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Abstract— In the proposed probabilistic shaft’s methodology
the stress average and the standard deviation are both
determined based on the binary synthesis approach. The
efficiency of the proposed methodology is compared with the
static and fatigue approaches. The application is performed by
using a speed reducer. Then the estimated stress average and
standard deviation are both wused in the stress/strength
methodology to determine the reliability of the designed shaft.
Additionally, since by applying the probabilistic method, the
mean and the standard deviation of the alternating Sa and fatigue
Se values are both always determined, then the proposed method
is generalized to determine the shaft’s reliability by considering
that both Sa and Se follow either a normal, Weibull or lognormal
distribution. Finally, the guidelines to select which distribution
we should use in the stress-strength analysis are also given.

Keywords— Probabilistic shaft design, Fatigue; Weibull
distribution; Binary synthesis; Stress/strength analysis; Torsional
rigidity.

. INTRODUCTION

In machines and equipment a shaft is used to let movement
and transmit power [1], [2]. Therefore, its design is based on
the applied alternating (Sa) and the midrange stress (Sm) values.
However, when a shaft fails due to the Sy value, its failure
occurs at the first cycle (or after a few cycles), meaning that the
instantaneous applied Sm value was higher than the shaft’s
strength. However, because in the design shaft’s phase, a
security factor is used, then the material’s strength (Sy) value is
higher enough than the Sy, value (say Sy>>Sy), implying no first
cycle failure occurs. Consequently, the shaft fails by fatigue.
Fatigue is a failure generated by the cumulated damage,
generated by the cyclical application of the stress. Therefore, in
the analysis the shaft’s failure is generated by the alternating S,
stress value. Consequently, the shaft’s reliability is also based
on the S, value. Thus, in this paper the fatigue shaft’s design as
well as the shaft’s reliability are both determined by using both
the nominal S, value and its corresponding standard deviation.
The S, standard deviation is determined based on the fatigue
and binary synthesis methodologies. The efficiency of the
proposed method is shown by designing an intermediate shaft
of a fan speed reducer, and by comparing the designed shaft’s
diameter with those given by the static and dynamic (fatigue)
methodologies.

In the static approach, the speed reducer shaft’s design is
performed based on the bending and torsional stresses that are
acting at the critical point of the shaft, in the yield strength Sy
and ultimate strength Sut material’s values [3]. And to
determine if the designed shaft is whether safe or not, the Von
Mises and the distortion energy (DE) criteria, with a safety
factor of two [4-5] are used. The designed static shaft’s
diameter was ds=0.0235m (0.928 in).

In similar form, in the dynamic fatigue approach [4], the
shaft’s design analysis was based on both the alternating S, and
midrange Sn, stresses values at which the shaft is subjected. The
applied S, value was determined based on both the bending
loads generated by the gears, and on the radial forces generated
by the applied torque. And the Sp value was determined
through the Soderberg’s fatigue method, were the modified
endurance limit (S¢) value was determined by using the
corresponding endurance modification factors. The designed
fatigue shaft diameter was d=0.0375m (1.48 in).

On the other hand, in the binary synthesis approach [5], the
shaft’s design analysis was performed by considering that all
the endurance limit modification factors of the above fatigue
approach are random [6] [7], and that they can be modeled by
a normal distribution [8]. Therefore, after all the modifier factor
were synthetized by using the binary synthesis approach. Then
from the synthetized average values, the corresponding
modified endurance limit (S¢) value was determined. And by
using the Se value with the corresponding Soderberg line and
the stress ratio (r=Sa/Sm) in the Soderberg’s diagram, the
maximum allowed S’ value was determined. Finally, by using
the S, value of the fatigue analysis, and the addressed binary S’,
value and a safety factor of 2, the designed binary shaft
diameter was d,=0.0381m (1.50 in).

However, here it is important to observe that 1) although in
the static, fatigue and binary approaches we conclude the
designed shaft is considered safe, and we use a safety factor of
two, from neither of these analyses it is possible to determine
the reliability that the designed shaft presents. And 2) because
dp>ds>ds (0.0235m>0.0375m>0.0381m), then we have that the
robust design is the one given by the binary method with
d»=0.0381m. 3) because in the binary method, the estimated S,
value is higher than the minimum expected strength Semin Value
(Sa>Semin), then although we design the shaft with dp,=0.0381m,
failures are expected. Hence in order to avoid failures, in
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section VI a probabilistic method to avoid selecting a S, value
higher than the minimum Semin value, is presented. The
proposed method is based on the fatigue and binary approaches.
And its main contribution consists of 1) given the minimum
expected modified endurance limit Semin Value, to create a new
Soderberg line, and from it to derive the mean and the standard
deviation of S, in such a way that the maximum expected S,
value never will be higher than the minimum expected Semin
value (Sa<Semin). And 2) by using the addressed normal
distributions families of S; and Se in the corresponding
stress/strength function, the reliability of the designed shaft is
determined. Therefore, by applying the proposed method, the
designed probabilistic shaft diameter was d=0.0418m (1.647
in), with a designed reliability of R(t)=0.9950. However, at this
point, it is important to mention that because the torsional
rigidity method requires a minimum shaft diameter of 0.0419m
(1.65in), then finally the recommended diameter for shaft 2 was
0.0419m. Finally, since by applying the probabilistic method,
the mean and the standard deviation of S, and Se are both
always determined, then the stress-strength analysis is
generalized to determine the shaft’s reliability, for any
combination among the normal, Weibull and lognormal
distribution, and the guidelines to select the right distribution
are also given.

II. DATAOF THE ANALIZHED CASE

In order to perform the comparison between the static,
dynamic and binary synthesis design approaches, as well as to
formulate the probabilistic proposed method, the intermediate
shaft of a speed reducer used for a grain drying process is
designed. In the application, it is required to move the fan at
450 rpm with a power of 12 hp. The shaft design’s material is
an AISI 1020 steel normalized at 925 ° C (1,700 ° F) air cooled,
50 mm (2 in) round with ultimate tensile strength of Sy; = 438
MPa (63,500 psi), tensile yield strength of Syx = 319 MPa
(46,300 psi), and a shear modulus of G = 72 GPa (10,400 ksi)
[9]. Therefore, because the selected motor is a 12 hp motor and
a turning speed of 1,800 rpm, then the speed reducer must be
designed to decrease the speed from 1,800 rpm to 450 rpm, and
this has to be made by conserving the initial motor’s power of
12 hp.

The scheme of the reducer, coupled to the motor, the
position of the spur gears in the shafts, and the shaft’s length
are all presented in Figure 1. This system can transfer motion
and torque via two accurately stages of configuration and
efficiently [10]. The selected motor has a shaft diameter of
0.035m(1 3/8 in) [11] [12]. The motor is connected to the shaft
1 of the reducer by using a flexible coupling. The spur gear A
is mounted on shaft 1, which engages with spur gear B of shaft
2. A spur gear C is mounted on shaft 2, which is connected to
spur gear D that is mounted on the shaft 3. And according to
[12], the main characteristics of the 4 spur gears to reduce the
engine speed are shown in Table 1. From Table 1, we have that
due to the relationship between spur gears A and B, the initial
angular velocity of shaft 1 of 1,800 rpm is reduced in shaft 2 to
900 rpm. Similarly, note due to the relation between spur gears
C and D, this angular velocity in shaft 3 is finally reduced to the
required 450 rpm.

