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Abstract  

String based signatures have remained popular 
in commercial systems due to their high efficiency, but 
can be ineffective in detecting malware variants. To 
classify the packed and polymorphic malware, this paper 
proposes a novel system named Malwise. Classification 
is performed using a fast application level emulator to 
reverse the code packing transformation and three data 
mining algorithms to perform classification. We use real 

and synthetic malware to demonstrate the effectiveness 
and efficiency of Malwise. Polymorphism describes 
related malware sharing a common history of code. Code 
sharing among variants can be derived from 
autonomously self mutating malware, or manually copied 
by the malware creator to reuse previously authored code. 
Both static and dynamic analysis will be performed for 
effective classification. 

 
Index Terms— Computer security, malware, structural classification, unpacking. 

 
I. INTRODUCTION  

 
Malware, short for malicious software, means a variety of 

forms of hostile, intrusive, or annoying software or program 
code. Malware is a pervasive problem in distributed computer 
and network systems. Malware variants often have distinct 
byte level representations while in principal belong to the same 
family of malware. The byte level content is different because 
small changes to the malware source code can result in 
significantly different compiled object code. In this project we 
describe malware variants with the umbrella term of 
polymorphism. We are the first to use the approach of 
structuring and decompilation to generate malware signatures. 
String based signatures have remained popular in commercial 
systems due to their high efficiency, but can be ineffective in 
detecting malware variants. 
 
A.  Existing Approaches and Motivation 
 

Static analysis incorporating n-grams [3, 4], edit distances 
[5], API call sequences [10], and control flow [1-2] have been 
proposed to detect malware 

 
 
and their polymorphic variants. However, they are either 
ineffective or inefficient in classifying packed and 
polymorphic malware. 
 

The malware's real content is frequently hidden using a 
code transformation known as packing [7]. Packing is not 
solely used by malware. Packing is also used in software 
protection schemes and file compression for legitimate 
software, yet the majority of malware also uses the code 
packing transformation. 
 

Unpacking is a necessary component to perform static 
analysis and to reveal the hidden characteristics of malware. In 
the problem scope of unpacking, it can be seen that many 
instances of malware utilize identical or similar packers. Many 
of these packers are also public, and malware often employs 
the use of these public packers. Many instances of malware 
also employ modified versions of public packers. Being able to 
automatically unpack malware in any of these scenarios, in 
addition to unpacking novel samples, provides benefit in 
revealing the malware’s real content – a 
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necessary component for static analysis and accurate 
classification. 
 

For modern malware classification approaches, a system 
must be developed that is not only effective against 
polymorphic and packed malware, but that is also efficient. In 
this paper we present an effective and efficient system that 
employs dynamic and static analysis to automatically unpack 
and classify a malware instance as a variant, based on 
similarities of features. 
 
B.  Contributions 
 

This paper makes the following contributions. First, we 
propose using a feature search method that focuses on 
selecting generic features that are applicable to different 
families of viruses. Second, we propose using three algorithms 
to classify nonspecific features for exact and approximate 
identification of flow graphs. Third, we propose and evaluate 
automated unpacking Using application level emulation that is 
equally capable of desktop Antivirus integration. The 
automated unpacked is capable of unpacking known samples 
and is also capable of unpacking unknown samples. Finally, 
we implement and evaluate our ideas in a novel prototype 
system called Malwise that performs automated unpacking and 
malware classification. 
 
C.  Structure of the Paper 
 

The structure of this paper is as follows: Section2 
describes related work in automated unpacking and malware 
classification; Section 3 refines the problem definition and our 
approach to the proposed malware classification system; 
Section 4 describes the design and implementation of our 
prototype Malwise system; Section 5 evaluates Malwise using 
real and synthetic malware samples; finally, Section 6 
summarizes and concludes the paper. 
 

II.  RELATED WORK  
 

A. Automated Unpacking  
 

Automated   unpacking   relies   on   typical   
behavior seen in the majority of packed malware – hidden code 
is dynamically generated and then executed. The hidden code 
is naturally revealed in 

 
the process image during normal execution. Monitoring 
execution for the dynamic generation and execution of the 
malware’s hidden code can be achieved through emulation [6]. 
Emulation provides a safe and isolated environment for 
malware analysis. The advantage of application level emulation 
over whole system emulation is significantly greater 
performance. Application level emulation for automated 
unpacking has had commercial interest [9] but has realized few 
academic publications evaluating its effectiveness and 
performance. 
 
B. Polymorphic Malware Classification 
 

A variation of n-grams, coined n-perms has been 
proposed [4] to describe malware characteristics and 
subsequently used in a classifier. An alternative approach is 
using the basic blocks of unpacked malware, classified u sing 
edit distances, inverted indexes and bloom filters [5]. The main 
disadvantage of these approaches is that minor changes to the 
malware source code can result in significant changes to the 
resulting byte stream after compilation. The novel set similarity 
search we perform enables the real-time classification of 
malware from a large database. No prior related research has 
performed in real-time. Additionally distinguishing our work is 
the proposed automated unpacking system, which is integrated 
into the flow graph based classification system. 
 
