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Abstract: The primary objective of power generation 

unit scheduling for a GENCO operating in restructured power 

system, is to maximize accumulated profit over the entire 

period of operation. When operating in the pool market, 

GENCO’s demand is the spot market allocated energy. Hence, 

prior to units scheduling, the GENCO has to forecast how the 

market will be as far as the market clearing price and the spot 

market allocation for each hour of the day is concerned. By 

using these two market signals, the company can optimally 

schedule its generation to maximize profit. However, this paper 

aims at exploring capability of Deep Reinforcement Learning 

(DRL) established by using Deep Deterministic Policy Gradient 

(DDPG) algorithm to optimally schedule generating units in 

order to boost GENCO’s financial benefit in deregulated 

electricity market environment. Simulations were carried out 

for a GENCO with six generating units each with different 

operation cost curve and different generating capacity, the 

resulted output reveal that the proposed method can be applied 

to solve profit-based generation units scheduling problem 

(PBUS). 

Keywords: DDPG, DRL, Market Clearing Price 

(MCP), Profit based unit scheduling (PBUS), Power system 

deregulation. 

Abbreviations 

𝐶(𝑃𝑖𝑡) cost of generating 𝑃 amount of power at hour 𝑡 by 

𝑖𝑡ℎ generating unit  

𝑖 𝑖𝑡ℎ generating unit 

𝑁 total number of generating units 

𝑃𝐹𝑡 total profit at hour 𝑡 

𝑃𝑒𝑛𝑡  penalty at hour 𝑡 

𝑝𝑀𝐶𝑃 predicted market clearing price 

𝑃𝑖𝑡  power generated by 𝑖𝑡ℎ  unit at hour 𝑡 

𝑝𝑀𝐴𝑡 predicted Market allocation 

𝑅𝑒𝑣𝑖𝑡  revenue at time t of the 𝑖𝑡ℎ generating unit 

𝑅𝑡 overall reward at hour 𝑡 

𝑆𝑈𝐶𝑖𝑡   Star-tup cost of unit 𝑖𝑡ℎ at time 𝑡 

𝑃𝑖,𝑚𝑎𝑥  Generator maximum generated power 

𝑃𝑖,𝑚𝑖𝑛  Generator minimum generated power 

I. INTRODUCTION 

The deregulation process in energy sector is one of the most 

important transition for modern electricity industry. This 

transition enhance the competition in the electricity market 

the power prices are likely to descend which favours the 

electric power consumers [1],[2],[3]. With such idea in 

mind, there is a need to optimally schedule the generation 

units in a manner that will generate more profit [4]. This is 

due to the fact that, this type of market is based on 

competition which affects the electricity energy price. In 

contrast from vertical integrated power system, where 

utilities had obligation to meet demand and reserve, in 

deregulated power system the main objective of GENCO is 

to maximize its profit [5],[6],[7]. That is, GENCO has to 

schedule its generation pattern that will maximize the total 

profit. On the other hand, the responsibility of Independent 

System Operator (ISO) is to satisfy the system power 

demand in order to balance between generation and load. 

The ISO neither owns nor operates any generating unit but 

receives bids from different GENCOs and it decides energy 

demand among the GENCOs based on a cheapest first 

method [8]. 

UC problem has been solved by several methods each with 

its advantage(s) and disadvantage(s), [6],[9] explained the 

priority list method, dynamic programming [10],[11], 

Lagrangian relaxation, Genetic Algorithm [12], Grey wolf 

optimization [13], Particle Swarm optimization [14], Tabu 

Search method, Fuzzy logic algorithm [15] and 

Evolutionary algorithm [16]. However, a few reactions have 

been routed to these strategies as they are iterative require 

an initialization step. That can cause the convergence 

property for the pursuit interaction into ideal local optimal 

solution. Also, they may neglect to tackle the powerful case 

including above limitations. Market clearing price and the 

load forecasts plays an important part in strategizing optimal 

bidding in a day ahead market[5], [6]. 