Gear A sShaft1
Motor A = AR
— ShaﬂiGear C
Gear box Gea_rB E —— —
Shaft3 E GearD

Side view '

Fig. 1. Electric motor connected to speed reducer.

On the other hand, due to spur gears B and C, shaft 2 is
subjected to bending stresses and constant torsional forces
generated by the transmission of power, then in order to avoid
plastic deformation, its design must comply with a minimum
torsional rigidity of (0.25 °/ m) [14] [15].

Similarly, due to the bending and torsional stresses at which
shaft 2 is subjected (see Fig. 2), the expected failure mode of
the shaft is due to fatigue. This implies that for the dynamic
design, the modified endurance limit S¢ has to be calculated
[3][4]. And according to [16], the endurance limit modification
factors that affect Se are surface factor k. = 0.8, size factor k,
load factor k. = 1 and temperature factor kq = 1. Also, due to the
concentration of stresses generated by the loads at which the
shaft is subjected, the holes for the assembled gears and the type
of material, the fatigue stress concentration factors for bending
Ker and for torsion factor Ker must be considered also.
However, since in this stage neither the dimensions of the
geometry nor the shaft’s diameter are known, then following
[15] Ker = 2 and Ker = 1.6 were used.

Shaft 2
Gear B /

0.1778 m

GearC

Bearing —{X| Bearing

0.0762 m 0.0762 m
Fig. 2 Top view of shaft 2.

Table 1. Spur gears characteristics of the speed reducer

Spur | Diametral Pitch | Pitch diameter | Number of | Face width
gear (in-1) (in) teeth (1.5

A 8 25 20 15

B 8 5 40 1.5

C 8 3 24 15

D 8 6 48 15

Finally, before to present the design analysis of shaft 2
through the static, dynamic and binary synthesis approaches, it
is necessary to determine the critical point where the shaft could
fail. And because the selection of the critical point depends on
1) the applied torque generated by the torsional forces of the
gears B and C and on 2) the maximum applied bending moment
generated by both the radial forces and their corresponding
reactions, then let first present the torque analysis.

A. Torque Calculations for Shaft 2

The torque generated on shaft 2 depends on the angular
velocity (@) at which the shaft will rotate, and on the power (P)
that the shaft has to transmit. Hence, the generated torque is
given by:
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63000P
== (1)
In (1), P is the power measured in horse power hp units,
63,000 is a conversion factor from hp to pounds, ® is given in
revolutions per minute (rpm), and T is measured in pounds per
inch (Ib in). Therefore, under the assumption that there is no
loss of power, P=12 hp, and due to the ratio of gears A and B
(see Fig.1), ®=900 rpm, then the generated torque in shaft 2 is

_ 63,000 (12 hp)
B (900 rpm)
And because the analyzed system is in equilibrium, then as
it is shown in Figure 3 and in Figure 4, the torque in gear B of
Te = 94.9Nm is equal to that in gear C, but in the opposite

direction, Tc = -94.9Nm. It is to say; the generated torque is
constant through the shaft at T=94.9Nm.

T

=8401bin =949Nm

B. Maximum Bending Moment for Shaft 2

Since the radial and tangential forces generated by the spur
gears generate bending moments in the shaft, and because these
generated moments by themselves generate bending stress on
the shaft, then the maximum bending moment at which the shaft
is subject is determined from the bending moments diagram
[17][18]. However, because the bending moment diagram is
based on the shear forces diagram, which is built based on the
radial and tangential forces, and on the corresponding reactions
forces, then let us first calculate the radial, tangential and
reaction forces. The analysis is as follows.

T

o
RO

Fig. 3. Gear torque direction

T(Nm)

94.9

X (m)
A B C D

Fig. 4. Shaft 2 torque diagram.

C. Radial and tangential forces calculation

The calculation of the radial and tangential forces, and
reactions (see Fig. 5) that are acting on the teeth of gears B and
C depends on their corresponding pressure angle (D) (see Fig.
6). In this case the pressure angle of spur gears B and C is ® =
20 °. Thus, the generated tangential force, which is in function
of the torque and the spur gear radius is given by [3][19]

T

F=- )

r

Hence, in function of @ and F, the radial force [3][20], is
given by

E. = F, (tan @) €))

Numerically, by using from Table 1 rg=0.0635m (2.5 in),
for gear B the tangential and the radial forces are

F5 = T/r5 = 94.9Nm/0.0635m = 1494.48N
F,5 = Fyp(tan 6) = 1494.48 (tan 20°) = 543.94N

Similarly, since from Table 1 rc=0.0381m (1.5 in), then for gear
C the tangential and the radial forces are

Fic = T/rc = 94.9Nm/0.0381m = 2490.81N
Fy¢ = F,c(tan 0) = 2490.81 (tan 20°) = 906.58N
Now let present the reactions calculations.

Fr F

\ 8=20°

Fig. 5. Forces and reactions acting on the bearings and gears

Ft

+Y -Z

-Y
Fig. 6. Generated forces on the gear teeth

D. Bearing reactions calculations

The calculation of the reactions, generated in the bearings
by the radial and tangential forces, depends on the axis of
symmetry in which these forces are being generated. In our
case, since these forces are in different axis of symmetry, then
in the analysis we have to consider that the forces are acting in
two different planes; the x-y and the x-z planes (see Fig. 6).
Thus, the analysis is based in the force and reaction diagrams
given in Figure 7 and Figure 8.

+Y F F

Figure 7. Force and reaction in x-y plane
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RAZ RDZ
B C
A T T D «x
FTB I:TC

+Z

Figure 8. Force and reaction in x-z plane

As it is shown in Fig. 7, the forces and reactions which are
acting in the x-y plane are.

+0 Y M, = 0 = (543.94 N)(0.254m) +
(906.58 N)(0.0762m) — (0.3302m) (R, ); Ry =
627.62 N

YF, =0 =627.62 N — 543.94 N — 906.58 N + Ry, ;
Rp, = 8229 N

Similarly, as it is shown in Fig. 8, the forces and reactions
which are acting in the x-z plane are.

+U YMp = 0 = (R,,)(0.3302 m) — (1494.48 N)(0.254m)
— (2490.81 N)(0.0762 m);

Ry, = 172440 N
YF, =0 =—1724.40 N + 1494.48 N + 2490.81 N — Rp,,;
Rp, = 2260.89 N

Now based on these forces and reactions let present the
shear forces and maximum flexion moment calculations.

E. Shear forces and maximum flexion moment diagram

Using the reaction forces and the estimated radial loads, the
shear force diagram for the x-y plane is given in Figure 9.
Therefore, based in these forces and on the distances of the
shear force diagram, the corresponding bending moments
diagram for plane x-y is given in Figure 10.

F(N)
y
627.62
83.67
x (m)
-822.9
0.0762 0.15840.0764

A B C D
Figure 9. Shear force diagram for x-y plane.

M (Nm)

Y
62.70

47.82

I x (m)

|
10.0762
C D

| |
'0.0762  0.1778
A

Fig. 10. Bending moments diagram for x-y plane

F(N)
-1724.40
-229.92
Z X
z
+2260.89
\ | 1

A B C D

Figure 11. Shear force diagram for x-z plane.

