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Abstract— In the proposed probabilistic shaft’s methodology 

the stress average and the standard deviation are both 

determined based on the binary synthesis approach. The 

efficiency of the proposed methodology is compared with the 

static and fatigue approaches. The application is performed by 

using a speed reducer. Then the estimated stress average and 

standard deviation are both used in the stress/strength 

methodology to determine the reliability of the designed shaft.  

Additionally, since by applying the probabilistic method, the 

mean and the standard deviation of the alternating Sa and fatigue 

Se values are both always determined, then the proposed method 

is generalized to determine the shaft’s reliability by considering 

that both Sa and Se follow either a normal, Weibull or lognormal 

distribution. Finally, the guidelines to select which distribution 

we should use in the stress-strength analysis are also given.  

  Keywords— Probabilistic shaft design, Fatigue; Weibull 

distribution; Binary synthesis; Stress/strength analysis; Torsional 

rigidity. 

I. INTRODUCTION  

In machines and equipment a shaft is used to let movement 
and transmit power [1], [2]. Therefore, its design is based on 
the applied alternating (Sa) and the midrange stress (Sm) values. 
However, when a shaft fails due to the Sm value, its failure 
occurs at the first cycle (or after a few cycles), meaning that the 
instantaneous applied Sm value was higher than the shaft’s 
strength. However, because in the design shaft’s phase, a 
security factor is used, then the material’s strength (Sy) value is 
higher enough than the Sm value (say Sy>>Sm), implying no first 
cycle failure occurs. Consequently, the shaft fails by fatigue. 
Fatigue is a failure generated by the cumulated damage, 
generated by the cyclical application of the stress. Therefore, in 
the analysis the shaft’s failure is generated by the alternating Sa 
stress value. Consequently, the shaft’s reliability is also based 
on the Sa value. Thus, in this paper the fatigue shaft’s design as 
well as the shaft’s reliability are both determined by using both 
the nominal Sa value and its corresponding standard deviation. 
The Sa standard deviation is determined based on the fatigue 
and binary synthesis methodologies. The efficiency of the 
proposed method is shown by designing an intermediate shaft 
of a fan speed reducer, and by comparing the designed shaft’s 
diameter with those given by the static and dynamic (fatigue) 
methodologies. 

In the static approach, the speed reducer shaft’s design is 
performed based on the bending and torsional stresses that are 
acting at the critical point of the shaft, in the yield strength Sy 
and ultimate strength Sut material’s values [3]. And to 
determine if the designed shaft is whether safe or not, the Von 
Mises and the distortion energy (DE) criteria, with a safety 
factor of two [4-5] are used. The designed static shaft’s 
diameter was ds=0.0235m (0.928 in). 

In similar form, in the dynamic fatigue approach [4], the 
shaft’s design analysis was based on both the alternating Sa and 
midrange Sm stresses values at which the shaft is subjected. The 
applied Sa value was determined based on both the bending 
loads generated by the gears, and on the radial forces generated 
by the applied torque. And the Sm value was determined 
through the Soderberg’s fatigue method, were the modified 
endurance limit (Se) value was determined by using the 
corresponding endurance modification factors. The designed 
fatigue shaft diameter was df=0.0375m (1.48 in).   

On the other hand, in the binary synthesis approach [5], the 
shaft’s design analysis was performed by considering that all 
the endurance limit modification factors of the above fatigue 
approach are random [6] [7], and that they can be modeled by 
a normal distribution [8]. Therefore, after all the modifier factor 
were synthetized by using the binary synthesis approach. Then 
from the synthetized average values, the corresponding 
modified endurance limit (Se) value was determined. And by 
using the Se value with the corresponding Soderberg line and 
the stress ratio (r=Sa/Sm) in the Soderberg’s diagram, the 
maximum allowed S’a value was determined. Finally, by using 
the Sa value of the fatigue analysis, and the addressed binary S’a 
value and a safety factor of 2, the designed binary shaft 
diameter was db=0.0381m (1.50 in).   

However, here it is important to observe that 1) although in 
the static, fatigue and binary approaches we conclude the 
designed shaft is considered safe, and we use a safety factor of 
two, from neither of these analyses it is possible to determine 
the reliability that the designed shaft presents. And 2) because 
db>df>ds (0.0235m>0.0375m>0.0381m), then we have that the 
robust design is the one given by the binary method with 
db=0.0381m. 3) because in the binary method, the estimated Sa 
value is higher than the minimum expected strength Semin value 
(Sa>Semin), then although we design the shaft with db=0.0381m, 
failures are expected. Hence in order to avoid failures, in 
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section VI a probabilistic method to avoid selecting a Sa value 
higher than the minimum Semin value, is presented. The 
proposed method is based on the fatigue and binary approaches. 
And its main contribution consists of 1) given the minimum 
expected modified endurance limit Semin value, to create a new 
Soderberg line, and from it to derive the mean and the standard 
deviation of Sa in such a way that the maximum expected Sa 
value never will be higher than the minimum expected Semin 
value (Sa<Semin). And 2) by using the addressed normal 
distributions families of Sa and Se in the corresponding 
stress/strength function, the reliability of the designed shaft is 
determined. Therefore, by applying the proposed method, the 
designed probabilistic shaft diameter was d=0.0418m (1.647 
in), with a designed reliability of R(t)=0.9950. However, at this 
point, it is important to mention that because the torsional 
rigidity method requires a minimum shaft diameter of 0.0419m 
(1.65in), then finally the recommended diameter for shaft 2 was 
0.0419m. Finally, since by applying the probabilistic method, 
the mean and the standard deviation of Sa and Se are both 
always determined, then the stress-strength analysis is 
generalized to determine the shaft’s reliability, for any 
combination among the normal, Weibull and lognormal 
distribution, and the guidelines to select the right distribution 
are also given. 

II. DATA OF THE ANALIZHED CASE 
In order to perform the comparison between the static, 

dynamic and binary synthesis design approaches, as well as to 
formulate the probabilistic proposed method, the intermediate 
shaft of a speed reducer used for a grain drying process is 
designed. In the application, it is required to move the fan at 
450 rpm with a power of 12 hp. The shaft design’s material is 
an AISI 1020 steel normalized at 925 ° C (1,700 ° F) air cooled, 
50 mm (2 in) round with ultimate tensile strength of Sut = 438 
MPa (63,500 psi), tensile yield strength of Syt = 319 MPa 
(46,300 psi), and a shear modulus of G = 72 GPa (10,400 ksi) 
[9]. Therefore, because the selected motor is a 12 hp motor and 
a turning speed of 1,800 rpm, then the speed reducer must be 
designed to decrease the speed from 1,800 rpm to 450 rpm, and 
this has to be made by conserving the initial motor’s power of 
12 hp.  

The scheme of the reducer, coupled to the motor, the 
position of the spur gears in the shafts, and the shaft’s length 
are all presented in Figure 1. This system can transfer motion 
and torque via two accurately stages of configuration and 
efficiently [10]. The selected motor has a shaft diameter of 
0.035m(1 3/8 in) [11] [12]. The motor is connected to the shaft 
1 of the reducer by using a flexible coupling. The spur gear A 
is mounted on shaft 1, which engages with spur gear B of shaft 
2. A spur gear C is mounted on shaft 2, which is connected to 
spur gear D that is mounted on the shaft 3. And according to 
[12], the main characteristics of the 4 spur gears to reduce the 
engine speed are shown in Table 1. From Table 1, we have that 
due to the relationship between spur gears A and B, the initial 
angular velocity of shaft 1 of 1,800 rpm is reduced in shaft 2 to 
900 rpm. Similarly, note due to the relation between spur gears 
C and D, this angular velocity in shaft 3 is finally reduced to the 
required 450 rpm.  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Electric motor connected to speed reducer. 

On the other hand, due to spur gears B and C, shaft 2 is 
subjected to bending stresses and constant torsional forces 
generated by the transmission of power, then in order to avoid 
plastic deformation, its design must comply with a minimum 
torsional rigidity of (0.25 °/ m) [14] [15].  

Similarly, due to the bending and torsional stresses at which 
shaft 2 is subjected (see Fig. 2), the expected failure mode of 
the shaft is due to fatigue. This implies that for the dynamic 
design, the modified endurance limit Se has to be calculated 
[3][4]. And according to [16], the endurance limit modification 
factors that affect Se are surface factor ka = 0.8, size factor kb, 
load factor kc = 1 and temperature factor kd = 1. Also, due to the 
concentration of stresses generated by the loads at which the 
shaft is subjected, the holes for the assembled gears and the type 
of material, the fatigue stress concentration factors for bending 
KFF and for torsion factor KFT must be considered also. 
However, since in this stage neither the dimensions of the 
geometry nor the shaft’s diameter are known, then following 
[15] KFF = 2 and KFT = 1.6 were used.  

