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Abstract: The primary objective of power generation
unit scheduling for a GENCO operating in restructured power
system, is to maximize accumulated profit over the entire
period of operation. When operating in the pool market,
GENCO’s demand is the spot market allocated energy. Hence,
prior to units scheduling, the GENCO has to forecast how the
market will be as far as the market clearing price and the spot
market allocation for each hour of the day is concerned. By
using these two market signals, the company can optimally
schedule its generation to maximize profit. However, this paper
aims at exploring capability of Deep Reinforcement Learning
(DRL) established by using Deep Deterministic Policy Gradient
(DDPG) algorithm to optimally schedule generating units in
order to boost GENCO’s financial benefit in deregulated
electricity market environment. Simulations were carried out
for a GENCO with six generating units each with different
operation cost curve and different generating capacity, the
resulted output reveal that the proposed method can be applied
to solve profit-based generation units scheduling problem
(PBUS).

Keywords: DDPG, DRL, Market Clearing Price
(MCP), Profit based unit scheduling (PBUS), Power system
deregulation.

Abbreviations

C(P;) cost of generating P amount of power at hour ¢t by
it" generating unit

i it" generating unit

N total number of generating units

PF, total profit at hour ¢

Pen,  penalty at hour t

pMCP predicted market clearing price

P;; power generated by i unit at hour t

pMA, predicted Market allocation

Rev;,  revenue at time t of the i*" generating unit

R, overall reward at hour t

SUC;  Star-tup cost of unit i*" at time t

P;max  Generator maximum generated power

P;min  Generator minimum generated power

I. INTRODUCTION

The deregulation process in energy sector is one of the most
important transition for modern electricity industry. This

transition enhance the competition in the electricity market
the power prices are likely to descend which favours the
electric power consumers [1],[2],[3]. With such idea in
mind, there is a need to optimally schedule the generation
units in a manner that will generate more profit [4]. This is
due to the fact that, this type of market is based on
competition which affects the electricity energy price. In
contrast from vertical integrated power system, where
utilities had obligation to meet demand and reserve, in
deregulated power system the main objective of GENCO is
to maximize its profit [5],[6],[7]. That is, GENCO has to
schedule its generation pattern that will maximize the total
profit. On the other hand, the responsibility of Independent
System Operator (ISO) is to satisfy the system power
demand in order to balance between generation and load.
The ISO neither owns nor operates any generating unit but
receives bids from different GENCOs and it decides energy
demand among the GENCOs based on a cheapest first
method [8].

UC problem has been solved by several methods each with
its advantage(s) and disadvantage(s), [6],[9] explained the
priority list method, dynamic programming [10],[11],
Lagrangian relaxation, Genetic Algorithm [12], Grey wolf
optimization [13], Particle Swarm optimization [14], Tabu
Search method, Fuzzy logic algorithm [15] and
Evolutionary algorithm [16]. However, a few reactions have
been routed to these strategies as they are iterative require
an initialization step. That can cause the convergence
property for the pursuit interaction into ideal local optimal
solution. Also, they may neglect to tackle the powerful case
including above limitations. Market clearing price and the
load forecasts plays an important part in strategizing optimal
bidding in a day ahead market[5], [6].

The reinforcement learning technique has been used to solve
complex problems and high dimensional problems in control
systems [19], delivery route problem [20] and robotics [21].
the aim of this study is to introduce the use of deep
reinforcement learning to solve optimally scheduling of
generating units scheduling in deregulated power system
environment in order to maximize GENCO’s profit. By
analysing the operation predicted data (the market clearing
prices and market allocations), a data-driven Profit based
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unit scheduling (PBUS) model is established. By means of
DDPG algorithm, the established model is trained to
maximize the GENCO’s profit, finally the model is tested to
show the effectiveness and accuracy of the proposed
method.

Il. PROBLEM FORMULATION

The objective of the PBUS problem is to formulate a
scheduling pattern that will maximize the expected profit for
the entire operation period. Therefore, the objective function
is expressed as the difference of revenue generated and cost
spent [22],[23]. The optimization problem for PBUS can be
formulated mathematically by the following Equations;

Objective function

max PF; = Revy — FCr (1)
Where;
n T
Total Revenue RV, = (P;; x pMCP) 2

Total Fuel Cost FCp = ZZ(ai +biPe+cPi (3

i=1 t=1

+SUC,)
Constraints;
(Z PitUL-t> < pMA,;VtET @
i=1
Pimin < Py < Piax s Vi )
I11. THE PROPOSED METHOD

A. Reinforcement Learning

Reinforcement learning is a class of machine learning, that
is based on trial-and-error, that is concerned with sequential
decision making [24]. An RL agent exists in an
environment. Within the environment it can act, and it can
make observations of its state and receive rewards. These
two discrete steps, action and observation, are repeated
indefinitely with the agent’s goal being to make decisions so
as to maximize its long-term reward.