M (Nm)
172.27
131.39
X
T
A B C D

Fig. 12. Flexing moment diagram for x-z plane

Similarly, for the x-z plane, the shear force diagram and the
bending moment diagram are given in Figure 11 and Figure 12
respectively. Thus, based on the bending moments diagrams of
Figures 10 and 12, the maximum bending moment to be used
in the design of shaft 2 is

Myax =/ M)%—y +MzZ_,,
Myax = +/(62.70 Nm)? + (172.27Nm)?,

Finally, from the torque diagram given in Fig. 4 and from
the flexion moment diagrams given in Figs. 10 and 12, we have
that the critical point for the analysis in the design of shaft 2, is
the point C. In the same way, we have that to avoid plastic
deformation by torsion, then if the size of the designed diameter
from either of the three design approaches is smaller than the
diameter given by the torsional rigidity approach, then the
recommended diameter size must be the one given by the
torsional rigidity approach.

F. Torsional Rigidity Angle Approach for Shaft 2

To avoid plastic deformation, the material’s strength used
in the shaft design has to withstand the applied torsional forces.
This is determined by measuring the torsion angle caused by
the applied torque along the entire length of the shaft. Thus, to
avoid plastic deformation the shaft’s diameter given by the
rigidity approach has to be used as the minimum allowed
diameter in the shaft design [4]. And because the minimum
torsional rigidity value to be used in the shaft design depends
on the precision of the analysis that the application requires,
then in this paper the used value was selected from the
classification given in [14][15].

On the other hand, although in practice the procedure to
design a shaft, consists of first to determine the shaft diameter,
and then based on its value, to determine the torsion angle. And
finally, by comparing the torsion angle with the rigidity angle
of the used material, we determine if the selected shaft diameter
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is whether safe or not to fail by plastic deformation. Therefore,
because using the torsion angle is equivalent to using the shaft’s
diameter [4], then in this article the conformance of the material
with the torsional rigidity, is made through the comparison of
the designed diameter with the diameter given by the torsional
rigidity approach, which is calculated as

1
| er |*
= |25 @

Based on Table 4 in [14], in this case of study a torsion angle
of 0.0001108 radians in each inch, is recommended. Hence, by
replacing this value in (4), the shaft’s diameter of the torsional
rigidity approach is

4= 32(94.9Nm)
" Im(72x10° N/m?)(0.00463 rad /m)

Thus, to avoid plastic deformation d. = 0.041m (1.65in)
represents the minimum allowed diameter value for shaft 2.
And therefore, the shaft diameters given by the static, dynamic
and probabilistic design approaches have to be compared with
it. And in all cases if the designed diameter is lower than
0.041m, then Shaft 2 must be designed at 0.041m.

Here notice that although this torsional rigidity diameter
prevents us to have failures by plastic deformation, it does not
prevent us of failures generated by fatigue, and neither let us
know the reliability that the designed shaft presents. However,
before present the method to determine the shaft’s reliability,
let first present the static shaft’s design approach.

= 0.041m

I1l.  STATIC DESIGN APPROACH

The static shaft’s design method offers the initial steps to
design a shaft. In this static method, the shaft’s diameter is
determined based on the principal stress values generated by
the forces that are acting on the shaft. And the determination if
the designed shaft is whether safe or not, it is performed by
using the Von Misses [distortion energy (DET)] and Tresca
[Maximum stress shear (MSST)] theories [5] [3] with a selected
safety factor value. The static design analysis is as follows.

A. Static Shaft Design

Based on the Von Mises criteria, the determination of the
designed shaft diameter through the static method is given by

the formula
1
_(32F [z 3/ 72\
ds_(‘r[Sy M? + /4T) (5)

In (5), SF is the safety factor which from [4] is
recommended to be SF=2. Sy is the tensile yield strength of the
used material, which from sec. Il is S,=319 MPa (46,000 Ib/in?).
M is the maximum bending moment estimated in sec. IIE as
M=183.32Nm. And T is the applied torque estimated in sec. ll1A
as T=94.9Nm. Thus, by substituting these values in (5), the
estimated static shaft diameter is

ds
1
13

32(2) J 3
= (183.32Nm)? + 7 (94.9Nm)?

7(319x106 N/m?)
= 2.35x10"%m

Thus, because the designed static shaft’s diameter of
ds=0.0235m (0,928in) in is lower than the minimum acceptable
diameter of the torsional rigidity of sec. IIF of d;=0.041m
(1.65in), then the recommended diameter for shaft 2 is the one
given by the torsional rigidity of 0.041m.

Here it is important to notice that although (5) was derived
based on the VVon Mises criteria, and we used a SF=2, as in the
rigidity approach, it is not possible to determine the reliability
that the designed shaft presents. However before present the
method to determine the reliability of the designed shaft, let
present the shaft’s design through the fatigue method.

IV. FATIGUE DESIGN APPROACH

The fatigue in a mechanical component is caused by the
load’s repetitiveness. These loads being of lesser magnitude
than those that can cause plastic deformation in ductile
materials or rupture in fragile materials. Thus, the design of a
shaft by the fatigue approach is based on the alternating stress
(Sa) and on the mean stress (Sm) values generated by the
bending and torsional loads that are acting on the shaft. And
while S, is variant because it is generated by the bending
stresses, Sm is constant because it is generated by the applied
constant torque (see Fig. 13). However, because initially the
shaft’s diameter is unknown then at this stage S, and Sy, are both
unknown, and therefore they are determined by using a fatigue
failure theory. The most common used theories are the
Soderberg, Goodman, Gerber and ASME theories. However,
because in the shaft 2 design, an AISI-1020 steel is used, which
is a ductile material and plastic deformation is not allowed, then
in the analysis Sa and Sy are both determined based on the
Soderberg theory [3][4]

Tensile
Stress

Compressive

/ \ time
s
min
Stress

Fig. 13. Alternating and mean stresses.

Similarly, based on the Whdoler S-N curve of the used
material, the endurance limit S'e to be used in the fatigue
analysis is determined. And then, through the application of the
endurance limit modification factors, the S'. value is lowered to
the called modified endurance limit S, which in the fatigue
analysis is taken as the real fatigue limit of the analyzed case.
In our case, the used modifier endurance limit factors are
surface, size, type of load, temperature, and fatigue. And
because axial forces are not acting on shaft 2, then the designed
shaft’s diameter is determined based on the Soderberg and Von
Mises’ theories. Hence, due to the lack of axial forces, the
shaft’s diameter is only in function of the bending and torque
moments [4], and its diameter is given by
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1
3
2 2
— [32Fs Sy 3 Sys
d =22 \/(Mm+ SefMa> +2(T + SetTa) )

In (6), Mn, is the mean bending moment, M, is the mean
alternating bending moment, T, is the mean torque, T, is the
alternating torque, Sy is the yield strength for bending loads, Sys
is the shear yield strength for torsional loads, Ser is the modified
endurance limit for bending and Se is the shear modified
endurance limit for torsional loads. Numerically the shaft’s 2
diameter is as follows.