 

 

 

 

 

 

Fig. 2 Top view of shaft 2. 

Table 1. Spur gears characteristics of the speed reducer 
Spur 

gear 

Diametral Pitch 

(in-1) 

Pitch diameter 

(in) 

Number of 

teeth 

Face width 

(1.5) 

A 8 2.5 20 1.5 

B 8 5 40 1.5 

C 8 3 24 1.5 

D 8 6 48 1.5 

Finally, before to present the design analysis of shaft 2 
through the static, dynamic and binary synthesis approaches, it 
is necessary to determine the critical point where the shaft could 
fail. And because the selection of the critical point depends on 
1) the applied torque generated by the torsional forces of the 
gears B and C and on 2) the maximum applied bending moment 
generated by both the radial forces and their corresponding 
reactions, then let first present the torque analysis. 

A.  Torque Calculations for Shaft 2 

The torque generated on shaft 2 depends on the angular 
velocity (ω) at which the shaft will rotate, and on the power (P) 
that the shaft has to transmit. Hence, the generated torque is 
given by: 
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𝑇 =
63000𝑃

𝜔
                                         (1) 

In (1), P is the power measured in horse power hp units, 
63,000 is a conversion factor from hp to pounds, ω is given in 
revolutions per minute (rpm), and T is measured in pounds per 
inch (lb in). Therefore, under the assumption that there is no 
loss of power, P=12 hp, and due to the ratio of gears A and B 
(see Fig.1), ω=900 rpm, then the generated torque in shaft 2 is 

𝑇𝐵 =
63,000 (12 ℎ𝑝)

(900 𝑟𝑝𝑚)
= 840 𝑙𝑏 𝑖𝑛 = 94.9𝑁𝑚 

And because the analyzed system is in equilibrium, then as 
it is shown in Figure 3 and in Figure 4, the torque in gear B of 
TB = 94.9Nm is equal to that in gear C, but in the opposite 
direction, Tc = -94.9Nm. It is to say; the generated torque is 
constant through the shaft at T=94.9Nm. 

B. Maximum Bending Moment for Shaft 2 

Since the radial and tangential forces generated by the spur 
gears generate bending moments in the shaft, and because these 
generated moments by themselves generate bending stress on 
the shaft, then the maximum bending moment at which the shaft 
is subject is determined from the bending moments diagram 
[17][18]. However, because the bending moment diagram is 
based on the shear forces diagram, which is built based on the 
radial and tangential forces, and on the corresponding reactions 
forces, then let us first calculate the radial, tangential and 
reaction forces. The analysis is as follows. 

 

Fig. 3. Gear torque direction 

 

 

 

 

Fig. 4. Shaft 2 torque diagram. 

 

C. Radial and tangential forces calculation 

The calculation of the radial and tangential forces, and 
reactions (see Fig. 5) that are acting on the teeth of gears B and 
C depends on their corresponding pressure angle (Φ) (see Fig. 
6). In this case the pressure angle of spur gears B and C is Φ = 
20 °. Thus, the generated tangential force, which is in function 
of the torque and the spur gear radius is given by [3][19] 

 𝐹𝑡 =
𝑇

𝑟
                                           (2) 

Hence, in function of Φ and Ft, the radial force [3][20], is 
given by  

 

𝐹𝑟 = 𝐹𝑡 (tan ∅)                                    (3) 

Numerically, by using from Table 1 rB=0.0635m (2.5 in), 
for gear B the tangential and the radial forces are  

𝐹𝑡𝐵 = 𝑇 𝑟𝐵 = 94.9𝑁𝑚 0.0635𝑚⁄⁄ = 1494.48𝑁 

𝐹𝑟𝐵 = 𝐹𝑡𝐵(tan 𝜃) = 1494.48 (tan 20°) = 543.94𝑁  

Similarly, since from Table 1 rC=0.0381m (1.5 in), then for gear 
C the tangential and the radial forces are  

𝐹𝑡𝐶 = 𝑇 𝑟𝐶 = 94.9𝑁𝑚 0.0381𝑚⁄⁄ = 2490.81𝑁 

𝐹𝑟𝐶 = 𝐹𝑡𝐶(tan 𝜃) = 2490.81 (tan 20°) = 906.58𝑁  

Now let present the reactions calculations. 

 

 

 

 

 

Fig. 5. Forces and reactions acting on the bearings and gears 

 

 

 

 

 

 

 

Fig. 6. Generated forces on the gear teeth 

D. Bearing reactions calculations 

The calculation of the reactions, generated in the bearings 
by the radial and tangential forces, depends on the axis of 
symmetry in which these forces are being generated. In our 
case, since these forces are in different axis of symmetry, then 
in the analysis we have to consider that the forces are acting in 
two different planes; the x-y and the x-z planes (see Fig. 6). 
Thus, the analysis is based in the force and reaction diagrams 
given in Figure 7 and Figure 8. 

 

 

 

 

 

 

Figure 7. Force and reaction in x-y plane 
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Figure 8. Force and reaction in x-z plane 

As it is shown in Fig. 7, the forces and reactions which are 
acting in the x-y plane are. 

+↺ ∑𝑀𝐷 = 0 = (543.94 𝑁)(0.254𝑚) +
(906.58 𝑁)(0.0762𝑚) − (0.3302𝑚)(𝑅𝐴𝑦); 𝑅𝐴𝑦 =
627.62 𝑁 

∑𝐹𝑦 = 0 = 627.62 𝑁 − 543.94 𝑁 − 906.58 𝑁 + 𝑅𝐷𝑦;   

𝑅𝐷𝑦 = 822.9 𝑁 

Similarly, as it is shown in Fig. 8, the forces and reactions 
which are acting in the x-z plane are. 

+↺ ∑𝑀𝐷 = 0 = (𝑅𝐴𝑧)(0.3302 𝑚) − (1494.48 𝑁)(0.254𝑚)
− (2490.81 𝑁)(0.0762 𝑚); 

𝑅𝐴𝑧 = 1724.40 𝑁 

∑𝐹𝑧 = 0 = −1724.40 𝑁 + 1494.48 𝑁 + 2490.81 𝑁 − 𝑅𝐷𝑧;  

𝑅𝐷𝑧 = 2260.89 𝑁 

Now based on these forces and reactions let present the 
shear forces and maximum flexion moment calculations. 

E.  Shear forces and maximum flexion moment diagram 

Using the reaction forces and the estimated radial loads, the 
shear force diagram for the x-y plane is given in Figure 9. 
Therefore, based in these forces and on the distances of the 
shear force diagram, the corresponding bending moments 
diagram for plane x-y is given in Figure 10. 

 

 

 

 

 

 

Figure 9. Shear force diagram for x-y plane. 

 

 

 

 

 

 

Fig. 10. Bending moments diagram for x-y plane 

 

 

 

 

 

 

 

 

 

Figure 11. Shear force diagram for x-z plane. 

 

 

 

 

 

 

 

Fig. 12. Flexing moment diagram for x-z plane 

Similarly, for the x-z plane, the shear force diagram and the 
bending moment diagram are given in Figure 11 and Figure 12 
respectively. Thus, based on the bending moments diagrams of 
Figures 10 and 12, the maximum bending moment to be used 
in the design of shaft 2 is 

𝑀𝑀𝐴𝑋 = √𝑀𝑥−𝑦
2 + 𝑀𝑥−𝑧

2  ,  

   𝑀𝑀𝐴𝑋 = √(62.70 𝑁𝑚)2 + (172.27𝑁𝑚)2,    

   𝑀𝑀𝐴𝑋 = 183.32𝑁𝑚 
 

Finally, from the torque diagram given in Fig. 4 and from 
the flexion moment diagrams given in Figs. 10 and 12, we have 
that the critical point for the analysis in the design of shaft 2, is 
the point C. In the same way, we have that to avoid plastic 
deformation by torsion, then if the size of the designed diameter 
from either of the three design approaches is smaller than the 
diameter given by the torsional rigidity approach, then the 
recommended diameter size must be the one given by the 
torsional rigidity approach. 

F.  Torsional Rigidity Angle Approach for Shaft 2 

To avoid plastic deformation, the material’s strength used 
in the shaft design has to withstand the applied torsional forces. 
This is determined by measuring the torsion angle caused by 
the applied torque along the entire length of the shaft. Thus, to 
avoid plastic deformation the shaft’s diameter given by the 
rigidity approach has to be used as the minimum allowed 
diameter in the shaft design [4]. And because the minimum 
torsional rigidity value to be used in the shaft design depends 
on the precision of the analysis that the application requires, 
then in this paper the used value was selected from the 
classification given in [14][15]. 

