
Priority Based Loading Of HTML Elements For Gecko Rendering Engine

Sriram Baskaran, Shankar Narayanan S G S,

Vishnu Charan V, Govind Sudarsan

Department of Computer Science and

Engineering

Meenakshi Sundararajan Engineering College

Chennai, India

Sandhya.M. K.

Faculty at Department of Computer Science and

Engineering

Meenakshi Sundararajan Engineering College

Chennai, India

Abstract

At present, the loading of elements in a HTML

document is based on a particular order, starting from

<body> to </body>. So this makes the loading of all

the pages similar. Therefore an attempt to load a

particular element first in the page is not possible. In

order to fix this, we suggest going in for "Priority

Based Loading of HTML Elements for Gecko

Rendering Engine". In this, we propose that the

element should be loaded based on the priority value

which is set by developer. This has been proposed for

Gecko Rendering Engine as the Layout process differs

in differing rendering engines. The browsers look for

the priority attributes of any element and load the

elements in that order (i.e.) the element with the higher

priority is loaded first followed by the elements with

lower priority. This is intended to be added to the

HTML API. On successful implementation of this,

developers would be able to load the heavier elements,

such as image, video, advertisements etc., at the last.

Thereby the user can be provided relevant information

at the correct time.

1. Introduction
All of us want the things to be as quick as possible.

Be it the lift in a skyscraper or a restart of a computer.

Technology has become so advanced that people

actually want things at their hand’s reach or at least

available as soon as they need it. This is mainly

because of the advent of computers and the internet.

The internet is provided by different ISP present all

across the world. Each ISP has established policies that

allow limited download speed in order to provide a fair

usage to all its customers. This restricts the speed of

download of websites.

The main use of the internet is to share the resources

available with a person and hosting it in the public for

all to see and use it. Developers who create these

applications will want their product to be used by all

the users. All these applications are hosted online at

different web servers given by different vendors. Most

of the resources that are hosted online do not provide

the relevant information at first; it makes the user

irritated and hence they aren’t given the correct

information. The user either gets it slow or doesn’t get

the necessary information at the first. The causes for

the problems are either the plan of internet that the user

chooses or the speed of the network that the user is

connected to.

The developer of these resources does not have

control over the order or loading of the HTML

elements in the website. This paper proposes a concept

of Priority Based Loading of HTML Elements where

the new attribute called “priority” is added to the

HTML elements which modify the order in which the

HTML elements are loaded in the browser.

2. Existing System
The existing system is a browser that loads the

HTML elements in the First In First Out Order (FIFO),

a concept similar to the implementation of a queue. The

process of loading of browser elements starts with the

browser requesting certain resources from the internet.

The resource can be present at any server located all

around the world. The request at the Application Layer

will be the HTTP Request with the following format

178

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

GET / HTTP/1.1

Accept:*/*

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)

Host: www.example.com

Connection: Keep-Alive

The response from the server to the browser at the

Application Layer will be a HTTP Response. The

HTTP Response will contain a response status code

which returns the status of the HTTP Response. The

packet data will be the HTML document which is then

rendered by the browser.

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Mon, 04 Oct 2004 12:04:43 GMT

X-Powered-By: ASP.NET

X-AspNet-Version: 1.1.4322

Cache-Control: no-cache

Pragma: no-cache Expires: -1

Content-Type: text/html; charset=utf-8

Content-Length: 8307

<html>

 <head>

...

Figure 1. Basic Flow of Rendering

Once the browser gets the HTML response, the

browser starts parsing the HTML response. The HTML

standards have been defined by a XML schema which

provides the necessary format for the HTML document.

The browser generates a parse tree which contains

every element, attributes and the content as a tree node.

The parse tree is generated by the browser. All the

errors in the HTML code, mostly syntactical, are found

here and are ignored. The parse tree enables the

browser to know the elements present, attributes for

each of the elements present, and the styles that are

added to each of the element.

Figure 2. Gecko Rendering Engine Main Flow

From the parse tree that is generated, a render tree is

created by the browser. The elements of the render tree

are generated by choosing each element of the parse

tree and applying the attributes and styles for it. If an

external style sheet is referenced, the browser sends the

request for the stylesheet and the style rules are

generated. Once the styles are applied to the elements,

the frame constructor generates the layout using the

Reflow module and the elements are painted on the

browser from the frame tree.