A. Fatigue Shaft Design

For the determination of the diameter of the shaft 2, notice
first from Figure 13 that when the shaft rotates, the bending
moment Mm, which is generated due to radial and tangential
loads of the spur gears (see Fig. 5), produces the alternating
stresses shown in Fig.13. Then the alternating stress S, at which
the shaft is subjected is equivalent to the maximum stress Smax.
Also notice that this implies that because in (6) the force
moments will be used to determine the shaft’s diameter, then
the alternating moment M, is equivalent to the maximum
moment of section IE (Ma=Mmax=183.32Nm). In the same
way, notice from Fig.13 that because the mean stress Sy, is zero,
then the mean moment My, is equal to zero (Mm = 0) also. And
since the torque on the shaft is constant because the power and
angular velocity remain constant, then the mean torque Tn is
equivalent to the torque at the critical point C (T¢). That is, T
=T.=94.9 Nm. This implies that because there are no variations
in the torque, then in (6) the alternating torque T, element is
also zero. And as a consequence, that both M, and T, are zero
(null), then the terms Sys and Sse can also be omitted from (6).
Therefore, the final formula to determine the fatigue diameter
is given by

Sy Sef

2 3
d= ﬁﬁs—yMa) + 2 (T)? @
Where the bending modified endurance limit Ses is given by

S,
Ser = kakpkcka - (8)

In (8), the values of ks=0.8, k=1 kq=1 and Kg=2 were given
in 1. On the other hand, the value of the size factor k, was not
provided because the shaft diameter is unknown. Therefore, the
kv value is selected by using as a reference, the static shaft’s
diameter determined in sec. 1A of ds = 0.023m. From [3] it is
determined as

k, = 0.85 if (0.0127m < d < 0.0508m)
or

k, = 0.70 if (d > 0.0508m)

Hence, the selected value is k, = 0.85. And because the
bending endurance limit (S ) is given as
Ser = 0.55,; 9)

Then by substituting it in (9), with the Sy value given in sec.
Il, the S’¢s value to be used to determine the shaft diameter is

S,; = 0.5(438 MPa) = 219 MPa

In the same way, by using the modifier factors, the bending
modified endurance limit is

0.8)(0.85)(1)(1)(219 MP
5, = 0B85 )2( Y@IMPD] _
Finally, by substituting these values in (7) the estimated
fatigue shaft diameter is

1

3
_ 32(2) (319x106 N/mz)(183.38Nm) 2 3 i
dr = {1{(319)6105 N/mz)\] 74.46x10° N/m? + 2 (94.9Nm)

dy = 0.036m

Thus, because the designed fatigue shaft’s diameter of
d=0.036m(1.45in), is lower than the minimum acceptable
diameter of the torsional rigidity value of sec. IIF of
d=0.0419m(1.65in), then as in the static approach, the
recommended diameter for shaft 2 is 0.0419m. Here it is
important to notice that although (7) was derived based on the
Von Mises criteria, and we used a SF=2, then as in the static
and rigidity approach, in this fatigue analysis it is not possible
to determine the reliability that the designed shaft presents.
Now let present the shaft design through the binary synthesis
method.

V. BINARY SYNTHESIS DESIGN APPROACH

In the binary synthesis method, the shaft’s diameter is
determined in function of the maximum applied alternating S,
value determined from the maximum moment M, value given
by the static analysis, the average S value, the yield strength of
the used material Sy and the Sy, values caused by the torque.
And because in this approach, S, is considered to be random,
then not only its mean pSe, but also its standard deviation cSe
are both determined by applying the synthesis method to each
one of the modifier factors. And once the S; and Sy values are
known, by using them in the Soderberg diagram with the
corresponding stress ratio r (see Fig. 14), the S, and Sy, values
are both determined. Here, the SolidWorks routine was used
(see Fig. 14).

Alternating
stress
S Soderberg
€ Line
S >
a
r
Y
S S, Midrange stress

m

Fig. 14. Soderberg diagram

Now let present the functional relationships to perform the
binary synthesis analysis.

A. Alternating and endurance binary synthesis analysis

The input variables to determine the shaft’s diameter
through the binary synthesis method and the Soderberg
diagram, are the S, Sm, Sy, and Se values. Where the S, and Sy,
values are determined from their ratio (r), their angle y and from
their real endurance limit S, values, then let first, calculate the
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functional relationship between S, and Si (r and y). And then
to present the binary synthesis analysis to determine the average
and standard deviation of S.. And finally, to determine the
diameter of the designed shaft. The functional relationships that
determine the S, value are as follows.

B. Alternating stress estimation

The functional relationship for S, is given as S;=(Mc)/I
where M is the maximum bending moment (M), ¢ is the shaft’s
radius and | is the inertia moment given by I=nd*/64. Hence S,
in terms of M and d is given as

d
Mc M= 64M 32M _ 10.18M
Sa =T T T pd T wd @ (10)
64
Finally, by substituting the maximum moment M

=183.38Nm, addressed in sec. IIE in (10), the equation of S, in
function of the unknown shaft’s diameter is given as

10.18M __ 10.18(183.38Nm) _ 1866.8Nm
Sa = 3 = 3 = 3
d d d

(11)

Similarly, the equation to determine the mean stress S, in
terms of the shear stress 1 is given by

Sm =371 (12)

Where 1=Tc/J, with T representing the torque estimated in
sec.2.1 of T=94.9Nm and J is the inertia moment given as

J=1/2 nc*. Thus, by using T=94.9Nm the shear stress T
function it is given as

p=Tc_ Tc _ 16T _ 5093(949Nm) _ 48332Nm

] %7'[64' - Ttd3 - d3 - d3

(13)

Therefore, the equation to estimate Sy in function of the
unknown shaft’s diameter is given by

Sm — (\/3—) (483.32Nm) — 837.13Nm (14)

a3 a3

And since both Sy, and S, are in function of the unknown
diameter, then in the analysis its ratio is used. It is given as

1866.8Nm
_ Sa _ d3 _
r= s~ 837.13Nm — 2.22 (15)
m 7113

Thus, the angle y to be used in the Soderberg diagram to
determine the maximum allowed S, and Sy, values is

15 -
y =tan™ " — =tan~ " (2.22) = 65.75°
Sm
Now to estimate the S, and Sn values let present the
determination of the endurance limit S, value to be used in the
estimation process.

C. Endurance fatigue limit estimation

The S, value used in the Soderberg diagram to estimate the
Saand Sy values, is determined by applying the binary synthesis
method as follows. All the modifier factors are considered to
follow a normal distribution. Therefore, their standard
deviation is estimated as the 10% of their average value [5].
After that, two factors are synthesized by using their
corresponding mean and standard deviations, a new binary
factor with its own synthesized mean and standard deviation is
determined. Then another factor is synthesized with the one
obtained previously. The process is repeated until all factors are

being already synthesized. Finally, it is important to mention
that because the synthetization process is performed according
with the functional relationship that the synthetized variables
have among them, e.g. addition, subtraction, product, division,
square root, etc., then in the synthetization process, the Table
4.2 given in [5] p.162 and p.163 were used.