On the other hand, although in practice the procedure to 
design a shaft, consists of first to determine the shaft diameter, 
and then based on its value, to determine the torsion angle. And 
finally, by comparing the torsion angle with the rigidity angle 
of the used material, we determine if the selected shaft diameter 
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is whether safe or not to fail by plastic deformation. Therefore, 
because using the torsion angle is equivalent to using the shaft’s 
diameter [4], then in this article the conformance of the material 
with the torsional rigidity, is made through the comparison of 
the designed diameter with the diameter given by the torsional 
rigidity approach, which is calculated as 

𝑑𝑟 = [
32𝑇

𝜋𝐺(
θ

𝐿
)
]

1

4

                                     (4) 

Based on Table 4 in [14], in this case of study a torsion angle 
of 0.0001108 radians in each inch, is recommended. Hence, by 
replacing this value in (4), the shaft’s diameter of the torsional 
rigidity approach is 

𝑑𝑟 = [
32(94.9𝑁𝑚)

𝜋(72𝑥109 𝑁/𝑚2)(0.00463 𝑟𝑎𝑑/𝑚)
]

1
4

= 0.041𝑚 

Thus, to avoid plastic deformation dr = 0.041m (1.65in) 
represents the minimum allowed diameter value for shaft 2. 
And therefore, the shaft diameters given by the static, dynamic 
and probabilistic design approaches have to be compared with 
it. And in all cases if the designed diameter is lower than 
0.041m, then Shaft 2 must be designed at 0.041m.  

Here notice that although this torsional rigidity diameter 
prevents us to have failures by plastic deformation, it does not 
prevent us of failures generated by fatigue, and neither let us 
know the reliability that the designed shaft presents. However, 
before present the method to determine the shaft’s reliability, 
let first present the static shaft’s design approach. 

III.  STATIC  DESIGN APPROACH    

The static shaft’s design method offers the initial steps to 
design a shaft. In this static method, the shaft’s diameter is 
determined based on the principal stress values generated by 
the forces that are acting on the shaft. And the determination if 
the designed shaft is whether safe or not, it is performed by 
using the Von Misses [distortion energy (DET)] and Tresca 
[Maximum stress shear (MSST)] theories [5] [3] with a selected 
safety factor value. The static design analysis is as follows. 

A. Static Shaft Design 

Based on the Von Mises criteria, the determination of the 
designed shaft diameter through the static method is given by 
the formula 

𝑑𝑠 = (
32𝑆𝐹

π𝑆𝑦
√𝑀2 + 3

4⁄ 𝑇2)

1

3

                        (5) 

In (5), SF is the safety factor which from [4] is 
recommended to be SF=2. Sy is the tensile yield strength of the 
used material, which from sec. II is Sy=319 MPa (46,000 lb/in2). 
M is the maximum bending moment estimated in sec. IIE as 
M=183.32Nm. And T is the applied torque estimated in sec. IIA 
as T=94.9Nm. Thus, by substituting these values in (5), the 
estimated static shaft diameter is 

𝑑𝑠

= [
32(2)

𝜋(319𝑥106 𝑁/𝑚2 )
√(183.32𝑁𝑚)2 +

3

4
(94.9𝑁𝑚)2]

1
3

= 2.35𝑥10−2𝑚 

Thus, because the designed static shaft’s diameter of 
ds=0.0235m (0,928in) in is lower than the minimum acceptable 
diameter of the torsional rigidity of sec. IIF of dr=0.041m 
(1.65in), then the recommended diameter for shaft 2 is the one 
given by the torsional rigidity of 0.041m. 

Here it is important to notice that although (5) was derived 
based on the Von Mises criteria, and we used a SF=2, as in the 
rigidity approach, it is not possible to determine the reliability 
that the designed shaft presents. However before present the 
method to determine the reliability of the designed shaft, let 
present the shaft’s design through the fatigue method. 

IV. FATIGUE DESIGN APPROACH  

The fatigue in a mechanical component is caused by the 
load’s repetitiveness. These loads being of lesser magnitude 
than those that can cause plastic deformation in ductile 
materials or rupture in fragile materials. Thus, the design of a 
shaft by the fatigue approach is based on the alternating stress 
(Sa) and on the mean stress (Sm) values generated by the 
bending and torsional loads that are acting on the shaft. And 
while Sa is variant because it is generated by the bending 
stresses, Sm is constant because it is generated by the applied 
constant torque (see Fig. 13). However, because initially the 
shaft’s diameter is unknown then at this stage Sa and Sm are both 
unknown, and therefore they are determined by using a fatigue 
failure theory. The most common used theories are the 
Soderberg, Goodman, Gerber and ASME theories. However, 
because in the shaft 2 design, an AISI-1020 steel is used, which 
is a ductile material and plastic deformation is not allowed, then 
in the analysis Sa and Sm are both determined based on the 
Soderberg theory [3][4] 

 

 

 

 

 

 

Fig. 13. Alternating and mean stresses. 

Similarly, based on the Whöler S-N curve of the used 
material, the endurance limit S'e to be used in the fatigue 
analysis is determined. And then, through the application of the 
endurance limit modification factors, the S'e value is lowered to 
the called modified endurance limit Se, which in the fatigue 
analysis is taken as the real fatigue limit of the analyzed case. 
In our case, the used modifier endurance limit factors are 
surface, size, type of load, temperature, and fatigue. And 
because axial forces are not acting on shaft 2, then the designed 
shaft’s diameter is determined based on the Soderberg and Von 
Mises’ theories. Hence, due to the lack of axial forces, the 
shaft’s diameter is only in function of the bending and torque 
moments [4], and its diameter is given by 
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𝑑𝑓 = [
32𝐹𝑆

π𝑆𝑦
√(𝑀𝑚 + 

𝑆𝑦

𝑆𝑒𝑓
𝑀𝑎)

2

+
3

4
(𝑇𝑚 +  

𝑆𝑦𝑠

𝑆𝑒𝑡
𝑇𝑎)

2

 ]

1

3

   (6) 

In (6), Mm is the mean bending moment, Ma is the mean 
alternating bending moment, Tm is the mean torque, Ta is the 
alternating torque, Sy is the yield strength for bending loads, Sys 
is the shear yield strength for torsional loads, Sef is the modified 
endurance limit for bending and Set is the shear modified 
endurance limit for torsional loads. Numerically the shaft’s 2 
diameter is as follows. 

A. Fatigue Shaft Design 

For the determination of the diameter of the shaft 2, notice 
first from Figure 13 that when the shaft rotates, the bending 
moment Mm, which is generated due to radial and tangential 
loads of the spur gears (see Fig. 5), produces the alternating 
stresses shown in Fig.13. Then the alternating stress Sa at which 
the shaft is subjected is equivalent to the maximum stress Smax. 
Also notice that this implies that because in (6) the force 
moments will be used to determine the shaft’s diameter, then 
the alternating moment Ma is equivalent to the maximum 
moment of section IIE (Ma=Mmax=183.32Nm). In the same 
way, notice from Fig.13 that because the mean stress Sm is zero, 
then the mean moment Mm is equal to zero (Mm = 0) also. And 
since the torque on the shaft is constant because the power and 
angular velocity remain constant, then the mean torque Tm is 
equivalent to the torque at the critical point C (Tc). That is, Tm 
= Tc =94.9 Nm. This implies that because there are no variations 
in the torque, then in (6) the alternating torque Ta element is 
also zero. And as a consequence, that both Mm and Ta are zero 
(null), then the terms Sys and Sse can also be omitted from (6). 
Therefore, the final formula to determine the fatigue diameter 
is given by 

 𝑑 = [
32𝐹𝑆

𝜋𝑆𝑦
√( 

𝑆𝑦

𝑆𝑒𝑓
𝑀𝑎)

2

+
3

4
(𝑇𝑚)2

 
]

1

3

                 (7) 

Where the bending modified endurance limit Sef is given by 

𝑆𝑒𝑓 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑

𝑆𝑒𝑓
′

𝐾𝐹𝐹
                             (8) 

In (8), the values of ka=0.8, kc=1 kd=1 and KFF=2 were given 
in II. On the other hand, the value of the size factor kb was not 
provided because the shaft diameter is unknown. Therefore, the 
kb value is selected by using as a reference, the static shaft’s 
diameter determined in sec. IIIA of ds = 0.023m. From [3] it is 
determined as 

𝑘𝑏 = 0.85 𝑖𝑓 (0.0127𝑚 < 𝑑 < 0.0508𝑚) 
or 

𝑘𝑏 = 0.70 𝑖𝑓 (𝑑 > 0.0508𝑚) 

 
Hence, the selected value is kb = 0.85. And because the 

bending endurance limit (S’ef) is given as 

𝑆𝑒𝑓
, = 0.5𝑆𝑢𝑡                                     (9) 

Then by substituting it in (9), with the Sut value given in sec. 
II, the S’ef   value to be used to determine the shaft diameter is  