The reinforcement learning technique has been used to solve 

complex problems and high dimensional problems in control 

systems [19], delivery route problem [20] and robotics [21]. 

the aim of this study is to introduce the use of deep 

reinforcement learning to solve optimally scheduling of 

generating units scheduling in deregulated power system 

environment in order to maximize GENCO’s profit. By 

analysing the operation predicted data (the market clearing 

prices and market allocations), a data-driven Profit based 
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unit scheduling (PBUS) model is established. By means of 

DDPG algorithm, the established model is trained to 

maximize the GENCO’s profit, finally the model is tested to 

show the effectiveness and accuracy of the proposed 

method.  

II. PROBLEM FORMULATION 

The objective of the PBUS problem is to formulate a 

scheduling pattern that will maximize the expected profit for 

the entire operation period. Therefore, the objective function 

is expressed as the difference of revenue generated and cost 

spent [22],[23]. The optimization problem for PBUS can be 

formulated mathematically by the following Equations; 

Objective function 

 
max 𝑃𝐹𝑇 = 𝑅𝑒𝑣𝑇 − 𝐹𝐶𝑇 (1)  

Where; 

 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑅𝑉𝑇 = ∑ ∑(𝑃𝑖𝑡 × 𝑝𝑀𝐶𝑃)

𝑇

𝑡=1

𝑛

𝑖=1

 (2)  

 𝑇𝑜𝑡𝑎𝑙 𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝐹𝐶𝑇 =  ∑ ∑(𝑎𝑖 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2

𝑇

𝑡=1

𝑛

𝑖=1

+ 𝑆𝑈𝐶𝑖𝑡) 

(3)  

Constraints; 

 
(∑ 𝑃𝑖𝑡𝑈𝑖𝑡

𝑛

𝑖=1

) ≤ 𝑝𝑀𝐴𝑡  ; ∀𝑡 ∈ 𝑇 (4) 

 
𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥 ; ∀𝑖 

(5) 

III. THE PROPOSED METHOD 

A. Reinforcement Learning 

Reinforcement learning is a class of machine learning, that 

is based on trial-and-error, that is concerned with sequential 
decision making [24]. An RL agent exists in an 

environment. Within the environment it can act, and it can 

make observations of its state and receive rewards. These 

two discrete steps, action and observation, are repeated 

indefinitely with the agent’s goal being to make decisions so 

as to maximize its long-term reward. 

B. Deep reinforcement learning 

DRL utilize deep neural net as function approximator, which 

are especially valuable in reinforcement learning in the case 

that observations and/or actions dimension are so high that 

one can’t even think about being totally known [25], [26]. In 

the deep reinforcement learning, deep neural network is 

utilized to implement either a value function, or a policy 

function i.e, networks can figure out how to get values for 

the given states, or getting values from actions and 

observations sets. Instead of using the technique of Q-table 

which would be very expensive method one can train a 

neural network from the given dataset of states or actions 

examine how significant those are comparative with our 

target in reinforcement learning [27].  

Like every neural network, coefficients are used to estimate 

the function relating inputs to outputs, and their learning 

comprises to tracking down the correct coefficients, or 

weights, by iteratively changing those weights along 

gradients that guarantee less error. In reinforcement 

learning, convolutional organizations can be utilized to 

perceive a specialist's state when the input is visual images. 

Figure 1 is an architecture used to design both actor and 

target actor networks. The network model constituted of; 

feature input layer, four fully connected layers (Which are 

all feed forward neural networks) and four activation 

functions. 

 
Figure 2 shows the architecture of the critic network of the 

DRL used, the same is applied for target critic network. It 

can be seen that the critic network receives both 

observations and actions from the actor and output the Q 

values.  

 
C. Designing of the state space, action space and reward 

function 

Reward is defined as profit plus penalties, the agent is 

penalized when the sum of power generated is more than the 

predicted market allocation (𝑝𝑀𝐴𝑡). 

