time [1]. The 

anticipation of failures (preventive maintenance) now at the 

center of maintenance activity allows a real improvement 

in the availability and reliability of the systems. The 

implementation of such a maintenance policy requires the 

provision of adequate resources for monitoring, diagnostics 

and prediction of the state of the systems [2] [3]. 

These perpetual challenges have contributed to the 

development of surveillance systems and the birth of new 

maintenance concepts. These maintenance concepts 

increase the autonomy and intelligence of current 

monitoring systems [4] [5]. These new maintenance 

concepts thus give a privileged place to the industrial 

prognostic in the maintenance activity [6]. Today, failures 

prediction is considered as a research theme [7]. 

In the field of industrial prognostic, several approaches 

have been implemented. The data-driven approach is 

widely used. This approach is used when the modeling of 

the system is complex and the data collected are reliable. It 

offers a place of choice to the techniques of artificial 

intelligence [8]. 

Concerning prognostic of failure via the data-guided 

approach, several mutations have been observed. We 

started with the use of Neural Networks (NN), to the NN 

loops of [9]. To improve precision, [10] associate a PID 

controller with the NN loops. Today, the data-driven 

prognostic is based on hybrid systems such as Neuro-Fuzzy 

(NF) networks. It is for this purpose that the system chosen 

for the development of our work is an ANFIS (Adaptive 

Neuro-Fuzzy Inference System) proposed by [11]. Most of 
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the ANFIS systems developed in the literature focus on the 

reduction of the prediction error and for others on the 

control of this error. However, this work reveals the need to 

develop multi-parameters prediction systems. Indeed, the 

real industrial systems can’t be satisfied with the prediction 

of a single parameter. Furthermore, [12] reveal the need for 

the selection of optimal parameters for the prediction of 

neuro-fuzzy systems. Moreover, the work of [10] reveals 

that a PID controller could contribute to the improvement 

of prediction performance without increasing the 

complexity of the treatment.  

We therefore propose a hybrid system consisting 

initially of a MANFIS subsystem which applies the 

selection of inputs for the efficient prediction of three 

interdependent parameters. In a second step, the proposed 

system also consists of three PID controllers that control 

the prediction error of each parameter. For the control of 

the prediction error, we have defined for each PID 

controller, optimal parameters (Kp, Ki and Kd) remaining 

constant in the medium term. 

The MANFIS-PID system thus proposed is able to 

predict the evolution of three parameters while controlling 

the prediction error. It allows efficient prediction without 

increasing the complexity of the algorithm. 

 The rest of this paper is organized as follows: 

Section 2 is reserved for the definition of the problem. In 

this section we will start from the position of the prognosis 

in industrial maintenance and some work to reduce and 

control the error to introduce the need to propose an 

efficient multi-parameter prediction system. 

Section 3 presents the ANFIS and MANFIS systems. In 

section 4 we present the proposed MANFIS-PID system 

and the process of obtaining the optimal parameters of the 

PID controller (Kp, Ki and Kd) remaining constant in the 

medium term. These results will be analyzed and discussed 

in Section 5. Section 6 is devoted to the conclusion and 

definition of future work. 

II. PROBLEM DEFINITION 

A. Place of prognostic in industrial maintenance 

The maintenance applied to an equipment (systems, 

subsystem or component) contributes to the improvement 

of the availability and the reliability of the service rendered 

by this equipment. In addition to the purpose of enabling an 

asset to fulfill its required function, new requirements of 

quality, safety and cost must be taken into account. These 

new requirements make up the new challenges of 

maintenance and worth its evolution. Indeed, the increase 

in maintenance costs, the advent of automation and the new 

requirements of customers demand a high level of 

flexibility of industrial equipments [13]. Formerly the so-

called traditional maintenance activity was based on the 

anomaly detection, the comprehension and identification of 

the causes of this anomaly (diagnosis) and finally the 

choice and implementation of an adequate action. 

However, nowadays, the a posteriori comprehension of a 

failure gave place to the anticipation of the failure. The 

prognostic of failure seems to meet these new maintenance 

requirements.  

B. Failure prognostic concept 

The prognostic is defined by [14] as "an estimate of the 

duration of operation before failure and the risk of the 

existence or subsequent appearance of one or more modes 

of failure". The prognostic is further defined by [7] as a 

process designed to determine the remaining life of a 

system. [15] Asserts that the prognosis may also be 

considered as an estimate of the probability of occurrence 

of a failure. 