The analysis to determine the corresponding modified
endurance limit Se is as follows. From (8) the surface factor ka
and the size factor ky are synthesized. It is done by using “x” to
represent k, and “y” to represent ky. Hence their corresponding
mean are i for k, and iy, for ky and their mean values are k , =
py = 0.8 and kj, = pu, = 0.85. Thus, since from (8), the
relation between k, and ky, is a product, then from the operation
number 6 of Table 4.2 in [5] p.162, the mean of the synthesized
binary variable is

Xy = Uxlty = New mean of synthetized factor (16)

Numerically it is

(ko) (kp) = (1) (1) = (0.8)(0.85) = 0.68

Similarly, by using ox to represent the standard deviation of
ka and oy for kp, their numerical values are; 6x=(0.8)(0.1)=0.08
and 6,=(0.85)(0.1)=0.085. Therefore, following the operation
number 6 (product) of Table 4.2 of [5] p.162, with p=0 (the
finished surface k, is independent of the size element kp), the
standard deviation of the synthesized variable (Kakp) is

1
Oegey = [(HE0Y + 150 + ofo) (1 + pH)]? (17)
Numerically it is

o(kky,) = {[(0.8)%(0.85)2 + (0.85)%(0.08)2
+ (0.08)%(0.085)2][1 + (0)2]}/2

o(kyk,) = 0.0964

The next step is to synthesize the load factor k¢ with the
synthesized variable (ka.kp). Doing this, the mean of (k,)(k,)is
taken as 1x=0.68, and from sec. IVA (k.) = 1 is taken as p.
Thus, since the relation of k¢ with (kaky) is also a product, then
following the operation number 6 (product) of Table 4.2 of [5]
p.162, the mean of the synthesized variable is

(kakp)(ke) = pxny = (0.68)(1) = 0.68

Similarly, taking the 10% of py as its deviation, the standard
deviations to be synthesized are

akakb = Ux = 0.0964
and oy, =0, =(1)(0.1) =0.1

And following the operation number 6 (product) of Table
4.2 of [5] p.162 with p=0 (the load is independent of kak),
given in (16), the standard deviation of the new synthesized
binary variable (Kakoke) is

O ey, = {[(0.68)2(0.1)2 + (1)2(0.0964)% +
(0.0964)2(0.1)2][1 + (0)2)]}§ =0.1183

The next step is to synthesize the temperature factor kg with

the synthesized variable (kakokc). Thus, since the relation of kq
with (Kakpke) is also a product, then because

(ko) (k) (ke) = e = 0.68
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and from sec. IVA (k;) = p, = 1 then the mean of the
synthesized variable is

(kakpk.)(ka) = pyp, = (0.68)(1) = 0.68

And by using o, = o(k kpk.) = 0.1183
and oy=0(kq)=(1)(0.1)=0.1, the standard deviation of the new
synthesized binary variable (Kakokckaq) is

Okgipkoky = 11(0.68)%(0.1)% + (1)2(0.1183)? +

1
(0.1183)%(0.1)2][1 + (0)?)]}z = 0.1369
The next step is to synthesize the fatigue factor Kg with the
synthesized variable (Kakpkcka). Thus, since the relation of K
with  (kakokckg) is  a  quotient then by  using
kakbkckd = Uy = 0.68

and from form sec. IVA K = p,, = 2, then by using operation
7 (quotient) of Table 4.2 by [5] (17) p.163, the mean of the
synthesized binary variable is

Y% — New synthetized variable (18)

Hy
Numerically it is

— e 068
Pkakpkekq! Kr = ll_y =7 = 0.34
Similarly, by using
(kg kpk.ky) = o, = 0.1369
and o(Kp) = 0, = (2)(0.1) = 0.2
in the operation 7 (quotient) of Table 4.2 of [5] (17) p.163,

the standard deviation of the new synthesized binary variable
(kakokcka/KE) is given as

1
S (u,%a;+u§a§>z 19)

By \  wy+oy

Numerically it is

=0.07604

1 [(0.68)2(0.2)2 +(2)2(0.1369)? %

= @7+ (02)?

Finally, to obtain the modified endurance limit S, the
binary synthesis method is performed between the synthesized
binary variable x = (k k,k k;)/Kr and the endurance limit
y=S¢' of the used material. The endurance material limit is
Se'=0.5S,=0.5(438MPa) =219MPa. Thus, the means to be
synthesized  are  p, = (kgkpk.ky)/Ke =034  and
Se'=py=219MPa. And because the relation of S¢' with x =
(kgkpkoky) /Ky is aproduct, then from operation 6 of Table
4.2 of [5] p.162, the mean of the synthesized variable is

Se = Hxly = (ukakbkckd)(sé) (20)
K

Numerically it is
S, = (0.34)(219 MPa) = 74.46MPa
Similarly, by taking

Okgkpkckg = 0, = 0.07604
KF

and
a5, = 0, = (219MPa)(0.1) = 21.9MPa

the corresponding standard deviation of the new
synthesized binary variable with p=0 (variables are independent
each other) is

1/
Craigiarast, = {[W)2(0)" + (SD2@)? + (0%(0,)" |1+ (0271)
' (21)

Ok arpkoegs: = L[(0.34)2(21.9MPa)? + (219MPa)?(0.07604)*
Kr
+ (0.07604)%(21.9MPa)?][1 + (0)2)]}%
= 18309786.41Pa
Therefore, the modified endurance limit S value to be used

to determine the corresponding S, and Sy values is
Se=74428904.94Pa, with expected standard deviation of o(Se)=
18309786.41Pa. The numerical analysis to determine the S; and
Sm values as well as the shaft diameter is as follows.

D. Binary synthesis diameter determination

Since from the plotted Soderberg diagram (see Fig.15), no
mathematical function exists to determine the S, and Sy, values
directly from the known S. = 74428904.97 Pa, S,= 320 MPa
and y = 65.75°, then the SolidWorks routine was used (any
other routine can be used). The found S, and Sy, values are S,
=66945197.51Pa and S,=30156634.18Pa.

Therefore, by using a safety factor of 2 [14,19] and the
estimated S, value in (10) the designed diameter is

_3 ,10.18M
dp = Sa/SF (22)

_ 3[113922419.49Pa
>~ 166945197.51Pa/2

Numerically it is

= 0.038m

Here it is important to notice that although from (22) the
shaft diameter was determined by considering Se to be random
and we used a SF=2, as in the static, fatigue and rigidity
approach, in this binary synthesis analysis is not possible to
determine the reliability that the designed shaft presents.
Therefore, now let present the proposed method which will let
us both to perform the analysis by considering a probabilistic
behavior and to determine the reliability of the designed shaft.
The proposed Probabilistic method is as follows.

VI. PROPOSED SHAFT DESIGN METHOD

In this section the method to probabilistically to determine
the diameter of the designed shaft as well as its corresponding
reliability is given. In the method the applied alternating stress
Sa and the material strength S, are random variables. And based
on the minimum expected strength Semin Value, the maximum
allowed Samax Value, for which zero failure are expected is
determined. However, first let start showing that in our
analyzed case, because the addressed S value is higher than the
minimum expected Semin Value (Sa > Semin), then failures are
expected. The analysis is as follows.

A. Overlapping of Sa and Semin

Since in the analyzed case, the addressed alternating value
was S, =66945197.51Pa, and because the endurance limit value
is Se = 74428904.97Pa, with standard deviation of os. =
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18309786.41Pa, then the minimum expected Se value iS Semin
=S¢ — ase, Which numerically is Semin = 56119118.56Pa. Thus,
we have that because 66945197.51Pa >56119118.56Pa (see
Figure 15), then failures are expected [21]. And therefore, a
lower S”, value which does not overlapping with Semin has to be
determined and used to determine the shaft diameter. The steps
are as follows.

Alternating
Stress (Pa)

Se=74428904.97"

S =66945197.51»
a v
S =56119118.56P .Y

emin

Soderberg Line

S,,=30156634.1 S 320X108

Midrange
Stress (Pa)

Fig. 15. Overlap of S, and Semin

B. Steps of the Proposed Method

Step 1. By using the modified factors, determine the mean
value of S¢ and its respective standard deviation (ose).

Step 2. Determine the minimum expected value of S as
Semin = Use — Tse (23)
Step 3. Draw a new Soderberg line parallel to the original
one, but now starting at the Semin Value of step 2 (see Fig.16).