𝑆𝑒𝑓
, = 0.5(438 MPa ) = 219 𝑀𝑃𝑎 

In the same way, by using the modifier factors, the bending 
modified endurance limit is  

𝑆𝑒𝑓 =
[(0.8)(0.85)(1)(1)(219 𝑀𝑃𝑎)]

2
= 74.46𝑀𝑃𝑎 

Finally, by substituting these values in (7) the estimated 
fatigue shaft diameter is 

𝑑𝑓 = {
32(2)

𝜋(319𝑥106 𝑁/𝑚2)
√[

(319𝑥106 𝑁/𝑚2)(183.38𝑁𝑚)

74.46𝑥106 𝑁/𝑚2
]

2

+
3

4
(94.9𝑁𝑚)2}

1
3

 

𝑑𝑓 = 0.036𝑚 

Thus, because the designed fatigue shaft’s diameter of 
df=0.036m(1.45in), is lower than the minimum acceptable 
diameter of the torsional rigidity value of sec. IIF of 
dr=0.0419m(1.65in), then as in the static approach, the 
recommended diameter for shaft 2 is 0.0419m. Here it is 
important to notice that although (7) was derived based on the 
Von Mises criteria, and we used a SF=2, then as in the static 
and rigidity approach, in this fatigue analysis it is not possible 
to determine the reliability that the designed shaft presents. 
Now let present the shaft design through the binary synthesis 
method. 

V. BINARY SYNTHESIS  DESIGN APPROACH   

   
In the binary synthesis method, the shaft’s diameter is 

determined in function of the maximum applied alternating Sa 
value determined from the maximum moment Ma value given 
by the static analysis, the average Se value, the yield strength of 
the used material Sy and the Sm values caused by the torque. 
And because in this approach, Se is considered to be random, 
then not only its mean µSe, but also its standard deviation σSe 
are both determined by applying the synthesis method to each 
one of the modifier factors. And once the Se and Sy values are 
known, by using them in the Soderberg diagram with the 
corresponding stress ratio r (see Fig. 14), the Sa and Sm values 
are both determined. Here, the SolidWorks routine was used 
(see Fig. 14). 

 

 

 

 

 

 

 

 

Fig. 14. Soderberg diagram 

Now let present the functional relationships to perform the 
binary synthesis analysis. 

A. Alternating and endurance binary synthesis analysis   

The input variables to determine the shaft’s diameter 
through the binary synthesis method and the Soderberg 
diagram, are the Sa, Sm, Sy, and Se values. Where the Sa and Sm 
values are determined from their ratio (r), their angle γ and from 
their real endurance limit Se values, then let first, calculate the 
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functional relationship between Sa and Sm (r and γ). And then 
to present the binary synthesis analysis to determine the average 
and standard deviation of Se. And finally, to determine the 
diameter of the designed shaft. The functional relationships that 
determine the Sa value are as follows. 

B. Alternating stress estimation  

The functional relationship for Sa is given as Sa=(Mc)/I   
where M is the maximum bending moment (Ma), c is the shaft’s 
radius and I is the inertia moment given by I=πd4/64. Hence Sa 
in terms of M and d is given as 

𝑆𝑎 =
𝑀𝑐

𝐼
=

𝑀
𝑑

2
𝜋𝑑4

64

=
64𝑀

2𝜋𝑑3 =
32𝑀

𝜋𝑑3 =
10.18𝑀

𝑑3              (10) 

Finally, by substituting the maximum moment M 
=183.38Nm, addressed in sec. IIE in (10), the equation of Sa in 
function of the unknown shaft’s diameter is given as 

𝑆𝑎 =
10.18𝑀

𝑑3 =
10.18(183.38𝑁𝑚)

𝑑3 =
1866.8𝑁𝑚

𝑑3                (11) 

Similarly, the equation to determine the mean stress Sm, in 
terms of the shear stress τ is given by 

𝑆𝑚 = √3 𝜏                                (12) 

Where τ=Tc/J, with T representing the torque estimated in 
sec.2.1 of T=94.9Nm and J is the inertia moment given as 

J=1/2 πc4. Thus, by using T=94.9Nm the shear stress τ 
function it is given as 

𝜏 =
𝑇𝑐

𝐽
=

𝑇𝑐
1

2
𝜋𝑐4

=
16𝑇

𝜋𝑑3 =
5.093(94.9𝑁𝑚)

𝑑3 =
483.32𝑁𝑚

𝑑3                (13) 

 Therefore, the equation to estimate Sm in function of the 
unknown shaft’s diameter is given by 

𝑆𝑚 = (√3 ) (
483.32𝑁𝑚

𝑑3 ) =
837.13𝑁𝑚

𝑑3                 (14)                    

And since both Sm and Sa are in function of the unknown 
diameter, then in the analysis its ratio is used. It is given as 

𝑟 =  
𝑆𝑎

𝑆𝑚
=  

1866.8𝑁𝑚

𝑑3

837.13𝑁𝑚

𝑑3

= 2.22                   (15) 

Thus, the angle γ to be used in the Soderberg diagram to 
determine the maximum allowed Sa and Sm values is 

𝛾 = tan−1
𝑆𝑎

𝑆𝑚

= tan−1(2.22) = 65.75° 

Now to estimate the Sa and Sm values let present the 
determination of the endurance limit Se value to be used in the 
estimation process. 

C. Endurance fatigue limit estimation  

The Se value used in the Soderberg diagram to estimate the 
Sa and Sm values, is determined by applying the binary synthesis 
method as follows. All the modifier factors are considered to 
follow a normal distribution. Therefore, their standard 
deviation is estimated as the 10% of their average value [5]. 
After that, two factors are synthesized by using their 
corresponding mean and standard deviations, a new binary 
factor with its own synthesized mean and standard deviation is 
determined. Then another factor is synthesized with the one 
obtained previously. The process is repeated until all factors are 

being already synthesized. Finally, it is important to mention 
that because the synthetization process is performed according 
with the functional relationship that the synthetized variables 
have among them, e.g. addition, subtraction, product, division, 
square root, etc., then in the synthetization process, the Table 
4.2 given in [5] p.162 and p.163 were used. 

The analysis to determine the corresponding modified 
endurance limit Se is as follows. From (8) the surface factor ka 
and the size factor kb are synthesized. It is done by using “x” to 
represent ka and “y” to represent kb. Hence their corresponding 

mean are µx for ka and µy for kb and their mean values are 𝑘 𝑎̅̅ ̅̅ =
𝜇𝑥 = 0.8 and 𝑘𝑏

̅̅ ̅ = 𝜇𝑦 = 0.85. Thus, since from (8), the 

relation between ka and kb is a product, then from the operation 
number 6 of Table 4.2 in [5] p.162, the mean of the synthesized 
binary variable is   

  𝑥𝑦 = 𝜇𝑥𝜇𝑦 = 𝑁𝑒𝑤 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟   (16) 

Numerically it is  

(𝑘𝑎
̅̅ ̅)(𝑘𝑏

̅̅ ̅) = (𝜇𝑥)(𝜇𝑦) = (0.8)(0.85) = 0.68 

Similarly, by using σx to represent the standard deviation of 
ka and σy for kb, their numerical values are; σx=(0.8)(0.1)=0.08 
and σy=(0.85)(0.1)=0.085. Therefore, following the operation 
number 6 (product) of Table 4.2 of [5] p.162, with ρ=0 (the 
finished surface ka is independent of the size element kb), the 
standard deviation of the synthesized variable (kakb) is 

𝜎𝑘𝑎𝑘𝑏
= [(𝜇𝑥

2𝜎𝑦
2 + 𝜇𝑦

2𝜎𝑥
2 + 𝜎𝑥

2𝜎𝑦
2)(1 + 𝜌2)]

1

2              (17) 

Numerically it is  

𝜎(𝑘𝑎𝑘𝑏) = {[(0.8)2(0.85)2 + (0.85)2(0.08)2

+ (0.08)2(0.085)2][1 + (0)2]}1 2⁄  

   𝜎(𝑘𝑎𝑘𝑏) = 0.0964 

The next step is to synthesize the load factor kc with the 

synthesized variable (kakb). Doing this, the mean of (𝑘𝑎
̅̅ ̅)(𝑘𝑏

̅̅ ̅)is 

taken as µx=0.68, and from sec. IVA (𝑘𝑐
̅̅ ̅) = 1 is taken as μy. 