The prognostic of failure is based both on the notion of 

degradation and on the existence of a critical threshold. 

From a given instant t, the prognostic activity consists first 

of all in predicting the evolution of the degradation of the 

system at an instant t + dt. After prediction, the second step 

of the prognostic consist in evaluating the state of the 

system according to the predefined referential [8]. 

C. Reduction and control of the prediction error 

 The prognostic of the state of a system being inherently 

uncertain, it is important to determine measures defining 

the confidence level of the prognostic system. RMSE (Root 

Mean Squared Error) is currently used in the literature. 

Several works in the literature aim at reducing this 

error. To improve the performance of data-based 

prognostic systems, we have moved from not curly 

networks [16], [17], and [18] etc. to the curly networks of 

[19] and [20]. 

Improved performance and the desire to reduce the 

complexity of prognostic systems led researchers to 

migrate to hybrid systems such as NF networks [21], [22], 

[23], [24] and [25] etc. 

Beside the reduction of the prediction error, [26] and 

[1] focus their work on controlling prediction error. [26] 

Propose a new cost function and a new prediction model 

composed of two ANFIS systems with four inputs 

connected in series. [1] Implements the input selection 

governed by the method of [27]. It seems clear at the end of 

the analysis of these works that, the prediction of several 

parameters would be closer to the requirements of real 

industrial systems. 

From what is the prediction of several parameters, [27] 

developed the MANFIS (Multiple Adaptive Neuro-Fuzzy 

Inference System) model. In addition, [28] proposed a 

MANFIS model for the approximation of three sinusoidal 

functions. However, actual industrial systems exhibit a 

much more complex evolution than those represented by 

sinusoidal functions. 

[29] Propose a MANFIS system for the prediction of 

three parameters and the genetic algorithm is associated to 

improve the performance.  

[10] Associate the PID with the RRFBR for the control 

of the prediction error. However, [10] propose for the PID 

controller combinations of parameters (Kp, Ki and Kd) for 
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each horizon of prediction. This change in the values of the 

parameters (Kp, Ki and Kd) at each horizon of prediction 

seems tedious. 

It is to improve the accuracy of a multi-parameters 

prediction system without increasing the complexity of the 

prediction algorithm that, the work proposed in this paper 

applies the selection of inputs and the PID controller (with 

constant parameter values in the medium term) to a 

MANFIS system with three interdependent parameters.  

III. NEURO-FUZZY PREDICTION SYSTEM 

A. ANFIS Architecture 

[30] Effectuates the analysis of some NF architectures and 

realizes that ANFIS architecture offers a better RMSE. 

TABLE I. PERFORMANCE OF SOME NF MODELS [30] 

Model Epochs RMSE 

ANFIS 75 0.0017 

NEFPROX 216 0.332 

EfuNN 1 0.0140 

dmEFuNN 1 0.0042 

SONFIN 1 0.0180 

 

  

Fig. 1.     Network structure of ANFIS model [27] 

 

Layer 1. Generates the membership grades: 

(3)  

                                                                                                        

(4)                                                                                                                                                  

 Where 
iA and 

iB can be any membership functions. 

Layer 2. Generates the firing strengths. 

                     (5) 

Layer 3. Normalizes the firing strengths. 

              (6) 

 

Layer 4. Calculates rule outputs based on the consequent 

parameters. 

           (7) 

 Where ip , iq  and ir  are the so-called consequential 

parameters. 

Layer 5. Output calculation  

            

 

(8) 

 

 

 After this phase, the optimal values of these 

membership function parameters and consequential 

parameters are set by a hybrid learning algorithm that 

combines the method of least squares with the 

backpropagation learning algorithm. Finally, the ANFIS 

output is calculated by means of consequential parameters.  

B. MANFIS Architecture 

The ANFIS architecture is similar to the new MANFIS 

system proposed in this paper. Indeed, the MANFIS 

architecture can be considered as an aggregation of several 

ANFIS [31]. 

   

 
 

Fig. 2. Architecture of the MANFIS network [31] 

In this model, the input variables xi (i=1, 2,…,p) are 

independent and the output variables yi (i=1, 2,…,p) are 

functions of the input variables. 