Figure 2 provides the flow of loading and rendering

of HTML elements in Gecko Rendering Engine.

3. Browser Architecture
The browser's main components are:
The user interface – Every part of the browser

display except the main window where you see the

requested page.

The browser engine – The interface for querying

and manipulating the rendering engine.

The rendering engine – Responsible for displaying

the requested content.

Networking – Used for network calls, like HTTP

requests. It has platform independent interface and

underneath implementations for each platform.

UI backend – Used for drawing basic widgets like

combo boxes and windows. It exposes a generic

interface that is not platform specific. Underneath it

uses the operating system user interface methods.

JavaScript interpreter – Used to parse and execute

the JavaScript code.

179

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Data storage – This is a persistence layer. The

browser needs to save all sorts of data on the hard disk,

for examples, cookies.

Figure 3. Browser Architecture

4. Priority Based Loading
The proposed system makes slight changes to the

basic flow of rendering by bringing in the concept of

priority. According to this, every block element in the

HTML document will have an added attribute called

priority. The priority attribute will take values from 0-

10 with 10 having the highest priority. The priority will

be given to block elements such as <div>, <p>, <h1> to

<h6>, <body>. If a particular element is not given any

priority then a default priority 0 is assigned to that

element. The proposed system uses Priority Heap to

achieve priority based loading.

4.1 Priority Heap

The priority heap is a data structure that will contain

the node with the highest priority as the root node. The

elements in the heap are filled in the order of maximum

priority. The heap is represented as a Binary Search

Tree with elements having the two properties, viz.,

Order and Shape [2].

The ORDER property:

For every node n, the value in n is greater than or equal

to the values in its children (and thus is also greater

than or equal to all of the values in its sub-trees).

The SHAPE property:

1. All leaves are either at depth d or d-1 (for

some value d).

2. All of the leaves at depth d-1 are to the right

of the leaves at depth d.

3.

a. There is at most 1 node with just 1 child.

b. That child is the left child of its parent, and

c. It is the rightmost leaf at depth d.

4.2 Render Process using Priority Heap

The priority attribute will provide the browser

enough information to reorder the loading of elements

and load them into the browser. The flow of rendering

changes with the new attribute added to the HTML

elements. The rendering starts by constructing the parse

tree. The render tree is constructed from the parse tree

that is generated and the styles of the elements are

added to the render tree. The styles are fetched in

separate threads if needed by sending HTTP request for

them. Next to the render tree construction is the priority

heap generation.

After the render tree construction, a priority heap

needs to be constructed from the render tree. The

priority heap will have the element with the highest

priority at the root and the layout construction starts

from that. The layout of the document also called

“reflow” in terms of Gecko will be done by taking the

root element from the priority heap. The flow of

rendering in the proposed way is given below.

Figure 4. New Flow of Rendering Process

4.3 Rules of Reflow
The following are the rules that need to be followed

when constructing the layout of the HTML elements.

1. All the elements are loaded based on the value of

the priority. The value of a priority of parent

element will be given to the child element unless

a priority is explicitly defined for the child

element; in such case the rule 2 is followed.

2. When a child element will have priority defined

and the parent element doesn’t have a priority

180

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

value set, then the element is loaded with the

default layout attributes and when the parent

reaches the heap’s root the element the dirty bit

system is followed and the attributes are changed

based on the value of the parent’s layout

attributes

3. When removing elements from the heap for

layout or reflow, the conflict of two children

having same priority which is higher than the

parent is resolved by giving preference to the

block element.

3.1. If both the children are block

elements then the element which

appears at the first in the original

document will be chosen.

5. Implementation
The whole process has to be implemented at the

rendering engine of the browser. The rendering engine

contains different modules that allow the browser to

properly select each element and add its necessary

styles and then paint it in the browser area.

5.1 DOM Tree Construction
As we have already mentioned the render tree has to

be converted into a priority heap which contains all the

block elements based on the priority of each element.

Once the render tree is constructed, all the elements

from the tree are taken in FIFO manner and populated

in a heap. The heap is constructed based on the priority

value of each node. Consider the following example

<html>

<head>

 <title>Priority Based Loading </title>

</head>

<body>

 <div priority="5" id="Priority5">

 Element with priority 5

 </div>

 <div priority="2" id="Priority2">

 <div priority="7" id="Priority7">

 Element with priority 7 nested inside priority 2

 </div>

 </div>

</body>

</html>

The output of this HTML document is given below.