Thus, since the relation of kc with (kakb) is also a product, then 
following the operation number 6 (product) of Table 4.2 of [5] 
p.162, the mean of the synthesized variable is  

(𝑘𝑎
̅̅ ̅𝑘𝑏

̅̅ ̅)(𝑘𝑐
̅̅ ̅) = 𝜇𝑥𝜇𝑦 = (0.68)(1) = 0.68  

Similarly, taking the 10% of μy as its deviation, the standard 
deviations to be synthesized are 

 𝜎𝑘𝑎𝑘𝑏
= 𝜎𝑥 = 0.0964 

and     𝜎𝑘𝑐
= 𝜎𝑦 = (1)(0.1) = 0.1 

And following the operation number 6 (product) of Table 
4.2 of [5] p.162 with ρ=0 (the load is independent of kakb), 
given in (16), the standard deviation of the new synthesized 
binary variable (kakbkc) is 

𝜎𝑘𝑎𝑘𝑏𝑘𝑐
= {[(0.68)2(0.1)2 + (1)2(0.0964)2 +

(0.0964)2(0.1)2][1 + (0)2)]}
1

2 = 0.1183      

The next step is to synthesize the temperature factor kd with 
the synthesized variable (kakbkc). Thus, since the relation of kd 
with (kakbkc) is also a product, then because  

(𝑘𝑎
̅̅ ̅)(𝑘𝑏

̅̅ ̅)(𝑘𝑐
̅̅ ̅) = 𝜇𝑥 = 0.68 
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and from sec. IVA (𝑘𝑑
̅̅ ̅) = 𝜇𝑦 = 1 then the mean of the 

synthesized variable is  

(𝑘𝑎𝑘𝑏
̅̅ ̅̅ ̅̅ 𝑘𝑐

̅̅ ̅)(𝑘𝑑
̅̅ ̅) = 𝜇𝑥𝜇𝑦 = (0.68)(1) = 0.68 

      And by using  𝜎𝑥 = 𝜎(𝑘𝑎𝑘𝑏𝑘𝑐) = 0.1183 
and σy=σ(kd)=(1)(0.1)=0.1, the standard deviation of the new 
synthesized binary variable (kakbkckd) is 

𝜎𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑
= {[(0.68)2(0.1)2 + (1)2(0.1183)2 +

(0.1183)2(0.1)2][1 + (0)2)]}
1

2 = 0.1369  
The next step is to synthesize the fatigue factor KF with the 

synthesized variable (kakbkckd). Thus, since the relation of KF 
with (kakbkckd) is a quotient then by using  

 𝑘𝑎
̅̅ ̅𝑘𝑏

̅̅ ̅𝑘𝑐
̅̅ ̅𝑘𝑑

̅̅ ̅ = 𝜇𝑥 = 0.68 

and from form sec. IVA 𝐾𝐹
̅̅̅̅ = 𝜇𝑦 = 2, then by using operation 

7 (quotient) of Table 4.2 by [5] (17) p.163, the mean of the 
synthesized binary variable is 

µ𝑥

µ𝑦
= 𝑁𝑒𝑤 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑧𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒                     (18) 

Numerically it is 

𝜇𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑
/𝐾𝐹

̅̅̅̅ =
µ𝑥

µ𝑦

=
0.68

2
= 0.34 

Similarly, by using  

𝜎(𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑) = 𝜎𝑥 = 0.1369 

and  𝜎(𝐾𝐹) = 𝜎𝑦 = (2)(0.1) = 0.2 

in the operation 7 (quotient) of Table 4.2 of [5] (17) p.163, 
the standard deviation of the new synthesized binary variable 
(kakbkckd/KF) is given as 

𝜎 =
1

𝜇𝑦
(

𝜇𝑥
2𝜎𝑦

2+𝜇𝑦
2 𝜎𝑥

2

𝜇𝑦
2+𝜎𝑦

2 )

1

2
                            (19) 

Numerically it is 

 𝜎𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑
𝐾𝐹

=
1

2
[
(0.68)2(0.2)2 + (2)2(0.1369)2

(2)2 + (0.2)2 ]

1
2

= 0.07604 

Finally, to obtain the modified endurance limit Se, the 
binary synthesis method is performed between the synthesized 
binary variable 𝑥 = (𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑) 𝐾𝐹

̅̅̅̅⁄  and the endurance limit 
y=Se' of the used material. The endurance material limit is 
Se'=0.5Sut=0.5(438MPa) =219MPa. Thus, the means to be 
synthesized are 𝜇𝑥 = (𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑) 𝐾𝐹

̅̅̅̅⁄ = 0.34 and 
Se'=µy=219MPa. And because the relation of Se' with 𝑥 =
(𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑) 𝐾𝐹

̅̅̅̅⁄   is a product, then from operation 6 of Table 
4.2 of [5] p.162, the mean of the synthesized variable is 

𝑆𝑒 = 𝜇𝑥𝜇𝑦 = (µ𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑
𝐾𝐹

)(𝑆𝑒
′ )                   (20) 

Numerically it is 

𝑆𝑒 = (0.34)(219 𝑀𝑃𝑎) = 74.46𝑀𝑃𝑎 

Similarly, by taking 

 𝜎𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑
𝐾𝐹

= 𝜎𝑥 = 0.07604   

and 

𝜎𝑆𝑒
= 𝜎𝑦 = (219𝑀𝑃𝑎)(0.1) = 21.9𝑀𝑃𝑎 

the corresponding standard deviation of the new 
synthesized binary variable with ρ=0 (variables are independent 
each other) is 

 𝜎𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑆𝑒
′

𝐾𝐹
  

= {[(𝜇𝑥)2(𝜎𝑦)
2

+ (𝑆𝑒
′ )2(𝜎𝑥)2 + (𝜎𝑥)2(𝜎𝑦)

2
 ] [1 + (𝜌)2]}

1 3⁄

       

(21)                                                                                                                                                   

 𝜎𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑆𝑒
′

𝐾𝐹
  

= {[(0.34)2(21.9𝑀𝑃𝑎)2 + (219𝑀𝑃𝑎)2(0.07604)2

+ (0.07604)2(21.9𝑀𝑃𝑎)2][1 + (0)2)]}
1
2

= 18309786.41𝑃𝑎 

Therefore, the modified endurance limit Se value to be used 
to determine the corresponding Sa and Sm values is 
Se=74428904.94Pa, with expected standard deviation of σ(Se)= 
18309786.41𝑃𝑎. The numerical analysis to determine the Sa and 
Sm values as well as the shaft diameter is as follows. 

D. Binary synthesis diameter determination  

Since from the plotted Soderberg diagram (see Fig.15), no 
mathematical function exists to determine the Sa and Sm values 
directly from the known 𝑆𝑒 = 74428904.97 Pa, 𝑆𝑦= 320 MPa 
and 𝛾 = 65.75°, then the SolidWorks routine was used (any 
other routine can be used). The found Sa and Sm values are Sa 
=66945197.51Pa and Sm=30156634.18Pa. 

Therefore, by using a safety factor of 2 [14,19] and the 
estimated Sa value in (10) the designed diameter is 

𝑑𝑏 = √
10.18 𝑀

𝑆𝑎/SF

3
                                (22) 

Numerically it is 

𝑑𝑏 = √
113922419.49𝑃𝑎

66945197.51Pa/2

3

= 0.038𝑚 

Here it is important to notice that although from (22) the 
shaft diameter was determined by considering Se to be random 
and we used a SF=2, as in the static, fatigue and rigidity 
approach, in this binary synthesis analysis is not possible to 
determine the reliability that the designed shaft presents. 
Therefore, now let present the proposed method which will let 
us both to perform the analysis by considering a probabilistic 
behavior and to determine the reliability of the designed shaft. 
The proposed Probabilistic method is as follows. 

VI. PROPOSED SHAFT DESIGN METHOD 

In this section the method to probabilistically to determine 
the diameter of the designed shaft as well as its corresponding 
reliability is given. In the method the applied alternating stress 
Sa and the material strength Se, are random variables. And based 
on the minimum expected strength Semin value, the maximum 
allowed Samax value, for which zero failure are expected is 
determined. However, first let start showing that in our 
analyzed case, because the addressed Sa value is higher than the 
minimum expected Semin value (Sa > Semin), then failures are 
expected. The analysis is as follows. 

A. Overlapping of Sa and Semin  

Since in the analyzed case, the addressed alternating value 
was Sa =66945197.51Pa, and because the endurance limit value 
is Se = 74428904.97Pa, with standard deviation of 𝜎𝑆𝑒 = 
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18309786.41Pa, then the minimum expected Se value is Semin 

=Se – 𝜎𝑆𝑒, which numerically is Semin = 56119118.56Pa. Thus, 
we have that because 66945197.51Pa >56119118.56Pa (see 
Figure 15), then failures are expected [21]. And therefore, a 
lower S´a value which does not overlapping with Semin has to be 
determined and used to determine the shaft diameter. The steps 
are as follows. 

 

 

 

 

 

 

 

 

 

Fig. 15. Overlap of Sa and Semin 

B. Steps of the Proposed Method  

Step 1. By using the modified factors, determine the mean 
value of Se and its respective standard deviation (σSe). 