B. Deep reinforcement learning

DRL utilize deep neural net as function approximator, which
are especially valuable in reinforcement learning in the case
that observations and/or actions dimension are so high that
one can’t even think about being totally known [25], [26]. In
the deep reinforcement learning, deep neural network is
utilized to implement either a value function, or a policy
function i.e, networks can figure out how to get values for
the given states, or getting values from actions and
observations sets. Instead of using the technique of Q-table
which would be very expensive method one can train a
neural network from the given dataset of states or actions
examine how significant those are comparative with our
target in reinforcement learning [27].

Like every neural network, coefficients are used to estimate
the function relating inputs to outputs, and their learning
comprises to tracking down the correct coefficients, or
weights, by iteratively changing those weights along
gradients that guarantee less error. In reinforcement

learning, convolutional organizations can be utilized to
perceive a specialist's state when the input is visual images.
Figure 1 is an architecture used to design both actor and
target actor networks. The network model constituted of;
feature input layer, four fully connected layers (Which are
all feed forward neural networks) and four activation
functions.
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Figure 1. Actor and target actor structure

Figure 2 shows the architecture of the critic network of the
DRL used, the same is applied for target critic network. It
can be seen that the critic network receives both
observations and actions from the actor and output the Q
values.
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Figure 2. The critic and target critic structure

C. Designing of the state space, action space and reward
function

Reward is defined as profit plus penalties, the agent is

penalized when the sum of power generated is more than the

predicted market allocation (pMA,).

First reward to be considered is Profit at each time step

which is calculated as;

N
PF, = Z(Revit - C(Py) (6)

i=1
Whenever the agent violates the constraints defined it should
be penalized as per equation (7)

Pen, = [_k if (Zizlpir) > PMAf} @

0 otherwise

Net reward at each time step is defined as sum of penalty
and profit as per equation (8)
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Rt= PFt+ Pent (8)

Defining Agent’s states
States = {Py, Py ... Py ... Py.}
Where

5 _ pip _ (PMCP—bi
Py = Pit — (Z2522) ©
Defining Agent’s action

Actions ={ P, ... Pit, ... Py; }

D. The DDPG Algorithm

The algorithm uses a total of four neural networks. The first
network is called the actor, m(s|6™), where 8™ denotes the
network parameters. The actor part of the DDPG agent is
classified as a policy search method.

The second network is called the critic, Q(s,a|8?), where
09 denotes the network parameters. The critic part of the
DDPG agent is classified as a value function method
[28],[29].

DDPG uses target network idea to implement further two
neural networks, one for each of the actor and critic
networks. The network parameters for the actor and critic

target networks are denoted as 6™ and BQ'respectiver.
DDPG also makes use DQN’s experience replay buffer to
store experience which is randomly sampled from during
training [30].
The loss function for the critic network is similar to the DQN
loss function except that actions are selected by the actor
network [31]. Using the standard Q-learning update and the
mean square error, the critic loss function is expressed as:
Li(62) = Egsansy~ U@ +7Q(s', (s 107)16F)  (10)
- Q(s,al67))*]
The actor network is updated using the deterministic policy
gradient theorem [31]. The gradient update is given by:
Vor](0™) = E[VaQ(s,al09) | o_r(sigm)Vorn(s16M)s] (1)
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Table 1. Actor and critic parameter settings

Feature Input Fully connected layer | Fully Fully connected | Fully connected
Layer 1 connected layer 3and 5 layer 4
layer 2
Input size 6 6 100 100 100
Output size 6 100 100 100 6 for actor
network
1 for critic
network
Number of hidden layers nla 32 64 64 32
Weight learning rate factor nla 1 1 1 1
Regularization factor for nla 1 1 1 1
weights
Bias learning rate factor n/a 1 1 1 1
Regularization factor for n/a 0 0 0
biases
Weight initializer nla Glorot Glorot Glorot Glorot
Bias initializer nfa Zeros Zeros Zeros Zeros
Activation function nla ReLU ReLU ReLU tanh

Equations (10) and (11) are used with gradient descent and
the backpropagation algorithms to update actor and critic
network weights during training. The algorithm flowchart is

Initialization step
v

Randomly initialize critic Q(s, a|6?) and
actor (s|@™) with weights 89 and 6™
respectively

Initialize target network Q" and p’ with
weights 82 « 92 and * g+

Initialize replay buffer R

Initialize random process N for

for episode « 1: M

Receive initial observation state

action exploration

Select action a; = p(s¢|6*) + N,
with exploration noise

Execute action a; and observe
reward r; and observe new state s;,;

Store transition (s¢, a¢, 13, Sex1) IN R

v

Update critic by minimizing the loss:

summarized in flow chart figure 3.