Alternating
stress

S
id N New Soderberg Line
4

Midrange
stress

m Y

Fig. 16. New Soderberg Line

Step 4. Based on the Semin value of step 2, determine the
maximum allowed S'; value as

Sa = Semin/1.1 (24)
Step 5. Determine the standard deviation of S'; as
gsq = 0.10S, (25)

Here notice that 1) by its own construction Samax and Semin
are always equals

Sa + 0sa = Semin (26)

And that 2) as shown in Fig. 16, it implies we are using a
safety factor of 1.

Saz = S4/SF (27)
Step 7. Determine the shaft’s diameter as

3 ’10.18M
d= 0 (28)

Step 8. Determine the reliability of the designed shaft by
using (29) and (30)

7 = HS‘ZZ_#Ze (29)
R(t) =1-P(2) (30)

Now let present the application of the proposed method.

C. Numerical Application of the Proposed Method

Step 1. From (21) the mean of S¢ is w(Se)=74428904.97Pa.
And from (20) and (21) its standard deviation is o(Se
)=18309786.41Pa.

Note 1: Notice that although here p(Se) and o(Se), were both
determined by using the synthesis binary method, in practice
they can be determined by any other method.

Step 2. From (23) the minimum expected endurance limit
(Semin) is

Semin = 74428904.97Pa—18309786.41Pa = 56119118.56Pa.

Step 3. The new Soderberg line is drawn starting at
Semin=56119118.56Pa and being parallel to the original one (see
Fig.17).

Alternating
Stress (Pa)

e

s, =56119118.56p| New Soderberg Line

§',=51017380.5 M —=

Y
&

0=65.75

S,.=22981605 S,= 320x10°

Midrange
Stress (Pa)

Fig. 17. New Soderberg Line with values

Step 4. From (24) the maximum allowed alternating stress
value is S’; = (56119118.56Pa) /1.1 = 51017380.5Pa

Step 5. From (25) the standard deviation of S's is 6S"3 = 0.10
S'.=0.10 (51017380.5Pa) = 5101738.05Pa.

Step 6. From (27), and by using a safety factor of 2 [14,19]
the alternating stress (Sa2) value to determine the shaft diameter
is

S,z = 51017380.5Pa/2 = 25508690.25Pa

Step 7. From (28) the shaft’s diameter is

d= 3/1866.84Nm_3 1866.84Nm  _ 0.0418m
Step 6. If a different safety factor value is used, determine - Sgz Al 25508690.25N/m2
the corresponding Sa, value to be use as
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Step 8. From (29) and (30), the shaft’s reliability is as
follows

7 = Hsaazhse _ 25508690.25-74428904  _ 257
2, 2 /(18309786.41)2+(5474023.6)2 "
Oset0gq

Therefore, since this Z value corresponds to P(Z)=0.005
cumulative failure probability, then from (29) the deigned
reliability is R(t)=1-P(Z) = 1 — 0.005=0.9995.

As a summary of this section, we have that by considering
that the applied stress S, and inherent strength Se are both
random, by applying the proposed probabilistic method, the
designed shaft’s diameter is d=0.0418m(1.647in). And that
because it was determined by using the S”, value which does
not overlap with the Semin value, then shaft 2 can be considered
safe. Even more, from step 8, we conclude the designed
reliability of the shaft is R(t)=99.95%.

Now let compare the designed R(t) index of the proposed
method with those given by the static, fatigue, and binary
synthesis approaches.

D. A Reliability Comparison Among the Shaft Design
Methodologies

The comparison among the design approaches is given in
Table 2, where the given reliability indices were determined by
using (29) and (30). The corresponding standard deviation were
determined by using (25). In all approaches, the mean value of
the endurance limit (ps.) of 74428904Pa and standard deviation
(ose) of 18309786.41 were used.

From Table 2, we observe that higher the shaft diameter, the
higher the reliability. And that the higher diameter is generated
by considering the standard deviation in the analysis. Also note
that without using (29) and (30), for the static, fatigue, and
binary synthesis approach it is not possible to determine their
designed reliability. Now let generalize the proposed
probabilistic method to use the lognormal and the Weibull
distribution in the analysis. The generalization is as follows.

Table 2. Reliability of the shaft diameter determined by
different approaches.

R(t) (29-

Approach Average (S,) | S. Dev. Diameter | 30)

Static 142549382.8 | 28509871 0.0235 0.0222
Fatigue 36605852.26 | 7321172.5 | 0.037 0.9724
Synthesis 51853608.01 | 10370660 0.3302 0.8583
Proposed 25508690.25 | 5101706.7 | 0.0418 0.9950
Torsional

Rigidity 25360503.11 | 5072095.1 | 0.4191 0.9951

VII. GENERALIZATION OF THE PROPOSED
METHOD TO THE WEIBULL DISTRIBUTION

Since a random variable is said to follows a normal
distribution only when its variation coefficient given as
CV=a/u (31)

is equal or lower than 0.10 (CV<0.10) [5] pg.159, then
because from the above analysis the C.V of S’, of
CV,=5101706.7/25508690.25=0.20 and the C.V of S, of
CVe=0.24, are both higher than 0.10, then in this section the

proposed method is generalized to use the Weibull distribution
to determine the designed shaft’s reliability. This is done
because due to its flexibility, the Weibull distribution can model
also the normal distribution behavior. Weibull distribution has
been applied to solve a variety of problems in different areas
[22] and is frequently adopted to reflect lifetime distribution to
assess system reliability [23]. This approximately occurs for a
Weibull shape parameters B close to =3.44. The Weibull
density function is given by

=40 e{-())

Where m is the scale parameter and j=a,e, with a
representing the alternating stress S’,, and e representing the
modified endurance limit Se. The corresponding Weibull
reliability function is given as

R(S)) = exp {— (j—)ﬁ’} (33)

Therefore, because as demonstrated in [24] the Weibull
shape B and scale n parameters, both can be determined directly
from the maximum and minimum stress values, then in this
section, the mean and the standard deviation of S’, are used to
determine the maximum and the minimum expected stresses
values of S’; as

Samax = Sa + 0sq (34)
and Samin = Sa ~ Osa

Here observe that this imply that 1) because the failure will
be generated by fatigue, and not by the first cycle then the
addressed Si value is not being considered in the analysis, and
therefore. 2) we are taking S', ., , and S', i, as the principal

stresses o1 and o2 values to perform the Weibull analysis (if Sm
is going to be considered, then the corresponding o1 and o>
values must be estimated using the Sp also) and 3) that the
standard deviation value is being used as the amplitude stress
value as plotted in Fig.16. Thus, following [24], the
corresponding Weibull stress fa and na parameters are given as

Ba —Ey (35)

- (0.97161)(Samax/Samin)
Ng = exp{\/(slamax)(s’amin) - Hy/ﬁa} (36)

In (35), the constant 0.971611 value was determined
following the method given in sec.4.1 in [24], pg.236 (there the
key formula is (48)). And py is the mean value of the Y vector
given by linearizing (33). Its linear form is given as

Y, =In (—ln(l - F(Si))) = Bi[in(s) —In(n;)]  (37)

Where F(Si)=1-R(Si) is the cumulated failure percentile
estimated by using the median rank approach [25] given by

F(S)=({—-03)/(n+4) (38)
With n being estimated as [26]
_ -1

n= in(R(s;))

In (39), R(S) is the desired reliability of the analysis. Here
observe that although here R(S)=0.9535 was used to n be an

(39)
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integer (n=21), any desired percentile can be used.
Additionally, observe from (39), that because n only depends
on R(S), then py is constant end for n=21 its value is py= —
0.545624125.