                                                                                   (9)                                                

                    

 (10) 

 

IV. MANFIS-PID SYSTEM FOR THE 

PREDICTION OF THREE 

INTERDEPENDENT PARAMETERS 

In this section, we propose a MANFIS-PID system 

capable of performing the prediction of three 

interdependent parameters. This system consists of two 

subsystems. The MANFIS subsystem performs the 

prediction of three interdependent parameters, and the PID 

controllers (with constant parameters) perform the control 

of prediction error for each parameter (X, Y and Z). 
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A. Structure of the MANFIS subsystem 

 
Fig. 3. MANFIS prediction subsystem of three interdependent 

parameters 

For this sub-system, the variable “d” represents the 

horizon of prediction. For each of the input variables (X, Y, 

Z), the components chosen as inputs are those 

corresponding to the four previous instants to the instant of 

prediction. Input Variables Xint, Yint and Zint are vectors 

defined as follows: 

                                                                                                                    

(11) 

  (12) 

(13) 

For this sub-system, the prediction of the state of the 

parameters at a given instant takes into account the state of 

these parameters at the four previous instants. The 

incrementation of the horizon of prediction is done by 

cascading the base system. 

B. Structure of the MANFIS-PID system and 

determination of the optimal parameters Kp, Ki and 

Kd of the PID controllers 

 For the MANFIS-PID system, the prediction errors

1( )x t , 1( )y t  and 1( )z t  are respectively calculated between 

the values ˆ '( )x t , ˆ '( )y t and ˆ '( )z t predicted by the MANFIS 

subsystem and the real values ( )x t , ( )y t and ( )z t . The 

controllers PID1, PID2 and PID3 respectively deliver the 

commands com11, com21 and com31 capable of adjusting the 

predictions of the MANFIS subsystem. The control of the 

prediction error thus performed allows us to obtain ˆ( 1)x t  , 

ˆ( 1)y t   and ˆ( 1)z t  .  

 
Fig. 4. MANFIS-PID system 

Unlike the PID controller proposed by [10], the 

particularity of the PID controllers proposed here is that 

they keep constant, parameter values Kp, Ki and Kd in the 

medium term. 

Consider the variable X, the control of the prediction 

error can be written: 

 

                                (14) 

                

With 1( )x t  the prediction error for the horizon t+1 

By induction, at the horizon t + d we can also write: 

 (15) 

With ( )xd t the prediction error for the horizon t+d 

The command com11 delivered by the PID1 controller to 

predict the state of the variable X at instant t+1 can be 

written as: 

                                                   (16) 

                                                                           

(17) 

Similarly, the command com1d delivered by the PID1 

controller at time t+d can be written: 

                                                          (18) 

Ideally, 

                                  (19) 

This implies that: 

                                                           (20) 
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Considering the previous expressions, there are 

constant and optimal values Kp, Ki and Kd satisfying the 

following equation system: 

 

 

 

 (21)  

                               

 

The resolution of this system of equation allows us to 

find the optimal parameters Kp, Ki and Kd to obtain 

optimal PID controls. These parameters remain unchanged 

up to the horizon t+d. The same approach is applied to the 

variable Y and Z. 

 

C. Training base 

For the validation of our system we used the time 

series of Lorenz. This series of data is chaotic, therefore 

non-periodic and non-convergent. The time series of 

Lorentz presents the evolution over time of three 

interdependent parameters [32]. Although widely used in 

the field of climatic predictions, we have found it 

interesting to validate our system whose application is in 

the field of industrial maintenance. 

 

D. Prediction Methodology Implemented 

The prediction methodology begins with the formation 

of 150 training data and 100 test data. The data of each of 

the parameters X, Y and Z are arranged in the form of five-

column matrices (the four inputs and the desired output) 

and “n” rows (n being the size of the training / test set). 

These data are used for the generation of fuzzy inference 

systems and the training of three ANFIS systems, each for 

the prediction of one of the three parameters. The 

symbiosis of the three systems allowed us to form a 

MANFIS subsystem. The MANFIS subsystem performs 

the prediction by delivering the values ˆ '( )x t d , ˆ '( )y t d  and

ˆ '( )z t d . To this system is associated the controllers PID1, 

PID2 and PID3 who issue the commands respectively 

com1d, com2d and com3d. Commands com1d, com2d and 

com3d are applied to the values previously predicted by the 

MANFIS subsystem to give respectively ˆ( )x t d , ˆ( )y t d  and

ˆ( )z t d . These values thus constitute the prediction 

effectuated by the MANFIS-PID system. 