Step 2. Determine the minimum expected value of Se as 

𝑆𝑒𝑚𝑖𝑛 = 𝜇𝑆𝑒 − 𝜎𝑆𝑒                            (23) 

Step 3. Draw a new Soderberg line parallel to the original 
one, but now starting at the Semin value of step 2 (see Fig.16). 

 

 

 

 

 

 

 

 

Fig. 16. New Soderberg Line 
 

Step 4. Based on the Semin value of step 2, determine the 
maximum allowed S'a value as  

𝑆𝑎
, = 𝑆𝑒𝑚𝑖𝑛/1.1                                 (24) 

Step 5. Determine the standard deviation of S'a as 

  𝜎𝑆𝑎 = 0.10𝑆𝑎
′                                     (25) 

Here notice that 1) by its own construction Samax and Semin 
are always equals    

𝑆𝑎
′ + 𝜎𝑆𝑎 = 𝑆𝑒𝑚𝑖𝑛                             (26) 

  And that 2) as shown in Fig. 16, it implies we are using a 
safety factor of 1. 

 Step 6. If a different safety factor value is used, determine 
the corresponding Sa2 value to be use as 

  𝑆𝑎2 = 𝑆𝑎
′ 𝑆𝐹⁄                                  (27) 

Step 7. Determine the shaft’s diameter as 

𝑑 = √
10.18𝑀

Sa2

3
                                    (28) 

Step 8. Determine the reliability of the designed shaft by 
using (29) and (30) 

𝑍 =
𝜇𝑠𝑎2−𝜇𝑠𝑒

√𝜎𝑠𝑒
2 +𝜎𝑠´𝑎

2
                                      (29) 

𝑅(𝑡) = 1 − 𝑃(𝑍)                                 (30) 

Now let present the application of the proposed method.  

C. Numerical Application of the Proposed Method 

Step 1. From (21) the mean of Se is μ(Se)=74428904.97Pa. 
And from (20) and (21) its standard deviation is σ(Se 
)=18309786.41Pa. 

Note 1: Notice that although here μ(Se) and σ(Se), were both 
determined by using the synthesis binary method, in practice 
they can be determined by any other method. 

Step 2. From (23) the minimum expected endurance limit 
(Semin) is  

Semin = 74428904.97Pa – 18309786.41Pa = 56119118.56Pa. 

Step 3. The new Soderberg line is drawn starting at 
Semin=56119118.56Pa and being parallel to the original one (see 
Fig.17). 

 

 

 

 

 

 

 

 

 

 

Fig. 17. New Soderberg Line with values 

 

Step 4. From (24) the maximum allowed alternating stress 
value is S’a = (56119118.56Pa) /1.1 = 51017380.5Pa 

Step 5. From (25) the standard deviation of S'a is σS´a = 0.10 
S'a= 0.10 (51017380.5Pa) = 5101738.05Pa. 

Step 6. From (27), and by using a safety factor of 2 [14,19] 
the alternating stress (Sa2) value to determine the shaft diameter 
is  

𝑆𝑎2 = 51017380.5𝑃𝑎 2⁄ = 25508690.25𝑃𝑎 

Step 7. From (28) the shaft’s diameter is 

d= √
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3
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Step 8. From (29) and (30), the shaft’s reliability is as 
follows 

𝑍 =
𝜇𝑠𝑎2−𝜇𝑠𝑒

√𝜎𝑠𝑒
2 +𝜎𝑠´𝑎

2
  =  

25508690.25−74428904

√(18309786.41)2+(5474023.6)2
= –2.57. 

Therefore, since this Z value corresponds to P(Z)=0.005 
cumulative failure probability, then from (29) the deigned 
reliability is R(t)=1-P(Z) = 1 – 0.005=0.9995. 

As a summary of this section, we have that by considering 
that the applied stress S´a and inherent strength Se are both 
random, by applying the proposed probabilistic method, the 
designed shaft’s diameter is d=0.0418m(1.647in). And that 
because it was determined by using the S´a value which does 
not overlap with the Semin value, then shaft 2 can be considered 
safe. Even more, from step 8, we conclude the designed 
reliability of the shaft is R(t)=99.95%. 

Now let compare the designed R(t) index of the proposed 
method with those given by the static, fatigue, and binary 
synthesis approaches. 

D. A Reliability Comparison Among the Shaft Design 

Methodologies 

The comparison among the design approaches is given in 
Table 2, where the given reliability indices were determined by 
using (29) and (30). The corresponding standard deviation were 
determined by using (25). In all approaches, the mean value of 
the endurance limit (μse) of 74428904Pa and standard deviation 
(σse) of 18309786.41 were used. 

From Table 2, we observe that higher the shaft diameter, the 
higher the reliability. And that the higher diameter is generated 
by considering the standard deviation in the analysis. Also note 
that without using (29) and (30), for the static, fatigue, and 
binary synthesis approach it is not possible to determine their 
designed reliability. Now let generalize the proposed 
probabilistic method to use the lognormal and the Weibull 
distribution in the analysis. The generalization is as follows. 

Table 2. Reliability of the shaft diameter determined by 
different approaches. 

Approach Average (sa) S. Dev. Diameter 

R(t) (29-

30) 

Static 142549382.8 28509871 0.0235 0.0222 

Fatigue 36605852.26 7321172.5 0.037 0.9724 

Synthesis 51853608.01 10370660 0.3302 0.8583 

Proposed 25508690.25 5101706.7 0.0418 0.9950 

Torsional 

Rigidity 25360503.11 5072095.1 0.4191 0.9951 

 

VII. GENERALIZATION OF THE PROPOSED 

METHOD TO THE WEIBULL DISTRIBUTION  

Since a random variable is said to follows a normal 
distribution only when its variation coefficient given as 

𝐶𝑉 = 𝜎 𝜇⁄                                    (31) 

is equal or lower than 0.10 (CV≤0.10) [5] pg.159, then 
because from the above analysis the C.V of S’a of 
CVa=5101706.7/25508690.25=0.20 and the C.V of Se of 
CVe=0.24, are both higher than 0.10, then in this section the 

proposed method is generalized to use the Weibull distribution 
to determine the designed shaft’s reliability. This is done 
because due to its flexibility, the Weibull distribution can model 
also the normal distribution behavior. Weibull distribution has 
been applied to solve a variety of problems in different areas 
[22] and is frequently adopted to reflect lifetime distribution to 
assess system reliability [23]. This approximately occurs for a 
Weibull shape parameters β close to β=3.44. The Weibull 
density function is given by 

𝑓(𝑆𝑗) =
𝛽𝑗

𝜂
(

𝑆𝑗

𝜂𝑗
)

𝛽𝑗−1

𝑒𝑥𝑝 {− (
𝑆𝑗

𝜂𝑗
)

𝛽𝑗

}              (32) 

Where η is the scale parameter and j=a,e, with a 
representing the alternating stress S’a, and e representing the 
modified endurance limit Se. The corresponding Weibull 
reliability function is given as 

𝑅(𝑆𝑗) = 𝑒𝑥𝑝 {− (
𝑆𝑗

𝜂𝑗
)

𝛽𝑗

}                        (33) 

Therefore, because as demonstrated in [24] the Weibull 
shape β and scale η parameters, both can be determined directly 
from the maximum and minimum stress values, then in this 
section, the mean and the standard deviation of S’a are used to 
determine the maximum and the minimum expected stresses 
values of S’a as 

  𝑆𝑎𝑚𝑎𝑥
′ = 𝑆𝑎

′ + 𝜎𝑠𝑎                             (34) 

and                         𝑆𝑎𝑚𝑖𝑛
′ = 𝑆𝑎

′ − 𝜎𝑠𝑎 

  Here observe that this imply that 1) because the failure will 
be generated by fatigue, and not by the first cycle then the 
addressed Sm value is not being considered in the analysis, and 
therefore. 2) we are taking max'aS , and min'aS  as the principal 

stresses σ1 and σ2 values to perform the Weibull analysis (if Sm 
is going to be considered, then the corresponding σ1 and σ2 
values must be estimated using the Sm also) and 3) that the 
standard deviation   value is being used as the amplitude stress 
value as plotted in Fig.16. Thus, following [24], the 
corresponding Weibull stress βa and ηa parameters are given as 

𝛽𝑎 =
−4𝜇𝑦

(0.97161)(𝑆𝑎𝑚𝑎𝑥
′ 𝑆𝑎𝑚𝑖𝑛

′⁄ )
                         (35) 

𝜂𝑎 = 𝑒𝑥𝑝{√(𝑆′𝑎𝑚𝑎𝑥)(𝑆′𝑎𝑚𝑖𝑛) − 𝜇𝑦 𝛽𝑎⁄ }           (36) 

In (35), the constant 0.971611 value was determined 
following the method given in sec.4.1 in [24], pg.236 (there the 
key formula is (48)). And µY is the mean value of the Y vector 
given by linearizing (33). Its linear form is given as 

𝑌𝑖 = 𝑙𝑛 (−𝑙𝑛(1 − 𝐹(𝑆𝑖))) = 𝛽𝑗[𝑙𝑛(𝑆𝑖) − 𝑙𝑛(𝜂𝑗)]         (37) 

 

Where F(Si)=1-R(Si) is the cumulated failure percentile 
estimated by using the median rank approach [25] given by 

𝐹(𝑆𝑖) = (𝑖 − 0.3) (𝑛 + 4)⁄                     (38) 

With n being estimated as [26] 

𝑛 =
−1

𝑙𝑛(𝑅(𝑆𝑗))
                                  (39) 

In (39), R(S) is the desired reliability of the analysis. Here 
observe that although here R(S)=0.9535 was used to n be an 
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integer (n=21), any desired percentile can be used. 
Additionally, observe from (39), that because n only depends 
on R(S), then μy is constant end for n=21 its value is μy= –
0.545624125.  

