
Proceedings of International Conference “ICSEM’13”

 691

A.Thilagavathi,P.Elumalai

Proficient classification of packed and
polymorphic malware
Using malwise

A.THILAGAVATHI,
Student,M.E(C.S.E) IInd Year,
Shri Andal Alagar College of Engineering,
Mamandur
csethilak@gmail.com

MR.P.ELUMALAI
Assistant professor,
Dept of CSE,
A.R Engineering College,
Villupuram

Abstract

String based signatures have remained popular
in commercial systems due to their high efficiency, but
can be ineffective in detecting malware variants. To
classify the packed and polymorphic malware, this paper
proposes a novel system named Malwise. Classification
is performed using a fast application level emulator to
reverse the code packing transformation and three data
mining algorithms to perform classification. We use real

and synthetic malware to demonstrate the effectiveness
and efficiency of Malwise. Polymorphism describes
related malware sharing a common history of code. Code
sharing among variants can be derived from
autonomously self mutating malware, or manually copied
by the malware creator to reuse previously authored code.
Both static and dynamic analysis will be performed for
effective classification.

Index Terms— Computer security, malware, structural classification, unpacking.

I. INTRODUCTION

Malware, short for malicious software, means a variety of

forms of hostile, intrusive, or annoying software or program
code. Malware is a pervasive problem in distributed computer
and network systems. Malware variants often have distinct
byte level representations while in principal belong to the same
family of malware. The byte level content is different because
small changes to the malware source code can result in
significantly different compiled object code. In this project we
describe malware variants with the umbrella term of
polymorphism. We are the first to use the approach of
structuring and decompilation to generate malware signatures.
String based signatures have remained popular in commercial
systems due to their high efficiency, but can be ineffective in
detecting malware variants.

A. Existing Approaches and Motivation

Static analysis incorporating n-grams [3, 4], edit distances
[5], API call sequences [10], and control flow [1-2] have been
proposed to detect malware

and their polymorphic variants. However, they are either
ineffective or inefficient in classifying packed and
polymorphic malware.

The malware's real content is frequently hidden using a
code transformation known as packing [7]. Packing is not
solely used by malware. Packing is also used in software
protection schemes and file compression for legitimate
software, yet the majority of malware also uses the code
packing transformation.

Unpacking is a necessary component to perform static
analysis and to reveal the hidden characteristics of malware. In
the problem scope of unpacking, it can be seen that many
instances of malware utilize identical or similar packers. Many
of these packers are also public, and malware often employs
the use of these public packers. Many instances of malware
also employ modified versions of public packers. Being able to
automatically unpack malware in any of these scenarios, in
addition to unpacking novel samples, provides benefit in
revealing the malware’s real content – a

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

 691

A.Thilagavathi,P.Elumalai

necessary component for static analysis and accurate
classification.

For modern malware classification approaches, a system
must be developed that is not only effective against
polymorphic and packed malware, but that is also efficient. In
this paper we present an effective and efficient system that
employs dynamic and static analysis to automatically unpack
and classify a malware instance as a variant, based on
similarities of features.

B. Contributions

This paper makes the following contributions. First, we
propose using a feature search method that focuses on
selecting generic features that are applicable to different
families of viruses. Second, we propose using three algorithms
to classify nonspecific features for exact and approximate
identification of flow graphs. Third, we propose and evaluate
automated unpacking Using application level emulation that is
equally capable of desktop Antivirus integration. The
automated unpacked is capable of unpacking known samples
and is also capable of unpacking unknown samples. Finally,
we implement and evaluate our ideas in a novel prototype
system called Malwise that performs automated unpacking and
malware classification.

C. Structure of the Paper

The structure of this paper is as follows: Section2
describes related work in automated unpacking and malware
classification; Section 3 refines the problem definition and our
approach to the proposed malware classification system;
Section 4 describes the design and implementation of our
prototype Malwise system; Section 5 evaluates Malwise using
real and synthetic malware samples; finally, Section 6
summarizes and concludes the paper.