First reward to be considered is Profit at each time step 

which is calculated as; 

 
𝑃𝐹𝑡 =  ∑(𝑅𝑒𝑣𝑖𝑡 −  𝐶(𝑃𝑖𝑡))

𝑁

𝑖=1

 (6)  

Whenever the agent violates the constraints defined it should 

be penalized as per equation (7) 

 

 𝑃𝑒𝑛𝑡 = {−𝑘 𝑖𝑓 (∑ 𝑃𝑖𝑡)  > 𝑝𝑀𝐴𝑡

𝑖=𝑁

𝑖=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

 

(7)  

Net reward at each time step is defined as sum of penalty 

and profit as per equation (8) 

 
Figure 1. Actor and target actor structure 

 

 
Figure 2. The critic and target critic structure 
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𝑅𝑡 =  𝑃𝐹𝑡 +  𝑃𝑒𝑛𝑡 (8) 

 

Defining Agent’s states 

States = {𝑃̂1𝑡, 𝑃̂2𝑡, … 𝑃̂𝑖𝑡, … 𝑃̂𝑁𝑡} 

Where 

 
 𝑃̂𝑖𝑡 = 𝑃𝑖𝑡 − (

𝑝𝑀𝐶𝑃𝑡−𝑏𝑖

2𝑐𝑖
) 

(9) 

Defining Agent’s action 

Actions = { 𝑃1𝑡,… 𝑃𝑖𝑡, … 𝑃𝑁𝑡 } 

D. The DDPG Algorithm 

The algorithm uses a total of four neural networks. The first 

network is called the actor, 𝜋(𝑠|𝜃𝜋), where 𝜃𝜋 denotes the 

network parameters. The actor part of the DDPG agent is 

classified as a policy search method. 

The second network is called the critic, 𝑄(𝑠, 𝑎|𝜃𝑄), where 

𝜃𝑄 denotes the network parameters. The critic part of the 

DDPG agent is classified as a value function method 

[28],[29]. 

DDPG uses target network idea to implement further two 

neural networks, one for each of the actor and critic 

networks. The network parameters for the actor and critic 

target networks are denoted as 𝜃𝜋′
 and 𝜃𝑄′

respectively. 

DDPG also makes use DQN’s experience replay buffer to 

store experience which is randomly sampled from during 

training [30]. 

The loss function for the critic network is similar to the DQN 

loss function except that actions are selected by the actor 

network [31]. Using the standard Q-learning update and the 

mean square error, the critic loss function is expressed as: 

𝐿𝑖(𝜃𝑖
𝑄

) =  𝐸(𝑠,𝑎,𝑟,𝑠′)~𝑈(𝐷)[(𝑟 + 𝛾𝑄(𝑠′, 𝜋(𝑠′|𝜃𝑖
𝜋′

)|𝜃𝑖
𝑄′

)

− 𝑄(𝑠, 𝑎|𝜃𝑖
𝑄))2] 

(10) 

The actor network is updated using the deterministic policy 

gradient theorem [31]. The gradient update is given by: 
∇𝜃𝜋𝐽(𝜃𝜋) = 𝐸[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠,𝑎=𝜋(𝑠|𝜃𝜋

)∇𝜃𝜋𝜋(𝑠|𝜃𝜋)|𝑠]  (11) 
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Equations (10) and (11) are used with gradient descent and 

the backpropagation algorithms to update actor and critic 

network weights during training. The algorithm flowchart is  

summarized in flow chart figure 3.  
 

 

 

 

 

 

 

 

Randomly initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and 

actor 𝜋(𝑠|𝜃𝜋) with weights 𝜃𝑄 and 𝜃𝜋 

respectively 

Initialize target network 𝑄′ and 𝜇′ with 

weights 𝜃𝑄′
← 𝜃𝑄 and 𝜃𝜇′

← 𝜃𝜇 Initialize replay buffer 𝑅 

Initialization step 

Initialize random process 𝑁 for 

action exploration 

for episode ← 1: 𝑀 

do  

Receive initial observation state 

𝑠1 

For each time step   𝑡 ← 0: (𝑇 − 1) do 

Select action 𝑎𝑡 =  𝜇(𝑠𝑡|𝜃𝜇) + 𝑁𝑡 

with exploration noise 
Execute action 𝑎𝑡 and observe 

reward 𝑟𝑡 and observe new state 𝑠𝑡+1 
Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑅 

Sample a random minibatch of 𝑁 

transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from 𝑅 
Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝑄′

) 

