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 ABSTRACT: The problem considered in this article is an eigenvalue problem associated with a 

matrix differential operator. In a previous article the problem has been defined, existence 

theorem has been proved and the expression for bilinear concomitant has been obtained. In 

this article the properties of bilinear concomitant are proved which are useful in obtaining 

further results concerned with the eigenvalue expansion associated with the problem.  

 

1.  We have considered the Matrix Differential Equation  

L =  F                                                                          ……………………. (1.1) 

where  
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d d
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dx dx
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                                                                                                    .................(1.3) 

and  = 
u

v

 
 
 

                                                                                                      …………………..(1.4) 

with proper conditions as given in the previous paper. 

The Bilinear Concomitant has been defined to be 
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          
 ..... (1.5) 

Properties of the Bilinear Concomitant: 

 

Theorem – 1: 

 If j (x, ) and k (x, ) are two solutions of (1.2) for the same value of , 

then [j (x, ) k (x,  )] in independent of x. 

Proof: 

 Using Green's formula we have 

  2 ( , ) ( , ) ( , ) ( , )
1

x T Tx L x x L x dxx j jk k
           

= ( , ) ( , ) ( ) ( , ) ( , ) ( )
2 1

x x x x x xj jk k
          
      

 

Where a  x1, x2  b, which with the help of (1.2) reduces to the form. 

  2 ( , ) ( , ) ( , ) ( , )
1

x T Tx F x x F x dxx j jk k
          

= ( , ) ( , ) ( ) ( , ) ( , ) ( )
2 1

x x x x x xj jk k
          
      

 ...... (1.6) 
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Evidently, the relation T TF Fj jk k
     reduces  (1.6) to  

 ( , ) ( , ) ( ) ( , ) ( , ) ( )
2 1

x x x x x xj jk k
          
      

 ...... (1.7) 

But x1, x2 are any two points in [a, b] such that (1.7) holds. This establishes the 

proof of the statement. 

Remarks: 

(i) For brevity ( , ) ( , )x xj k
    
  

 will be denoted by ( )j jk k
       
      

. 

(ii) If j (x, ) and k (x, ) satisfy the conditions of theorem (1), then by the 

representation 
dT TL Lj j jk k kdx

        , ( , ) ( , )x xj k
     is an integral 

function of independent of x where  is real but j k
  
  

 is not necessarily 

real. 

(iii) With the help of (1.6), (1.7) and the Green's formula, we have 

    ( , ) ( , )
b T

x F xkja
        

 = ( , ) ( , ) ( ) ( , ) ( , ) ( )x x b x x aj jk k
          
      

 ...... (1.8) 
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Theorem – 2: 

  ( , ) ( , ) ( , ) ( , )x x x xj jk k
          

 Bar as usual denotes the complex conjugates. ...... (1.9) 

Proof: 

 The expression for bilinear concomitant and its conjugates, from (1.5) yields 

the result (1.9). 

Corollary: 

 ( , ) ( , )x xj k
    
  

 is purely imaginary  ....... (1.10) 

This is evident from (1.9) by putting j = k. 

Theorem – 3: 

  ( , ) ( , )x xj k
    
  

 is a semi bilinear form which reads 

  ( , ) ( , ) ( , )x x xj k l
      

  
 

= ( , ) ( , ) ( , ) ( , )x x x xj l k l
          
    

 ...... (1.11) 

 ( , ) ( ( , ) ( , ))x x xj k l
      
  
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= ( , ) ( , ) ( , ) ( , )x x x xj jk l
          
      

 ...... (1.12) 

and ,j jk k
       
      

 ...... (1.13) 

where  and  are constants real or complex. 

 The proofs are very simple. 
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