Sample a random minibatch of N

Figure 3. The DDPG Algorithm
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E. DDPG parameter setting

The Algorithm needs to give action command for each
generating unit that will satisfy all the constraints and meet
the objective. The model is initialized by randomly selected
power distribution coefficients for generator one to six as in
table 2 below shows the initial operation parameters and
table 3 shows the DDPG Algorithm parameter setting.

Table 2. Generating units’ initial operation values

Symbol Parameter Value
g1 Generating unit 1 0.8
power distribution
coefficient
9 Generating unit 2 0.6
power distribution
coefficient
Js3 Generating unit 3 0.7
power distribution
coefficient
Ja Generating unit 4 0.8
power distribution
coefficient
Js Generating unit 5 0.4
power distribution
coefficient
e Generating unit 6 0.6
power distribution
coefficient
Table 3. DDPG algorithm parameter setting
Parameter Value
Target smooth factor 0.001
Experience buffer length 1000000
Discount factor 0.99
Minibatch size 32
Actor learning rate 0.0001
Critic learning rate 0.001

IV.EXAMPLE ANALYSIS

A. Simulation Environment

The GENCO mathematical model was developed in
Simulink environment, constituted of an RL Agent block,
Reward calculation subsystem and observation subsystem.
The Deep reinforcement learning based on Deep
Deterministic algorithm was created with the architecture
explained in figure 1 and figure 2 for actor and critic
respectively. The implementation was done by the help of
deep designer app of MATLAB r2020b version. The
setting parameters for the neural network architecture are
tabulated in table 1.

Data used for training and testing the model

During training, the random time series data generator was
formulated, this is to ensure good generalization of final
result also it serves the purpose of large dataset. The

standard IEEE 118-bus system data from [32] were utilized
to test the trained RL agent. A single GENCO having six
generating units of the 54 thermal units in the IEEE 118-bus
test system and the generating units’ data are given in table
4.

The input data to the model were 24-hour (day ahead) the
time series predicted market clearing price and the predicted
spot market allocation for the GENCO data as plotted in
figure 4 and figure 5 respectively. The GENCO had six
generating units each with different operation characteristics
shown in the table 4.
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Figure 5. Predicted Market Clearing Price
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Figure 4. Predicted spot market allocation for the GENCO.
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Table 4. Generating units’ data

MUT MDT RU RD HSC CSC Cshr

Unit  pmin p"**  Capacity a b C
[MW] [MW] [INR/]  [INR/]  [hrs]

Code [MwW] [MW] [MW]  [INRM] [INRMWh] [INR/MWhZ] [hrs]  [hrs]

(x73.12)  (x73.12) (x73.12) (x73.12)  (x73.12)
gl 100 420 840 12832  16.68 0.0212 10 10 210 210 250 500 20
g2 100 300 2400 1356 25.78 0.0218 8 8 150 150 110 110 16
g3 50 250 500 56.00  24.66 0.0048 8 8 125 125 100 200 16
g4 50 200 200 1356 25.78 0.0218 8 8 100 100 400 800 16
g 25 100 300 2030  35.64 0.0256 5 5 50 50 50 100 10
g6 25 50 100 117.62  45.88 0.0195 2 2 25 25 45 90 4

Total 4340

B. Results and Discussion
RL Agent training results
According to the algorithm, the model was trained for 150
episodes and each episode had 2400 steps. Each step
returned a reward value which was summed to obtain an
overall episode reward. Figure 5 shows a plot of episode
reward against the episode number. The training was
targeted to achieve at least average reward of 6300 for better
results.
Testing the trained model

Upon
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Figure 6. DDPG Average episode reward

successiful training of the Agent, the trained agent is applied
in offline simulation to verify the agent’s capability. In this
scenario, the market clearing price and allocated energy are
acting as inputs to the agent, and the agent gives optimal
schedule

To justify the results, trained agent was run in tree cases;
Case 1; the model was trained to meet the expected/
predicted spot market allocation.

case 2; all the generating units were fixed to generate their
maximum capacity while generating unit two was optimized
to minimize the operation cost.

case 3; the model was trained to find optimal bidding
without fixing any of the generating units.