Update critic by minimizing the loss:  

𝐿 =  
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃𝑄))2

𝑖
 

Update the actor policy using the sampled policy 

gradient:

 ∇𝜃𝜇𝐽 ≈  
1

𝑁
σ ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,  𝑎=𝜇(𝑠𝑖)𝑖 ∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|

Update the target networks: 

𝜃𝑄′

=  𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 

𝜃𝜇′

=  𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

 

End 

Table 1. Actor and critic parameter settings 

 Feature Input 

Layer 

Fully connected layer 

1 

Fully 

connected 

layer 2 

Fully connected 

layer 3 and 5 

Fully connected 

layer 4 

Input size 6 

 

6 100 100 100 

Output size 6 100 100 100 6 for actor 
network 

1 for critic 

network 

Number of hidden layers n/a 32 64 64 32 

Weight learning rate factor n/a 1 1 1 1 

Regularization factor for 

weights 

n/a 1 1 1 1 

Bias learning rate factor n/a 1 1 1 1 

Regularization factor for 

biases 

n/a 0 0 0 0 

Weight initializer n/a Glorot Glorot Glorot Glorot 

Bias initializer n/a Zeros Zeros Zeros Zeros 

Activation function n/a ReLU ReLU ReLU tanh 

 

Figure 3. The DDPG Algorithm 
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E. DDPG parameter setting 

The Algorithm needs to give action command for each 

generating unit that will satisfy all the constraints and meet 

the objective. The model is initialized by randomly selected 

power distribution coefficients for generator one to six as in 

table 2 below shows the initial operation parameters and 

table 3 shows the DDPG Algorithm parameter setting. 

 

 
Table 2. Generating units’ initial operation values

 
Symbol

 

Parameter

 

Value

 

𝑔1

 

Generating unit 1 

power distribution 

coefficient

 

0.8

 𝑔2

 

Generating unit 2 

power distribution 

coefficient

 

0.6

 𝑔3

 

Generating unit 3 

power distribution 

coefficient

 

0.7

 𝑔4

 

Generating unit 4 

power distribution 

coefficient

 

0.8

 𝑔5

 

Generating unit 5 

power distribution 

coefficient

 

0.4

 𝑔6

 

Generating unit 6 

power distribution 

coefficient

 

0.6

 

 

Table 3. DDPG algorithm parameter setting

 
Parameter

 

Value

 

Target smooth factor

 

0.001

 

Experience buffer length

 

1000000

 

Discount factor

 

0.99

 

Minibatch size

 

32

 

Actor learning rate

 

0.0001

 

Critic learning rate

 

0.001

 
IV.

 

EXAMPLE

 

ANALYSIS

 

A.

 

Simulation Environment

 

The GENCO mathematical model was developed in 

Simulink environment, constituted of an RL Agent block, 

Reward calculation subsystem and observation subsystem. 

 

The Deep reinforcement learning based on Deep 

Deterministic algorithm was created with the architecture 

explained in figure 1 and figure 2 for actor and critic 

respectively. The implementation was done by the help of 

deep designer app of MATLAB

 

r2020b version. The 

setting parameters for the neural network architecture are 

tabulated in table 1.

 
Data used for training and testing the model

 

During training, the random time series data generator was 

formulated, this is to ensure good generalization of final 

result also it serves the purpose of large dataset. The 

standard IEEE 118-bus system data from [32] were utilized 

to test the trained RL agent. A single GENCO having six 

generating units of the 54 thermal units in the IEEE 118-bus 

test system and the generating units’ data are given in table 

4.  

The input data to the model were 24-hour (day ahead) the 

time series predicted market clearing price and the predicted 

spot market allocation for the GENCO data as plotted in 

figure 4 and figure 5 respectively. The GENCO had six 

generating units each with different operation characteristics 

shown in the table 4. 

 
Figure 5. Predicted Market Clearing Price 

 

 

Figure 4. Predicted spot market allocation for the GENCO.
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B. Results and Discussion 

RL Agent training results 

According to the algorithm, the model was trained for 150 

episodes and each episode had 2400 steps. Each step 

returned a reward value which was summed to obtain an 

overall episode reward. Figure 5 shows a plot of episode 

reward against the episode number. The training was 

targeted to achieve at least average reward of 6300 for better 

results.  