On the other hand, by using the maximum and minimum Se 
values given by 

𝑆𝑒𝑚𝑎𝑥 = 𝑆𝑒 + 𝜎𝑠𝑒                              (40) 

  and                       𝑆𝑒𝑚𝑖𝑛 = 𝑆𝑒 − 𝜎𝑠𝑒 

And by using the method given in the sec.4.1 of [20] in 
pg.236, the corresponding βe and ηe parameters are determined 
as 

𝛽𝑒 =
−4𝜇𝑦

(0.971611)𝑙𝑛(𝑆𝑒𝑚𝑎𝑥 𝑆𝑒𝑚𝑖𝑛⁄ )
                      (41) 

𝜂𝑒 = 𝑒𝑥𝑝{√(𝑆𝑒𝑚𝑎𝑥)(𝑆𝑒𝑚𝑖𝑛) − 𝜇𝑦 𝛽𝑒⁄ }             (42) 

Therefore, by using the Weibull stress parameters of (35) 
and (36) or the Weibull strength parameters of (41), (42) and 
(38), the corresponding logarithm of the expected stress (or 
strength) values are given as 

𝑙𝑛(𝑡𝑖𝑗) = 𝑥𝑖𝑗 = 𝑌𝑗 𝛽𝑗⁄ + 𝑙𝑛(𝜂𝑗)                 (43) 

And therefore, the expected stress (or strength) values are 
given as  

𝑆𝑖𝑗 = 𝑒𝑥𝑝{𝑥𝑖𝑗}                                (44) 

Finally, by using the addressed Weibull families W(βa, ηa), 
called Weibull stress family, and the W(βe, ηe), called Weibull 
strength family in the general reliability stress/strength function 
given by 

𝑅(𝑡|𝑆𝑎
′ , 𝑆𝑒) = ∫ 𝑓(𝑠)

∞

0
[∫ 𝑓(𝑆)𝑑𝑆

∞

𝑆
]𝑑𝑆            (45a) 

The corresponding Weibull/Weibull reliability 
stress/strength function is given by 

𝑅(𝑡|𝑆𝑎
,′, 𝑆𝑒)

= ∫
𝛽𝑎

𝜂𝑎

∞

0

(
𝑆𝑎

𝜂𝑎

)
𝛽𝑎−1

𝑒𝑥𝑝 {(
𝑠

𝜂𝑎

)
𝛽𝑎

} [∫
𝛽𝑒

𝜂𝑒

(
𝑆𝑒

𝜂𝑒

)
𝛽𝑒−1

𝑒𝑥𝑝 {− (
𝑆𝑒

𝜂𝑒

)
𝛽𝑒

} 𝑑𝑆𝑎

∞

𝑆

] 𝑑𝑆𝑒 

(45b) 

Here, it is very important to notice that for βa ≠ βe, (45b) has 
not a close solution and thus, it must be solved by using a 
numerical method as the one given in [27], and that for βa = βe 
= β, the solution of (45b) [21] is given as 

𝑅(𝑡|𝑆𝑎
, , 𝑆𝑒) =

𝜂𝑆𝑒
𝛽

𝜂𝑆𝑒
𝛽

+𝜂
𝑆𝑎

′
𝛽                              (45c) 

Therefore, based on the formulation from the above, the 
steps to determine the reliability of the designed shaft by using 
the Weibull distribution are as follows. 

A. Steps of the proposed generalization form of the normal 

to the Weibull distribution 

Step 1. Based on the mean and standard deviation of S’a and 
Se, from (34) and (40) determine their corresponding maximum 
and minimum expected values.  

From (35)  

𝑆𝑎𝑚𝑎𝑥 = 25508690.25 + 5101738.5 = 30610428.75𝑃𝑎 

𝑆𝑎𝑚𝑖𝑛 = 25508690.25 − 5101738.5 = 20426951𝑃𝑎 

And from (41)  

𝑆𝑒𝑚𝑎𝑥 = 74428904.97 + 18309786.41 = 92738691.37𝑃𝑎 

𝑆𝑒𝑚𝑖𝑛 = 74428904.97 − 18309786.41 = 56119118.56𝑃𝑎 

 

Step 2. By using n=21 in (38) and then the F(ti) values in 
(37) determine the Yi elements and its corresponding mean µY 
value.  

Note. Remember, that for n=21, the analysis is performed 
with a reliability of R(ti)=95.35% and that for n=21 the µY value 
is µY= –0.545624125. Hence, R(ti)=95.35% could be seen as 
the confidence interval used in quality. For example, since in 
Table 2 we used n=21, then as can be seen from (39) the 
analysis in Table 2 was performed with R(ti)=95.35%. 
Therefore, from Table 2 we say with reliability of 95.35 that the 
reliability of the shaft is of R(t)=99.50%. 

Step 3. By using the maximum and minimum S’a and Se 
values of step 1, and the µY value from step 2 in (35) and (36), 
determine the corresponding stress Weibull family, and by 
using them in (41) and (42), determine the corresponding 
strength Weibull family.  

The Weibull stress family is W(βa=5.5399696, 
ηa=27580143.64Pa (4000.16164 lb/in2)). And the Weibull 
strength family is W(βe=4.45324405, ηe=81545114.98Pa 
(11827.119 lb/in2)) (see Table 3). 

Step 4. By using the addressed Weibull parameters in (45b) 
if βa ≠ βe, or in (45c) if βa = βe, determine the designed reliability 
of the designed shaft.  

Since βa ≠ βe, then by solving (45b) by using the Weibull++ 
software routine, the designed reliability is R(t)=0.992579. 

As a conclusion we have that because the variation 
coefficient of S´a and Se are both higher than 0.10, then the shaft 
reliability must be determined by using the Weibull 
distribution. Hence the shaft’s reliability is of R(t)=0.992579, 
and due to the torsional rigidity approach, the shaft’s diameter 
has to be of d=0.4191m (1.65 in). 

Now let show that the addressed Weibull families 
completely represents the normal parameters from which they 
were derived. The analysis is as follows. 

B. Weibull and Normal Parameters Relationships 

The Weibull and normal parameters relationship are direct. 
Therefore, they can easily be addressed by using the expected 
stresses values defined in (43) and (44), and numerically given 
in Table 3.  

1) From Table 3 we observe the normal averages values 
of μ(S´a)= 25508690.25Pa (3699.72 lb/in2) and  μ(Se)= 
74428904.97Pa (10,795lb/in2) of the S´a and Se variables, are 
given as the average values of columns S´a and Se. Therefore, 
the addressed Weibull families completely represent the normal 
average values. 
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Fig. 18. Input and output of the Weibull++ routine  

Table 3. Weibull and Normal Data relationships 

Fig. 19. The normal standard deviation as the alternating stress and Mohr radio 
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n Y i n Y i

Eq.(40) Eq.(38) Eq.(40) Eq.(38)

1 -3.40348334 1 -3.40348334

2 -2.49166198 2 -2.49166198

3 -2.00346322 3 -2.003463219

4 -1.66164593 4 -1.661645928

5 -1.39439830 5 -1.394398299

6 -1.17205365 6 -1.172053652

7 -0.97938116 7 -0.97938116

8 -0.80744734 8 -0.807447338

9 -0.65049212 9 -0.650492124

10 -0.50450882 10 -0.504508816

11 -0.36651292 11 -0.366512921

12 -0.23412230 12 -0.234122302

13 -0.10528508 13 -0.105285078

14 0.02192840 14 0.021928399

15 0.14952577 15 0.149525769

16 0.27984500 16 0.279845003

17 0.41596210 17 0.415962097

18 0.56250196 18 0.562501963

19 0.72761583 19 0.727615827

20 0.92931067 20 0.929310672

21 1.22965981 21 1.22965981

µy= -0.545624125 µx= 9.2556276 µt= 10795.0000 µy= -0.545624125 µx= 8.1956014 µt= 3699.7200