II. RELATED WORK

A. Automated Unpacking

Automated unpacking relies on typical
behavior seen in the majority of packed malware – hidden code
is dynamically generated and then executed. The hidden code
is naturally revealed in

the process image during normal execution. Monitoring
execution for the dynamic generation and execution of the
malware’s hidden code can be achieved through emulation [6].
Emulation provides a safe and isolated environment for
malware analysis. The advantage of application level emulation
over whole system emulation is significantly greater
performance. Application level emulation for automated
unpacking has had commercial interest [9] but has realized few
academic publications evaluating its effectiveness and
performance.

B. Polymorphic Malware Classification

A variation of n-grams, coined n-perms has been
proposed [4] to describe malware characteristics and
subsequently used in a classifier. An alternative approach is
using the basic blocks of unpacked malware, classified u sing
edit distances, inverted indexes and bloom filters [5]. The main
disadvantage of these approaches is that minor changes to the
malware source code can result in significant changes to the
resulting byte stream after compilation. The novel set similarity
search we perform enables the real-time classification of
malware from a large database. No prior related research has
performed in real-time. Additionally distinguishing our work is
the proposed automated unpacking system, which is integrated
into the flow graph based classification system.

C. The Difference between Malwise and Previous Work

Our research differs from previous flow graph
classification research by using a novel approximate control
flow graph matching algorithm employing structuring. No prior
related research has performed in real-time. Additionally
distinguishing our work is the proposed automated unpacking
system, which is integrated into the flow graph based
classification system.

III. PROBLEM DEFINITION AND OUR
APPROACH

The problem of malware classification and variant

detection is defined in this Section.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

 692

A.Thilagavathi,P.Elumalai

A. Problem Definition

A malware classification system is assumed to have
advance access to a set of known malware. This is for
construction of an initial malware database. The database is
constructed by identifying invariant characteristics in each
malware and generating an associated signature to be stored in
the database. After database initialization, normal use of the
system commences. The system has as input a previously
unknown binary that is to be classified as being malicious or
non malicious. The input binary and the initial malware
binaries may have additionally undergone a code packing
transformation to hinder static analysis. The classifier
calculates similarities between the input binary and each
malware in the database. If identified as a variant, the database
may be updated to incorporate the potentially new set of
generated signatures associated with that variant.

B. Our Approach

Our approach employs both dynamic and static analysis to
classify malware. Entropy analysis initially determines if the
binary has undergone a code packing transformation. If packed,
dynamic analysis employing application level emulation
reveals the hidden code using entropy analysis to detect when
unpacking is complete. Our classifier is genuinely heuristic and
does not rely on signatures. In experiments testing our method
against that of leading research, our method achieved better
performance. In both models the features selected and used by
the classifier had comparable overall support within the
dataset.

We also introduced an evaluation method for virus
classifiers that tests more convincingly its ability to detect new
viruses. Our method does not allow classifiers to use examples
in training that are variants of viruses present in the test set.

Fig. 1. Block diagram of the malware classification system

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

 693

A.Thilagavathi,P.Elumalai

IV. SYSTEM DESIGN AND
IMPLEMENTATION

A. Identifying Packed Binaries Using Entropy Analysis

Malwise performs an initial analysis on the input
binary to determine if it has undergone a code packing
transformation. Entropy analysis [8], is used to identify packed
binaries. The entropy of a block of data describes the amount
of information it contains. It is calculated as follows:

Where p(i) is the probability of the ith unit of

information in event x’s sequence of N symbols. For malware
packing analysis, the unit of information is a byte value, N is
256, and an event is a block of data from the malware.
Compressed and encrypted data have relatively high entropy.
If the binary is identified as being packed, then the dynamic
analysis to perform automated unpacking proceeds. If the
binary is not packed, then the static analysis commences
immediately.

