Prime Labeling Of Friendship Graphs

Dr. S. Meena

Associate Professor of Maths

Govt. Arts College, C.Mutlur-608102

Chidambaram.

K. Vaithilingam

Associate Professor of Maths Govt. Arts College, C.Mutlur-608 102 Chidambaram.

Abstract:

A graph with vertex set V is said to have a prime labeling if its vertices are labeled with distinct integer 1,2,3...|V| such that for edge xy the labels assigned to x and y are relatively prime. A graph which admits prime labeling is called a prime graph. In this paper we investigate prime labeling for some fan related graphs. We also discuss prime labeling in the context of some graph operations namely fusion and duplication in fan Fn

Keywords: Prime Labeling, Fusion, Duplication.

<u>1. Introduction:</u>

In this paper, we consider only finite simple undirected graph. The graph G has vertex set V = V(G) and edge set E = E(G). The set of vertices adjacent to a vertex u of G is denoted by N(u). For notations and terminology we refer to Bondy and Murthy [1].

The notion of a prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout. A (1982 P 365-368). [2] Many researches have studied prime graph for example in Fu.H.(1994 P 181-186) [5] have proved that path Pn on n vertices is a Prime graph.

In Deretsky.T(1991 p359 – 369) [4] have proved that the C_n on n vertices is a prime graph. In Lee.S (1998 P.59-67) [2] have proved that wheel W_n is a prime graph iff n is even. Around 1980 Roger Etringer conjectured that all tress have prime labeling which is not settled till today. The prime labeling for planner grid is investigated by Sundaram.M(2006 P205-209) [6]

In (2010) S.K.Vaidhya and K.K.Kanmani have proved the prime labeling for some cycle related graphs [7]

Definition 1.1

Let G = (V(G), E(G)) be a graph with p vertices. A bijection $f:V(G) \rightarrow \{1,2,...p\}$ is called a prime labeling if for each edge e=uv, gcd{f(u), f(v)}=1. A graph which admits prime labeling is called a prime graph.

Definition 1.2

Let u and v be two distinct vertices of a graph G. A new graph G1 is constructed by identifying (fusing) two vertices u and v by a single vertex x in such that every edge which was incident with either u or v in G now incident with x in G.

Definition : 1.3

Duplication: Duplication of a vertex v_k of a graph G produces a new graph G_1 by adding a vertex v_{k^l} with $N(v_{k^l})=N(v_k)$

In other words a vertex $v_{k^{l}}$ is said to be a duplication of v_{k} if all the vertices which are adjacent to v_{k} are now adjacent to $v_{k^{l}}$

In this paper we prove that the graphs obtained by identifying any two vertices of degree 2 in the fan graph Fn and two vertices which are adjacent to vertices of degree 2 (u_2 and v_2 or u_{n-1} or v_{n-1}) and the graph obtained by duplication the vertex of degree 2 admit prime labeling.

Definition : 1.4 (Friendship graph)

The friendship graphs T_n is a set of n triangles having a common central vertex.

Theorem.1

The friendship graph T_n is a prime graph

Proof:

Let V $(T_n) = \{ v_1, v_2, \dots, v_{2n+1} \}$ with v_1 as the centre vertex.

 $E(T_n) = \{ v_1 v_i / 2 \le i \le 2n+1 \} U \{ v_{2i} v_{2i+1} / 1 \le i \le n \}$

Define a labeling f: v(T_n) \rightarrow {1,2,2n+1} as follows:

 $f(v_i) = i$ for $1 \le i \le 2n+1$

Clearly f is a prime labeling

 T_n is a prime graph.

Theorem.2

The graph obtained by identifying any two vertices other than centre vertex of a friendship graph T_n is a prime graph.

Proof:

Let V (T_n) = { $v_1, v_2, ..., v_{2n+1}$ }

$$E(T_n) = \{v_1 v_i / 2 \le i \le 2n+1\} \cup \{v_{2i} v_{2i+1} / 1 \le i \le n\}$$

Where v_1 is the centre vertex of the friendship graph.