On the other hand, by using the maximum and minimum S,
values given by

Semax = Se T Tse (40)
and Semin = Se — Ose

And by using the method given in the sec.4.1 of [20] in
pg.236, the corresponding Be and ne parameters are determined
as

Be —Ey (41)

(0.971611)In(Semax/Semin)

Ne = exp{\/ (Semax) Semin) — ﬂy/ﬁe} (42)

Therefore, by using the Weibull stress parameters of (35)
and (36) or the Weibull strength parameters of (41), (42) and
(38), the corresponding logarithm of the expected stress (or
strength) values are given as

And therefore, the expected stress (or strength) values are
given as

Si]' = exp{xl-j} (44)

Finally, by using the addressed Weibull families W(Ba, 1a),
called Weibull stress family, and the W(e, ne), called Weibull
strength family in the general reliability stress/strength function
given by

R(t1S,Se) = [y F& [ F(S)ds]ds  (45a)
The corresponding Weibull/Weibull reliability
stress/strength function is given by
R(t1Sz,Se) ot pt .
® B (Sa\Pe~ NP [ (% Be (Se\Pe™ S,\Pe
[ RG) lG NG G Y]
(45b)

Here, it is very important to notice that for fa # S, (45b) has
not a close solution and thus, it must be solved by using a
numerical method as the one given in [27], and that for S = f.
= B, the solution of (45b) [21] is given as

nge
R(t1S4, Se) = 525

Se S(’l

(45c)

Therefore, based on the formulation from the above, the
steps to determine the reliability of the designed shaft by using
the Weibull distribution are as follows.

A. Steps of the proposed generalization form of the normal
to the Weibull distribution

Step 1. Based on the mean and standard deviation of S’; and
Se, from (34) and (40) determine their corresponding maximum
and minimum expected values.

From (35)
Samax = 25508690.25 + 5101738.5 = 30610428.75Pa

Samin = 25508690.25 — 5101738.5 = 20426951Pa
And from (41)
Semax = 74428904.97 + 18309786.41 = 92738691.37Pa
Semin = 74428904.97 — 18309786.41 = 56119118.56Pa

Step 2. By using n=21 in (38) and then the F(t) values in
(37) determine the Y; elements and its corresponding mean py
value.

Note. Remember, that for n=21, the analysis is performed
with a reliability of R(t))=95.35% and that for n=21 the py value
is uy= —0.545624125. Hence, R(t))=95.35% could be seen as
the confidence interval used in quality. For example, since in
Table 2 we used n=21, then as can be seen from (39) the
analysis in Table 2 was performed with R(t))=95.35%.
Therefore, from Table 2 we say with reliability of 95.35 that the
reliability of the shaft is of R(t)=99.50%.

Step 3. By using the maximum and minimum S’, and Se
values of step 1, and the py value from step 2 in (35) and (36),
determine the corresponding stress Weibull family, and by
using them in (41) and (42), determine the corresponding
strength Weibull family.

The Weibull stress family is W(Ba=5.5399696,
Ma=27580143.64Pa (4000.16164 Ib/in?)). And the Weibull
strength family is W(p.=4.45324405, n.=81545114.98Pa
(11827.119 Ib/in?)) (see Table 3).

Step 4. By using the addressed Weibull parameters in (45b)
if Ba# Be, Or in (45c) if Ba = S, determine the designed reliability
of the designed shaft.

Since Sa # fe, then by solving (45b) by using the Weibull++
software routine, the designed reliability is R(t)=0.992579.

As a conclusion we have that because the variation
coefficient of S", and Se are both higher than 0.10, then the shaft
reliability must be determined by using the Weibull
distribution. Hence the shaft’s reliability is of R(t)=0.992579,
and due to the torsional rigidity approach, the shaft’s diameter
has to be of d=0.4191m (1.65 in).

Now let show that the addressed Weibull families
completely represents the normal parameters from which they
were derived. The analysis is as follows.

B. Weibull and Normal Parameters Relationships

The Weibull and normal parameters relationship are direct.
Therefore, they can easily be addressed by using the expected
stresses values defined in (43) and (44), and numerically given
in Table 3.

1) From Table 3 we observe the normal averages values
of u(S’a)= 25508690.25Pa (3699.72 Ib/in?) and  w(Se)=
74428904.97Pa (10,795Ib/in?) of the S", and Se variables, are
given as the average values of columns S”; and S.. Therefore,
the addressed Weibull families completely represent the normal
average values.
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Fig. 18. Input and output of the Weibull++ routine

Table 3. Weibull and Normal Data relationships

The Probability of Failure of the system is = 0.7421%

Close Help Repott..

Stress Data W (fe =4.45324405, ne=11827.11901 Ib-in?) Strength Data W (Ba =5.5399696, #a =4000.16164 Ib-in?)
n Yi In(S'ai) S'a; n Yi In(Sej) S'e;
Eq.(40) Eq.(38) Eq.(44) Eq.(45) Eq.(40)  Eq.(38) Eq.(44) Eq.(45)
1 -3.40348334  8.613879831 5507.575741 1 -3.40348334  7.679739504 2164.0559714
-2.49166198  8.818634241 6759.027118 2 -2.49166198  7.844329101 2551.2254736
3 -2.00346322  8.928261909 7542.145047 3 -2.003463219  7.932452104 2786.2506118
4 -1.66164593  9.005018828 8143.854136 4 -1.661645928  7.994152315 2963.5771517
5 -1.39439830  9.065030726 8647.544842 5  -1.394398299  8.042392224 3110.0442202
6 -1.17205365  9.114959418 9090.265709 6  -1.172053652  8.082526857 3237.4033649
7 -0.97938116  9.158225066 9492.194100 7 -0.97938116  8.117305476 3351.9765838
8 -0.80744734  9.196833734 9865.841677 8  -0.807447338  8.148340632 3457.6368110
9 -0.65049212  9.232078875 10219.765059 9  -0.650492124  8.176672054 3556.9974447
10 -0.50450882  9.264860215 10560.334314 10  -0.504508816  8.203022976 3651.9734647
11 -0.36651292  9.295847939 10892.698037 11 -0.366512921  8.227932119 3744.0834221
12 -0.23412230  9.325576967 11221.388989 12 -0.234122302  8.251829474 3834.6347711
13 -0.10528508  9.354508062 11550.777869 13 -0.105285078  8.275085418 3924.8578688
14 0.02192840  9.383074535 11885.501023 14 0.021928399  8.298048265 4016.0265213
15 0.14952577  9.411727213 12230.978252 15 0.149525769  8.321080408 4109.5976526
16 0.27984500  9.440991101 12594.192842 16 0.279845003  8.344603864 4207.4155917
17 0.41596210 9.47155693 12985.088370 17 0.415962097  8.369173872 4312.0722665
18 0.56250196  9.504463248 13419.487868 18 0.562501963  8.395625256 4427.6544636
19 0.72761583  9.541540458 13926.384115 19 0.727615827  8.425429366 4561.6029571
20 0.92931067  9.586832124 14571.635212 20 0.929310672  8.461836578 4730.7383938
21 1.22965981  9.654277145 15588.319227 21 1.22965981 8516051521 4994.2949067
Hy= -0.545624125 px= 9.2556276  pt= 10795.0000 Hy= -0.545624125 px= 8.1956014  pt= 3699.7200
oy= 1175116938  ox= 0.2638789  or= 2629.6350 oy= 1175116938 ox= 0.2121161 or= 734.8660
Normal Fatigue Mohr
u, + o, distribution Area Analysis
#Sa
lu'sa Gsa _______________________________