C. The Difference between Malwise and Previous Work 
 

Our research differs from previous flow graph 
classification research by using a novel approximate control 
flow graph matching algorithm employing structuring. No prior 
related research has performed in real-time. Additionally 
distinguishing our work is the proposed automated unpacking 
system, which is integrated into the flow graph based 
classification system. 
 

III. PROBLEM DEFINITION AND OUR  
APPROACH 

 
The problem of malware classification and variant 

detection is defined in this Section. 
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A.  Problem Definition 
 

A malware classification system is assumed to have 
advance access to a set of known malware. This is for 
construction of an initial malware database. The database is 
constructed by identifying invariant characteristics in each 
malware and generating an associated signature to be stored in 
the database. After database initialization, normal use of the 
system commences. The system has as input a previously 
unknown binary that is to be classified as being malicious or 
non malicious. The input binary and the initial malware 
binaries may have additionally undergone a code packing 
transformation to hinder static analysis. The classifier 
calculates similarities between the input binary and each 
malware in the database. If identified as a variant, the database 
may be updated to incorporate the potentially new set of 
generated signatures associated with that variant. 

B.  Our Approach 
 

Our approach employs both dynamic and static analysis to 
classify malware. Entropy analysis initially determines if the 
binary has undergone a code packing transformation. If packed, 
dynamic analysis employing application level emulation 
reveals the hidden code using entropy analysis to detect when 
unpacking is complete. Our classifier is genuinely heuristic and 
does not rely on signatures. In experiments testing our method 
against that of leading research, our method achieved better 
performance. In both models the features selected and used by 
the classifier had comparable overall support within the 
dataset. 
 

We also introduced an evaluation method for virus 
classifiers that tests more convincingly its ability to detect new 
viruses. Our method does not allow classifiers to use examples 
in training that are variants of viruses present in the test set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Block diagram of the malware classification system 
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IV. SYSTEM DESIGN AND  
IMPLEMENTATION  

 
A. Identifying Packed Binaries Using Entropy Analysis 
 

Malwise performs an initial analysis on the input 
binary to determine if it has undergone a code packing 
transformation. Entropy analysis [8], is used to identify packed 
binaries. The entropy of a block of data describes the amount 
of information it contains. It is calculated as follows: 
 
 
 
 
 
 
 

 
Where p(i) is the probability of the ith unit of 

information in event x’s sequence of N symbols. For malware 
packing analysis, the unit of information is a byte value, N is 
256, and an event is a block of data from the malware. 
Compressed and encrypted data have relatively high entropy. 
If the binary is identified as being packed, then the dynamic 
analysis to perform automated unpacking proceeds. If the 
binary is not packed, then the static analysis commences 
immediately. 
 
B. Application Level Emulation 
 

Automated unpacking requires malware execution to 
be simulated so that the malware may reveal its hidden code. 
The hidden code once revealed is then extracted from the 
process image. Application level emulation provides an 
alternate approach to whole system emulation for automated 
unpacking. Application level emulation simulates the 
instruction set architecture and system call interface. 
 
C. Complexity Analysis 
 

We assume a search complexity is O(log(N)) for both 
global and local flowgraph databases. The runtime complexity 
of malware classification is on average O(Nlog(M)) where M is 
the number of control flow graphs in the database, and N is the 
number of control flow graphs in the input binary. N is 
proportional to the input binary size and not more 

 
than several hundred in most cases. The worst case can be 
expected to have a runtime complexity of O(Nlog(M) + 
ANlog(N)), where A is the number of similar malware to the 
input binary. 
 

V.  EVALUATION  
 

Our method does not allow classifiers to use examples 
in training that are variants of viruses present in the test set. 
Our results show that our system, which uses family non- 
specific features, performs very well, while existing techniques 
for detecting previously unseen viruses perform significantly 
more poorly under our evaluation method. 
 

VI.  CONCLUSION  
 

In this paper we proposed different algorithms to 
unpack malware using application level emulation. To detect 
the completion of unpacking, we proposed and evaluated the 
use of entropy analysis. It was shown that our system can 
effectively identify variants of malware in samples of real 
malware. In future work we propose focusing on reducing the 
false positive rate, by using a larger number of benign files, or 
by training our classifier using a cost matrix and setting a 
higher cost to misclassifying negative examples. We would 
also like to explore retrospective testing. Retrospective testing 
would involve using a set of older viruses in the training set 
and a set of more recent ones in the test set. Finally, it was 
demonstrated the efficiency of unpacking and malware 
classification warrants Malwise as suitable for potential 
applications including desktop and Internet gateway and 
Antivirus systems. 
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