The cascade of the previously formed system makes it 

possible to increment the horizon of prediction. The 

variable “d” corresponds to this horizon of prediction. This 

cascading is inspired by the work of [33] and taken over by 

[26]. 

Consider A , the matrix (K×3) containing the expected 

values of the three parameters for the K tests and Â , the 

matrix (K×3) containing the predicted values of the three 

parameters for the K tests. 

The RMSE between the expected values and the 

estimated values is calculated by the equation (24).  

                                          

                                                                                              

(22) 

 

 

 

 (23) 

 

 

 

 

                                (24) 

 

 

 
Fig. 5. Process deployed in the MANFIS-PID prediction system 
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V. RESULT AND ANALYSIS 

Table 2 presents the different values of the Kp, Ki and 

Kd parameters obtained for each of the three variables. The 

integration parameter Ki being zero, we have PD type 

controllers (Proportional Derivative).  

TABLE II. VALUES OF OPTIMAL PARAMETERS KP, KI AND 

KD FROM HORIZON t+1 TO t+20 

 Kp Ki Kd 

Variable X 1.1019 0 0.1183 

Variable Y 1.1901 0 0.1784 

Variable Z 0.8907 0 1.1165 

A comparative analysis of the performance of the 

MANFIS-PID prediction system and its MANFIS 

subsystem is presented in Table 3 and Figure 6. This 

analysis shows a real decrease in the RMSE of the 

MANFIS-PID system compared to the RMSE of the 

MANFIS subsystem. We can see that the PD controller 

increases the prediction performances without requiring the 

variation of the values of the parameters Kp, Ki and Kd 

with the horizon of prediction. 

TABLE III. COMPARATIVE ANALYSIS OF PID MANFIS SYSTEM 

PERFORMANCE COMPARED TO ITS SUBSYSTEM MANFIS 

 

 
Fig. 6. Evolution of RMSE at different horizons of prediction 

Figs. 7 to 9 show the results of the prediction 

obtained for the three variables at different horizons of 

prediction for the MANFIS-PID system and its MANFIS 

subsystem. A relative but perceptible increase in prediction 

is observed for variables X and Y by the MANFIS-PID 

system. On the other hand, the MANFIS-PID system 

provides an excellent improvement in the prediction 

performance for the variable Z. 
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Fig. 7. Results of prediction of variable X at different horizons of 

prediction   

 

 

 

 
Fig. 8. Results of the prediction of variable Y at different horizons of 

prediction 
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Fig. 9. Results of prediction of the variable Z at different horizons of 

prediction   

 

VI. CONCLUSION 

The industrial prognostic occupies today a place of 

choice in industrial maintenance. However, planning for 

the maintenance of real industrial systems very often 

depends on the evolution of several interdependent 

parameters. Moreover, the improvement of the 

performances of the prediction systems without increasing 

the complexity of the algorithm proves to be a major 

challenge in the field of industrial prognostic. It is strong 

from these remarks that, the work reported in this paper 

deals globally with the definition of a prognostic system 

capable of effectively predicting the evolution of three 

interdependent parameters. This system combines the 

neural-fuzzy network of the MANFIS type with PID 

controllers. These controllers have the particularity of 

keeping constant parameter values with several horizons of 

prediction. 

The definition of the MANFIS-PID system proposed 

in this paper requires the definition of its MANFIS 

subsystem which implements the selection of inputs for the 

improvement of the prediction of three interdependent 

parameters. Three regulators of the PID type with constant 

gain values are associated with this prediction subsystem. 

The purpose of these controllers is to control the prediction 

error. The cascading of the prediction systems allowed the 

time variable to be incremented, an important element in 

the planning of maintenance activities. 

The approach of obtaining the values of gains 

remaining constant at several horizons of prediction is 

presented. A comparative analysis of the RMSE of the 

MANFIS-PID system and its MANFIS subsystem is 

carried out. The representation of the predictions of the 

three variables is also performed at different horizons of 

prediction. The analysis of these different results reveals 

that the MANFIS-PID system offers better performance 

than its MANFIS subsystem. This improvement in the 

performance of the MANFIS-PID system is due to the 

control of the prediction error. 

This work can be extended along several axes. In order 

to better meet the requirements of industrial systems, it will 

be possible to integrate the operating conditions and the 

future maintenance actions with this multi-parameter 

prediction model. 
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