Table 5, is showing the amount of power assigned for each
generating unit for each hour in for case 1, case 2 and case
3.

Table 6, summarizes the results obtained under three cases;
case 1 had the highest operating cost as compared to case 2
and 3, this is because large amount of energy was being
generated hence some units were operating under loss. The
most optimal solution was under case 3, in which the
operating cost was reduced and more power was being

generated at instant that the clearing price is higher thus
making more revenues. The case 3 made profit 1.5 times that
in case 2 and 1.09 times that in case 2. The profit generated
is increasing with increased energy price provided that the
generator operation cost didn’t reach its optimal value of
operation. This was shown by the unit g,, as compared to
other units, its generation was following the MCP nature
while others were constant. i.e higher generation was
achieved at higher market clearing price provided that the
total generated power doesn’t exceed the spot market
allocation. This can be proved by considering figure 4,
figure 5 and the table 5. At the time between 7 to 19 hours,
the market clearing price was high, this made the generated
power to increase (as shown in table 5) in similar fashion as
that of figure 4.

Table 5. Total generated profit

Case Operation Total Profit Energy not
No. Cost Revenue supplied
(x108) (x108) (x108) [MWh]
[INR] [INR] [INR]
1 2.792 3.580 0.788 0.00
2 1.588 2.677 1.089 19010.00
3 1.783 2.968 1.185 12820.00
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Table 6. Amount of generated power by each generating unit at each time period of 24 hours

Time 91 92 93 9ga s s
(x840) [MW] (x2400) [MW] (x500) [MW] (x200) [MW] (x300) [MW] (x100) [MW]
[Hrs] | Casel [ Case2 | Case3 | Casel [ Case2 | Case3 | Casel | Case2 | Case3 | Casel | Case2 | Case3 | Casel | Case2 | Case3 | Casel | Case2 | Case3
1 1 1 091 | 027 | 022 | 022 1 1 1 1 1 1 1 1 0.98 1 1 1
2 1 1 093 | 03L | 023 | 0.24 1 1 1 1 1 1 1 1 0.97 1 1 1
3 1 1 096 | 035 | 0.24 | 027 1 1 1 1 1 1 1 1 0.98 1 1 1
4 1 1 093 | 031 | 023 | 0.24 1 1 1 1 1 1 1 1 0.99 1 1 1
5 1 1 097 | 042 | 025 | 0.28 1 1 1 1 1 1 1 1 0.99 1 1 1
6 1 1 098 | 056 | 0.27 | 031 1 1 1 1 1 1 1 1 0.99 1 1 1
7 1 1 099 | 073 | 030 | 034 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 094 | 042 | 044 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 092 | 048 | 050 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 0.89 | 052 | 054 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 0.89 | 043 | 045 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 0.89 | 040 | 043 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 0.89 | 042 | 045 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 0.89 | 045 | 047 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 0.89 | 043 | 045 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 0.85 | 039 | 041 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 099 | 087 | 030 | 034 1 1 1 1 1 1 1 1 0.99 1 1 1
18 1 1 099 | 089 | 031 | 035 1 1 1 1 1 1 1 1 0.99 1 1 1
19 1 1 099 | 0.8L | 035 | 038 1 1 1 1 1 1 1 1 0.98 1 1 1
20 1 1 099 | 069 | 032 | 036 1 1 1 1 1 1 1 1 0.99 1 1 1
21 1 1 099 | 052 | 030 | 034 1 1 1 1 1 1 1 1 0.99 1 1 1
22 1 1 098 | 046 | 026 | 030 1 1 1 1 1 1 1 1 0.98 1 1 1
23 1 1 095 | 039 | 0.24 | 025 1 1 1 1 1 1 1 1 0.98 1 1 1
24 1 1 089 | 033 | 021 | 021 1 1 1 1 1 1 1 1 0.98 1 1 1

V. CONCLUSION

In this paper, deep reinforcement learning was used to find
optimal scheduling to solve the profit-based generation unit
scheduling of the GENCO operating in deregulated
electricity market. The Deep Deterministic Policy Gradient
algorithm is used to train the agent. The GENCO is assumed
to operate under pool market without bilateral contacts of
power supply between the GENCO and consumers. The
important data input are; predicted spot market allocation for
the GENCO and the market clearing price 24 hours (day
ahead) of time. The method can also be applied in very
complicated scenarios where there is larger number of
constraints and many generation units.
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