B. Application Level Emulation

Automated unpacking requires malware execution to
be simulated so that the malware may reveal its hidden code.
The hidden code once revealed is then extracted from the
process image. Application level emulation provides an
alternate approach to whole system emulation for automated
unpacking. Application level emulation simulates the
instruction set architecture and system call interface.

C. Complexity Analysis

We assume a search complexity is O(log(N)) for both
global and local flowgraph databases. The runtime complexity
of malware classification is on average O(Nlog(M)) where M is
the number of control flow graphs in the database, and N is the
number of control flow graphs in the input binary. N is
proportional to the input binary size and not more

than several hundred in most cases. The worst case can be
expected to have a runtime complexity of O(Nlog(M) +
ANlog(N)), where A is the number of similar malware to the
input binary.

V. EVALUATION

Our method does not allow classifiers to use examples
in training that are variants of viruses present in the test set.
Our results show that our system, which uses family non-
specific features, performs very well, while existing techniques
for detecting previously unseen viruses perform significantly
more poorly under our evaluation method.

VI. CONCLUSION

In this paper we proposed different algorithms to
unpack malware using application level emulation. To detect
the completion of unpacking, we proposed and evaluated the
use of entropy analysis. It was shown that our system can
effectively identify variants of malware in samples of real
malware. In future work we propose focusing on reducing the
false positive rate, by using a larger number of benign files, or
by training our classifier using a cost matrix and setting a
higher cost to misclassifying negative examples. We would
also like to explore retrospective testing. Retrospective testing
would involve using a set of older viruses in the training set
and a set of more recent ones in the test set. Finally, it was
demonstrated the efficiency of unpacking and malware
classification warrants Malwise as suitable for potential
applications including desktop and Internet gateway and
Antivirus systems.

VII. AUTHOR’S BIOGRAPHY

Thilagavathi (csethilak@gmail.com) is a M.E, IInd Year

student at Shri Andal Alagar College of
Engineering, Mamandur(SAACE), her area of interests
includes Networking, Database Management,
Software Engineering and her Co-Author
Mr.P.Elumalai (cse.elumalai@gmail.com) is a Assistant
Professor at A.R Engineering College,Villupuram ,his
research interests includes Network Security, Adoc Networks,
Data Mining, Web Services and SOA and working as a
AP/CSE for more than 4 years.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

 694

A.Thilagavathi,P.Elumalai

REFERENCES

1. E. Carrera and G. Erdelyi, "Digital genome mapping–

advanced binary malware analysis," in
Virus Bulletin Conference, 2004, pp. 187-197.

2. I. Briones and A. Gomez, "Graphs, Entropy and Grid

Computing: Automatic Comparison of Malware," in Virus
Bulletin Conference, 2008, pp. 1-12.

3. J. Z. Kolter and M. A. Maloof, "Learning to detect

malicious executables in the wild," in
International Conference on Knowledge Discovery and
Data Mining, 2004, pp. 470-478.

4. M. E. Karim, A. Walenstein, A. Lakhotia,

and L. Parida, "Malware phylogeny generation using
permutations of code, "Journal in Computer Virology, vol.
1, pp. 13-23, 2005.

5. M. Gheorghescu, "An automated virus classification

system," in Virus Bulletin Conference, 2005, pp. 294-300.

6. M. G. Kang, P. Poosankam, and H. Yin, "Renovo: A

hidden code extractor for packed executables," in
Workshop on Recurring Malcode, 2007, pp. 46-53.

7. P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee,

"Polyunpack: Automating the hidden-code extraction of
unpack-executing malware," in Computer Security
Applications Conference, 2006, pp. 289-300.

8. R. Lyda and J. Hamrock, "Using entropy analysis to find

encrypted and packed malware,"
IEEE Security and Privacy, vol. 5, p. 40, 2007.

9. T. Graf, "Generic unpacking: How to handle modified or

unknown PE compression engines," presented at the Virus
Bulletin Conference, 2005.

10. Y. Ye, D. Wang, T. Li, and D. Ye, "IMDS: intelligent

malware detection system," in
Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,
2007.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