σy= 1.175116938 σx= 0.2638789 σt= 2629.6350 σy= 1.175116938 σx= 0.2121161 σt= 734.8660
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9.005018828

9.065030726

10892.698037
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S'e iln(Se i )

2164.05597147.679739504
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4427.65446368.395625256

4561.60295718.425429366

4730.73839388.461836578
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Strength Data W(βa =5.5399696,    ηa =4000.16164 lb-in
2
)Stress Data W(βe =4.45324405,   ηe =11827.11901 lb-in

2
)

Eq.(45)Eq.(44) Eq.(44) Eq.(45)
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2) Since the standard deviation σ(S´a)=5101738.05Pa
(739.9444lb/in2) and σ(Se)=18309786.41Pa (2,655.51lb/in2) 
values of the S´a and Se variables where used as the alternating 
stress value (radio of the corresponding Mohr Circle) to 
determine the principal stress values (See Fig. 19) used to 
estimate βa and βe in (35) and (41), then from (14) of [24], by 
using data of Table 3, they are given as 

𝜎(𝑆𝑎
, ) = √𝜇(𝑆𝑎

′ )2 − (𝑆𝑎𝑚𝑎𝑥
′ )(𝑆𝑎𝑚𝑖𝑛

′ ) = √𝜇(𝑆𝑎
′ )2 − (𝜇𝑥𝑎)2      (46a) 

𝜎(𝑆𝑒) = √𝜇(𝑆𝑒)2 − (𝑆𝑒𝑚𝑎𝑥)(𝑆𝑒𝑚𝑖𝑛) = √𝜇(𝑆𝑒)2 − (𝜇𝑥𝑒)2   (46b) 

 Numerically 

𝜎(𝑆𝑎
′ ) = √(25508690.25𝑃𝑎)2 − (𝑒𝑥𝑝{8.1956014})2

= 51017380.5𝑃𝑎 

and 

𝜎(𝑆𝑒) = √(74428904.97𝑃𝑎)2 − (𝑒𝑥𝑝{9.2556276})2

= 18309786.41𝑃𝑎 

Therefore, we conclude that the addressed Weibull families 
completely represent the normal standard deviation values also. 

3) The general conclusion is that the Weibull distribution
always can be used to model the normal behavior, and that the 
Weibull distribution should be used instead of the normal one, 
when the variation coefficient of the analyzed data is higher 
than 0.10.  

Now since the Weibull and the lognormal distribution are 
both completely related each other [29], then let present the 
corresponding analysis to base on the Weibull parameters to 
determine the log-normal ones. 

C. Weibull and Log-Normal Parameters Relationships

Here it is important to mention that because the Weibull
distribution is generated by a non-homogeneous Poisson 
process [27], and the lognormal distribution is generated by a 
geometric Brownian motion [29], then one distribution should 
not be used instead of the other to determine the reliability of 
the analyzed element. However, because in practice the 
environment on which the element is performing its function, 
generally is lognormal [30], then in this section the 
determination of the log-normal parameters, directly from the 
Weibull analysis is given.  The analysis is based on the (41) and 
(44) formulated in section 3.2 in [28]. Equations on which the
Weibull β and η parameters and the log-mean μx and the log-
standard deviation σx parameters are directly related as

𝛽 =
𝜎𝑦

𝜎𝑥
 (47) 

𝜂 = 𝑒𝑥𝑝 {𝜇𝑥 −
𝜇𝑦

𝛽
} = 𝑒𝑥𝑝 {𝜇𝑥 −

𝜎𝑥𝜇𝑦

𝜎𝑦
}  (48) 

Therefore, since σy is constant (for n=21 its value is 
σy=1.175116938), then given any Weibull parameters, the 
corresponding lognormal μx and σx parameters can directly be 
determined. From Table 3 for the S´a variable they are μxa= 
56506.68Pa (8.1956014 lb/in2), and σx=1462.48Pa (0.2121161 
lb/in2). And for the Se variable they are μxe=63815.30Pa 
(9.2556276 lb-in2) and σxe=1819.38Pa (0.2638789 lb/in2).  

As a summary we have that due to the direct relationship 
between the Weibull and the lognormal distribution parameters 
given in (47) and (48), given any Weibull analysis the 

corresponding log parameters always can be determined also. 
However, it is important to mention that because in the 
lognormal distribution the damage is cumulated in 
multiplicative form, then the lognormal distribution is generally 
used when a chemistry reaction is involved. Or also when the 
variation coefficient of the analyzed data tends to be the log-
standard deviation σx. Therefore, since the CVa= 0.27864493 
and σx=1462.48Pa (0.2121161 lb/in2) and CVe= 0.25379319 
and σxe=1819.38Pa (0.2638789 lb/in2), then the use of the 
lognormal distribution to determine the reliability of the 
designed shaft is not recommended.  

Even though, in the next section the reliability of the 
designed shaft using the normal, Weibull, lognormal, and the 
combination among them is given.   

D. Reliability Comparison Among the Normal, Weibull and

Log-Normal Distributions

Using the stress/strength formulation given in (46a) with the
normal, Weibull and log-normal distributions, as well as with 
their combinations, the designed reliability of the shaft are 
given in Table 4. From Table 4, and as a conclusion we have 
the reliability of the shaft designed is the one given by the 
Weibull/Weibull approach of R(S)=0.992579. And that ones 
we know the mean and standard deviation of the stress and 
strength analyzed data; we can perform either of the above 
stress/strength reliability analysis. The final conclusions are as 
follows. 

Table 4. Reliability indices for the normal, Weibull and 
Log-Normal approaches. 

Approach Stress Parameters Strength Parameters 
R(S) 

index 

Normal/Normal μ=3699.72 σ=739.944 μ=10795 σ=2655.51 0.994881 

Weibull/Weibull β=5.5399696 η=4000.16164 β=4.45324405 η=11827.1190 0.992579 

Log-Normal/Log-

normal 
μx=8.1956014 σx=0.2121161 μx=9.2556276 σx=0.2638789 0.999126 

Normal/Weibull μ=3699.72 σ=739.944 β=4.45324405 η=11827.1190 0.990113 

Weibull/Normal β=5.5399696 η=4000.16164 μ=10795 σ=2655.51 0.994979 

Norma/Log-Normal μ=3699.72 σ=739.944 μx=9.2556276 σx=0.2638789 0.999558 

Log-

Normal/Normal 
μx=8.1956014 σx=0.2121161 μ=10795 σ=2655.51 0.994469 

Log-

Normal/Weibull 
μx=8.1956014 σx=0.2121161 β=4.45324405 η=11827.1190 0.989532 

Weibull/Log-

Normal 
β=5.5399696 η=4000.16164 μx=9.2556276 σx=0.2638789 0.999613 

VIII. CONCLUSION

From the above methodologies the following conclusion 
were drawn.

1. The static analysis let us to efficiently determine the
maximum and minimum stresses values on which the shaft’s 
diameter is determined.

2. The failure modes of a shaft can be either, by yielding
when the mean stress Sm is higher than the yield material 
strength Sy, or from fatigue, generated by both the Sm and the 
alternating stress Sa values, or from plastic deformation given 
by the torsional forces.

3. The dynamic fatigue analysis let us to determine the
shaft’s diameter by considering the endurance limit modified 
factors.
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4. The binary synthesis approach let us to determine the
shaft’s diameter by considering the endurance limit Se to be 
random, as well as to determine the mean Sm

 

and maximum 
alternating stress S´a

 

values at which the shaft will be subjected. 

5. From section VII, we observe that the proposed
method can be used to easily determine the reliability of the 
deigned shaft by using the Weibull distribution. And that this is 
made by simple using the addressed mean and standard 
deviation of S´a

 

and Se

 

as the maximum

 

and minimum principal 
stresses values, used to determine the Weibull parameters of the 
stress and strength distributions. 

 

6. The proposed method given in section VI, let us to
determine the shaft’s diameter by considering that S´a

 

and Se 
are both random.

 

As well as to determine the designed 
reliability by using the selected stress/strength approach as in 
Table 4.  

 

7. For variation coefficients higher than 0.10, the
Weibull/Weibull stress/strength function defined in (44b)

 

and 
(44c) is recommended.

 

8. Notice that a random variable follows a lognormal
distribution only if it is generated by a geometric Browmian 
motion [29], or equivalently when the generated damage cannot 
be cumulated by using an additive damage model [31]. Or in 
practice, if the variation coefficient of the collected data tends 
to be the log-standard deviation.

 

9. Due to the variation coefficient of the stress and
strength data were not lower than 0.10 nor close to the log-
standard deviation, then the reliability of the designed shaft is 
the one given by the Weibull/Weibull stress/strength approach.
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