Figure 5. Output for the HTML Example

The whole concept of Priority based loading is that

the final layout is exactly the layout of the designed

HTML document. The order in which the elements are

loaded can be changed based on the priority attribute.

The DOM tree is constructed from the HTML

document and the tree is parsed based on the DOM

specification given by W3C [4].

Figure 6. DOM Tree Output for the Example

The DOM tree is essential to parse the document as

it can find all the errors in them.

The DOM starts with Document as root and all the

enclosing tags as its children. This goes on until the

leaves are reached. The DOM tree for the example is

given above. The DOM is represented in HTML tags

for better understanding.

5.2 Render Tree Generation

The next step is the construction of the Render Tree.

The Render tree is constructed only for the <body> and

its children and not the <head> section [1]. The render

tree for the example is as given below.

181

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 6. Render Tree Output for the Example

5.3 Construction of Priority Heap

The implementation till now has already been done

in the current web browsers. The next step is the

construction of the priority heap (the proposed system).

All the block elements and organize them in priority

way. The priority heap starts from the <body> tag.

5.4 Steps of Construction of Priority Heap

The priority heap is constructed as follows.

1. Select the <body> tag as the first node of

the heap and add it to the heap. Since the

priority value of <body> is not set, it is

taken as zero by default.

2. The render tree is read in depth first order.

The leftmost child, #Priority5, is taken as

the next node and added to the heap. Since

the priority is greater than the parent, the

elements are swapped. The heap is

balanced now.

3. The next element will be the child of the

#Priority5 element. Since no priority is set

for the text, it takes the value of the parent

as its priority value. This node is placed as

a child of the the root and no swapping is

needed as the heap is balanced.

4. The same process is continued untill the

final priority heap is generated.

The final priority heap that is generated is given

below.

Figure 7. Priority Heap Output for the Example

5.5 Layout or Reflow

The layout of the elements start with by reading the

heap’s root node, with the root node having the HTML

element with the highest priority. The next higher

priority node will replace the node removed and the

heap will rearrange accordingly.

Figure 8. Priority Heap (Root Element Removed)

In the given example, the element #Priority7 will

get loaded first. The node will be removed and the heap

will rearrange and have the Text “Element with priority

7 nested inside priority 2” element with loaded.

The next element to load is the #Priority5 element

and its text. The conflict in the heap during removal is

removed by choosing the block element over the Text

element.

This process continues until all the elements are

loaded and the layout is designed. The order in which

the layout is generated is governed by the priority of

the element given. Once the layout process has started

the painting can start simultaneously as and when the

elements are popped from the heap.

182

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 9. Priority Heap Removal of Elements

5.6 Painting

Once the layout or reflow is finalised the UI

Backend of the browser will provide the necessary User

Interface Elements to paint the layout defined. The

painting process occurs in a separate thread and all the

elements that are laid out are painted immediately.

6. Conclusion
The “Priority Based Loading of HTML elements”

enables the developer to decide the information that

needs to be loaded or rendered initially. This concept

once implemented will load the relevant blocks before

the other blocks based on the priority value set. This

will help the users of such HTML pages to view

content efficiently even in slow internet connection

environment as the relevant information is loaded first

and the irrelevant is loaded at the end.

7. Future Enhancements
Some of the future enhancements are

 Extending this concept to other Rendering

engines such as Webkit which is popularly used

by Chrome, Safari and Opera, which can

further be made into a HTML Standard.

 Implementing a new CSS rule “priority”,

similar to z-index which helps the developer to

use it as a style attribute but the style should be

set only for block elements.

 Using newer data structures to return data more

efficiently to the painting module.

8. Acknowledgements
We would like to thank our parents for providing us

with valuable education. We would also thank all the

authors of our reference who provided us with in depth

knowledge in the field. We would also like to thank our

Principal, Head of the Department and the Staff for

providing us with necessary resources to help us work

on this.

9. References
[1] http://taligarsiel.com/Projects/howbrowserswork1.htm

[2] http://pages.cs.wisc.edu/~vernon/cs367/notes/11.

PRIORITY-Q.html

[3] http://www.w3.org/DOM/DOMTR

[4] http://www.w3.org/TR/2003/REC-DOM-Level-2-

HTML-20030109/idl-definitions.html

183

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