Testing the trained model 

Upon 

successiful training of the Agent, the trained agent is applied 

in offline simulation to verify the agent’s capability. In this 

scenario, the market clearing price and allocated energy are 

acting as inputs to the agent, and the agent gives optimal 

schedule 

To justify the results, trained agent was run in tree cases;  

Case 1; the model was trained to meet the expected/ 

predicted spot market allocation. 

case 2; all the generating units were fixed to generate their 

maximum capacity while generating unit two was optimized 

to minimize the operation cost. 

case 3; the model was trained to find optimal bidding 

without fixing any of the generating units. 

Table 5, is showing the amount of power assigned for each 

generating unit for each hour in for case 1, case 2 and case 

3.  

Table 6, summarizes the results obtained under three cases; 

case 1 had the highest operating cost as compared to case 2 

and 3, this is because large amount of energy was being 

generated hence some units were operating under loss. The 

most optimal solution was under case 3, in which the 

operating cost was reduced and more power was being 

generated at instant that the clearing price is higher thus 

making more revenues. The case 3 made profit 1.5 times that 

in case 2 and 1.09 times that in case 2. The profit generated 

is increasing with increased energy price provided that the 

generator operation cost didn’t reach its optimal value of 

operation. This was shown by the unit g2, as compared to 

other units, its generation was following the MCP nature 

while others were constant. i.e higher generation was 

achieved at higher market clearing price provided that the 

total generated power doesn’t exceed the spot market 

allocation. This can be proved by considering figure 4, 

figure 5 and the table 5. At the time between 7 to 19 hours, 

the market clearing price was high, this made the generated 

power to increase (as shown in table 5) in similar fashion as 

that of figure 4. 

Table 4. Generating units’ data 

Unit 

Code 
𝑃𝑖

𝑚𝑖𝑛 

[MW] 

𝑃𝑖
𝑚𝑎𝑥 

[MW] 

Capacity 

[MW] 

a 

[INR/h] 
(x73.12) 

b 

[INR/MWh] 
(x73.12) 

C 

[INR/MWh2] 
(x73.12) 

MUT 

[hrs] 

MDT 

[hrs] 

RU 

[MW] 

RD 

[MW] 

HSC 

[INR/h] 
(x73.12) 

CSC 

[INR/h] 
(x73.12) 

CShr 

[hrs] 

g1 100 420 840 128.32 16.68 0.0212 10 10 210 210 250 500 20 
g2 100 300 2400 13.56 25.78 0.0218 8 8 150 150 110 110 16 

g3 50 250 500 56.00 24.66 0.0048 8 8 125 125 100 200 16 

g4 50 200 200 13.56 25.78 0.0218 8 8 100 100 400 800 16 
g5 25 100 300 20.30 35.64 0.0256 5 5 50 50 50 100 10 

g6 25 50 100 117.62 45.88 0.0195 2 2 25 25 45 90 4 

Total   4340           

 

 
Figure 6. DDPG Average episode reward 

 
 

 

 

Table 5. Total generated profit 

Case 

No. 

Operation 

Cost 

(x108)  

[INR] 

Total 

Revenue 

(x108) 

[INR] 

Profit 

 

(x108)  

[INR] 

Energy not 

supplied 

[MWh] 

1 2.792 3.580 0.788 0.00 

2 1.588 2.677 1.089 19010.00 

3 1.783 2.968 1.185 12820.00 
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V. CONCLUSION
  

In this paper, deep reinforcement learning was used to find 

optimal scheduling to solve the profit-based generation unit 

scheduling of the GENCO operating in deregulated 

electricity market. The Deep Deterministic Policy Gradient 

algorithm is used to train the agent. The GENCO is assumed 

to operate under pool market without bilateral contacts of 

power supply between the GENCO and consumers. The 

important data input are; predicted spot market allocation for 

the GENCO and the market clearing price 24 hours (day 

ahead) of time. The method can also be applied in very 

complicated scenarios where there is larger number of 

constraints and many generation units. 
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