Let the vertex v_j be fused with u_k where $2 \le j \le k \le 2n+1$ and let the newe vertex be v and let G_v be the graph obtained by fusion of v_i and v_j

Now define a function f: $V(G_v) \rightarrow \{1, 2, \dots 2n\}$ as follows

 $f(v_1) = 1$

 $f(v_i) = i \text{ for } 2 \leq i \leq j-1$

 $f(v_i) = i-2$ for $j+2 \le i \le k-1$

f (v) =k-1

 $f(v_{j+1}) = k-2$

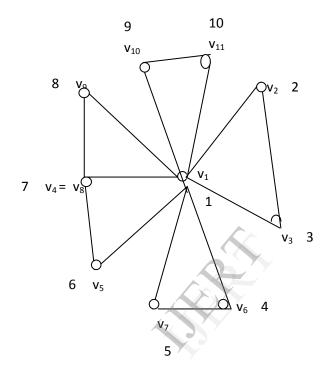
 $f(v_i) = i-1$ for $k+1 \le i \le 2n$

Clearly f is a prime labeling.

Thus G_v is a prime graph

Example

Consider T_5 and let G_v be the graph obtained by identifying v_j and v_k where j=4, K=8.



Theorem.3

The graph obtained by duplicating a vertex v_k except the centre vertex of the friendship graph T_n produces a prime graph.

Proof:

Let $V(T_n) = \{v_1, v_2, \dots, v_{2n+1}\}$ with v_1 as the centre vertex and let

$$E(T_n) = \{v_1 v_i / 2 \le i \le 2n+1\} \cup \{v_{2i} v_{2i+1} / 1 \le i \le n\}$$

Let G_R be the graph obtained by duplicating the v_k by the new vertex v_k^{1} .

Case (i):

If k is odd

Define a labeling f: $V(G_K) \rightarrow \{1, 2, \dots, 2n+2\}$ as follows:

 $f(v_1) = 1$

 $v(v_i) = i+1$ for $2 \le i \le 2n+1$

 $f(v_k^{1}) = 2$

Then clearly f is a prime labeling.

Case (ii):

If k is even

Define a labeling f: $V(G_k) \rightarrow \{1, 2, \dots, 2n+1\}$ as follows:

 $f(v_1) = 1$

 $f(v_i) = i$ for $1 \le i \le 2n+1$

 $f(v_k^{-1}) = 2n+2$

Then clearly f is a prime labeling.

Thus G_k is a prime graph .

Example:

be the new vertex.

V₁₁ V_{10} K=7 8 2 Qv2 **V**₁ 7 $v_4 = v_8^{0}$ 1 3 V_3 6 V_5 d_{v_6} 4 **V**7 14 K = 10 $v_{10}1$ 11 10 **v**₁₀ v_{12} 12 9 V۹ 8 ٧d v₁₃ 13 7 7 **V**7 v₂ 2 О С 3 V_3 Ò С v_6 V_5 **V**₄ 6 5 4

Consider T_6 and let G_k be the graph obtained by duplicating v_k and let v_k^{-1}

9

10

Theorem.4

The graph obtained by switching any vertex v_k in a friendship graph T_n produces a prime graph.

Proof:

Let V (T_n) = { $v_1, v_2, \dots, v_{2n+1}$ }

 $E(T_n) = \{v_1 v_i / 2 \le i \le 2n+1\} U \{v_{2i} v_{2i+1} / 1 \le i \le n\}$

Where v_1 is the centre vertex of T_n

Let G_k be the graph obtained by switching any arbitrary vertex v_k in T_n .

If k=1 then the function

f: v(G₁) \rightarrow {1,2,...2n+1} defined by f(v_i) = i for 1 \leq i \leq 2n+1 is a prime labeling for G₁

Assume that k>1

Case (i):

2n+1 is prime

Define a labeling f: $v(G_k) \rightarrow \{1, 2, \dots, 2n+1\}$ as follows:

 $f(v_i) = i$ for $1 \le i \le k-1$

 $f(v_k) = 2n+1$

 $f(v_i) = i - 1$ for $k+1 \le i \le 2n+1$

Then f admits prime labeling.