Fig. 19. The normal standard deviation as the alternating stress and Mohr radio
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2) Since the standard deviation o(S’2)=5101738.05Pa
(739.94441b/in?) and o(S)=18309786.41Pa (2,655.51Ib/in?)
values of the S”, and S variables where used as the alternating
stress value (radio of the corresponding Mohr Circle) to
determine the principal stress values (See Fig. 19) used to
estimate B, and B¢ in (35) and (41), then from (14) of [24], by
using data of Table 3, they are given as

7(852) = (1S = Sama) (Stin) = VRGO — (e (462)

O'(Se) = \/H(Se)z - (Semax)(semin) = \/H(Se)z - (.uxe)z
Numerically

(46b)

o(S4) = /(25508690.25Pa)? — (exp{8.1956014})?
=51017380.5Pa

and

0(S.) = 1/(74428904.97Pa)? — (exp{9.2556276})2
= 18309786.41Pa

Therefore, we conclude that the addressed Weibull families
completely represent the normal standard deviation values also.

3)  The general conclusion is that the Weibull distribution
always can be used to model the normal behavior, and that the
Weibull distribution should be used instead of the normal one,
when the variation coefficient of the analyzed data is higher
than 0.10.

Now since the Weibull and the loghormal distribution are
both completely related each other [29], then let present the
corresponding analysis to base on the Weibull parameters to
determine the log-normal ones.

C. Weibull and Log-Normal Parameters Relationships

Here it is important to mention that because the Weibull
distribution is generated by a non-homogeneous Poisson
process [27], and the lognormal distribution is generated by a
geometric Brownian motion [29], then one distribution should
not be used instead of the other to determine the reliability of
the analyzed element. However, because in practice the
environment on which the element is performing its function,
generally is lognormal [30], then in this section the
determination of the log-normal parameters, directly from the
Weibull analysis is given. The analysis is based on the (41) and
(44) formulated in section 3.2 in [28]. Equations on which the
Weibull  and n parameters and the log-mean px and the log-
standard deviation ox parameters are directly related as

p=2 (47)
n = exp (i — 2} = exp {ux - a’;’;y} (48)

Therefore, since oy is constant (for n=21 its value is
oy=1.175116938), then given any Weibull parameters, the
corresponding lognormal py and ox parameters can directly be
determined. From Table 3 for the S’, variable they are pxa=
56506.68Pa (8.1956014 Ib/in?, and 6x=1462.48Pa (0.2121161
Ib/in?). And for the Se variable they are px=63815.30Pa
(9.2556276 Ib-in2) and 64.=1819.38Pa (0.2638789 Ib/in?).

As a summary we have that due to the direct relationship
between the Weibull and the lognormal distribution parameters
given in (47) and (48), given any Weibull analysis the

corresponding log parameters always can be determined also.
However, it is important to mention that because in the
lognormal distribution the damage is cumulated in
multiplicative form, then the lognormal distribution is generally
used when a chemistry reaction is involved. Or also when the
variation coefficient of the analyzed data tends to be the log-
standard deviation ox. Therefore, since the CV,= 0.27864493
and 0x=1462.48Pa (0.2121161 Ib/in?) and CV.= 0.25379319
and 0x=1819.38Pa (0.2638789 Ib/in?), then the use of the
lognormal distribution to determine the reliability of the
designed shaft is not recommended.

Even though, in the next section the reliability of the
designed shaft using the normal, Weibull, lognormal, and the
combination among them is given.

D. Reliability Comparison Among the Normal, Weibull and
Log-Normal Distributions

Using the stress/strength formulation given in (46a) with the
normal, Weibull and log-normal distributions, as well as with
their combinations, the designed reliability of the shaft are
given in Table 4. From Table 4, and as a conclusion we have
the reliability of the shaft designed is the one given by the
Weibull/Weibull approach of R(S)=0.992579. And that ones
we know the mean and standard deviation of the stress and
strength analyzed data; we can perform either of the above
stress/strength reliability analysis. The final conclusions are as
follows.

Table 4. Reliability indices for the normal, Weibull and
Log-Normal approaches.

R(S)
index

Normal/Normal | u=3699.72 | 0=739.944 1#=10795 0=2655.51 |0.994881
Weibull/Weibull | #=5.5399696 |#=4000.16164|$=4.45324405|»=11827.1190|0.992579

Log-Normal/Log-
normal

Normal/Weibull | £=3699.72 | 0=739.944 |$=4.45324405|7=11827.1190(0.990113
Weibull/Normal | #=5.5399696 |7=4000.16164| x=10795 0=2655.51 |0.994979
Norma/Log-Normal| 1=3699.72 | 0=739.944 |.ux=9.2556276|0x=0.26387890.999558

Approach Stress Parameters Strength Parameters

11x=8.19560140x=0.2121161 | 1x=9.2556276 | 6x=0.2638789|0.999126

Norm';fjﬂ;orm o |5=8.1956014|;m=02121161 ,i=10795 | 0=265551 [0.994469
NormaLl‘;\%eibu" 10r=8.1956014| ov=0.2121161 | =4. 45324405 =11827.1190|0.989532
We,'j:)”r%"g' $=5.5309606 | =4000.16164,:r=9.2556276| 0x=0.2638789|0.999613

VIIl. CONCLUSION

From the above methodologies the following conclusion
were drawn.

1. The static analysis let us to efficiently determine the
maximum and minimum stresses values on which the shaft’s
diameter is determined.

2. The failure modes of a shaft can be either, by yielding
when the mean stress Sy is higher than the yield material
strength Sy, or from fatigue, generated by both the Sy, and the
alternating stress Sa values, or from plastic deformation given
by the torsional forces.

3. The dynamic fatigue analysis let us to determine the
shaft’s diameter by considering the endurance limit modified
factors.
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4.  The binary synthesis approach let us to determine the
shaft’s diameter by considering the endurance limit Se to be
random, as well as to determine the mean Sy, and maximum
alternating stress S”a values at which the shaft will be subjected.

5. From section VII, we observe that the proposed
method can be used to easily determine the reliability of the
deigned shaft by using the Weibull distribution. And that this is
made by simple using the addressed mean and standard
deviation of S"; and S, as the maximum and minimum principal
stresses values, used to determine the Weibull parameters of the
stress and strength distributions.

6. The proposed method given in section VI, let us to
determine the shaft’s diameter by considering that S, and Se
are both random. As well as to determine the designed
reliability by using the selected stress/strength approach as in
Table 4.

7. For variation coefficients higher than 0.10, the
Weibull/Weibull stress/strength function defined in (44b) and
(44c) is recommended.

8. Notice that a random variable follows a lognormal
distribution only if it is generated by a geometric Browmian
motion [29], or equivalently when the generated damage cannot
be cumulated by using an additive damage model [31]. Or in
practice, if the variation coefficient of the collected data tends
to be the log-standard deviation.

9. Due to the variation coefficient of the stress and
strength data were not lower than 0.10 nor close to the log-
standard deviation, then the reliability of the designed shaft is
the one given by the Weibull/Weibull stress/strength approach.
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