Case (ii):

If 2n+1 is not prime let P be the largest prime number such that p < 2n+1

Define a labeling f: $V(G_k) \rightarrow \{1, 2, \dots, 2n+1\}$ by

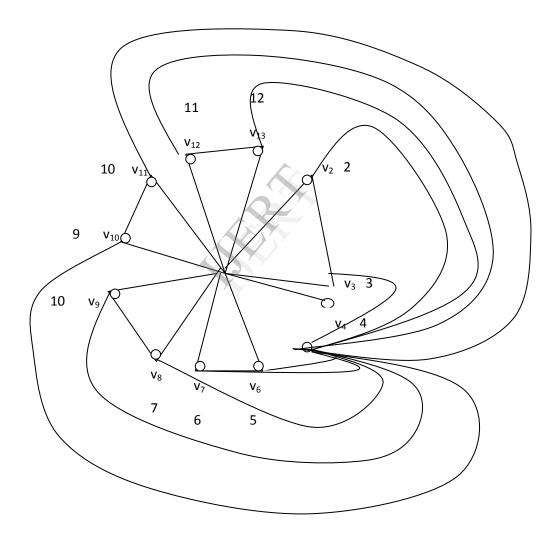
- $f(v_i) = i$ for $1 \le i \le k-1$
- $\label{eq:states} \begin{array}{ll} f\left(v_k\right) = p \\ \\ f\left(v_i\right) = i{\text -}1 \quad \mbox{ for } k{\text +}1 \leq i \leq p \end{array}$
- AR AN $f(v_i) = i \qquad \text{for } p+1 \leq i \leq 2n+1$

then f admits prime labeling

Thus G_k is a prime graph.

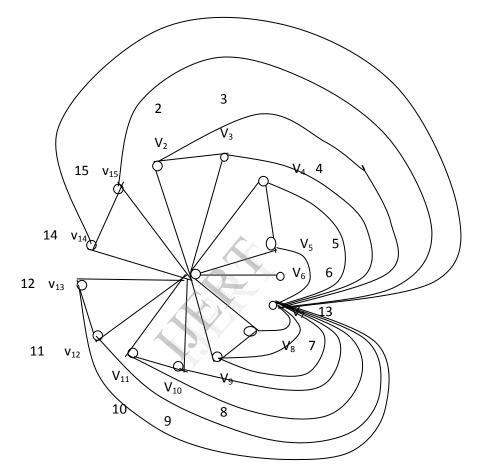
Example.1

Let G_5 be the graph obtained by switching vertex v_5 in T_6 (2n+1 is not prime)



Example.2

Let G_7 be the graph obtained by switching a vertex v_7 in T_7 (2n+1 is not prime)



Remark:

Path union of two copies of T_n is not prime. Since in the graph obtained by path union of two copies of T_n the number of vertices is 4n+2

References:

- J.A.Bondy and U.S.R.Murthy, Graph Theory and Applications(North-Holland).Newyork (1976)
- A.Tout A.N.Dabboucy and K.Howalla Prime labeling of graphs. Nat.Acad.Sci letters 11 (1982)365-368
- S.M.lee, L.Wui and J.Yen on the amalgamation of Prime graphs.
 Bull.Malaysian Math.Soc.(Second Series) 11, (1988) 59-67.
- To Dretsky etal on Vertex Prime labeling of graphs in graph theory, Combinatories and applications vol.1 J.Alari (Wiley. N.Y. 1991)299-359
- 5) H.C. Fu and K.C.Huany on Prime labeling Discrete Math, 127 (1994) 181-186.
- Sundaram M.Ponraj & Somasundaram.S.(2006) on prime labeling conjecture Ars Combinatoria 79 205-209
- Gallian J. A(2009), A dynamic survey of graph labeling. The Electronic Journal of Combinations 16 # DS6
- 8) S.K.Vaidya and K.K.Kanmani Prime labeling for some cycle related graphs Journal of Mathematics Research vol.2. No.2.May 2010 (98-104)