

Prevention of SQL Injection Attacks using RC4

and Blowfish Encryption Techniques

Sonakshi

M. Tech. Student

DCSA, KUK, Haryana

Rakesh Kumar

Professor

DCSA, KUK, Haryana

Girdhar Gopal

Assistant Professor

DCSA, KUK, Haryana

Abstract: SQL Injection Attacks (SQLIAs) are emerged

nowadays as one of the most serious threats to the security of

database-driven web applications. SQL injection attacks are one

of the most critical vulnerabilities in web applications that

software developers must address. The vulnerabilities can be

harmful because they allow an attacker to access the database

underlying an application. Using SQLIAs, an attacker may able

to read, modify, or even delete database information. In many

cases, this information is sensitive and its loss can lead to

problems such as identity theft and fraud. In this paper, the

problem of SQL injection attack is addressed using three

different prevention mechanisms. The first technique allows

single word inputs only by matching malicious symbols with the

list maintained which can prevent almost all types of SQLIAs.

The second one is the well-known parameterized query used to

handle these types of attacks & the last technique makes use of

RC4 and blowfish encryption mechanism instead of AES which

will drastically improve the performance by encrypting the

confidential fields in much less time as compared to AES

encryption method.

Keywords-Security breach; SQL injection; SQL injection

detection; SQL injection prevention; Web application attacks; Web

application Vulnerabilities

I. INTRODUCTION

Internet is the huge basket of information which is widely

used for communication. Sometimes, this communication

channel becomes insecure for exchanging information and

hence, the principles of information security are violated. The

database is the key element of most of the web applications

as it contains important assets [1]. The attacker can get

unauthorized access to the database with the help of crafted

query. The security breach exposes the database worldwide

which affects the reputation, liability and the clients of

organizations [2]. Applications are vulnerable to of new

security threats. According to OWASP [3], SQL injection is

ranked as number one in top 10 threats for web application

security in 2013. These attacks not only make the attacker to

breach the security and steal the contents of database but also

to make changes and manipulate both the database schema

and contents. No database is safe in web applications. The

Structure Query Language (SQL) is used for interaction with

relational database and the SQL query provides the result

from backend database [1]. Third generation web

technologies are mostly dependent upon parameter and its

values. Also, the dynamic web applications accept user inputs

through parameters i.e. request parameters [4]. Major threat

to dynamic web applications are SQL Injection attacks

(SQLIA). An SQL injection attack occurs when an input from

user contain SQL keywords so that dynamically generated

SQL query changes the intended function of that SQL query

[5]. In this attack, the attacker inserts a portion of SQL

statement via not sanitized user input parameters into the

original query and passes them to database server [6]. For

example, a web application may invite the user to fill a form,

post a comment, to submit a username and password for

authentication. An attacker can enter the following input

through user interface:

Username: ‘OR 1=1- -‘AND Password: ‘OR 1=1- -‘

This injected command would generate the following query:

SELECT user info FROM users WHERE id=’1’ OR 1=1- -’

AND password =’1’ OR 1=1- -’;

Because the given input makes the WHERE clause in the

SQL statement which is always true (a tautology) the

database returns all the user information in the table.

Therefore, the malicious user has been authenticated without

a valid login id and password [5]. Lack of input validation in

web applications causes hacker to be successful. Today, most

of the web applications use a multi-tier design, usually three

tiers: a presentation, a processing and a database tier. The

presentation tier in the HTTP web interface, and it displays

information related to such services as browsing,

merchandise [7]. The data processing within the web

application is done at the CGI tier. It can be programmed in

various server script languages such as JSP, PHP, ASP etc.

[8]. It implements the software functionality and the database

users and the rejection of malicious users from the database.

SQLI vulnerabilities and attacks occur between the

Presentation tier and the CGI tier. Basically, the SQLIA

process can be explained in three phases:

i) An attacker sends the malicious HTTP request

from a client to the web application as input.

ii) Generates a SQL statement

iii) Submits the SQL statements to the back end

database server.

Fig. 1. Web Application Architecture [8]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060092
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 25

When an authenticated user enters its Username and

Password, the Presentation tier uses the GET or POST

method to send the data to the CGI tier. The SQL query

within the CGI tier connects to the back end database,

processes the data and sends the result back to user [8].

This paper is organized in five sections as follows. Section 2

presents the types of attacks. Related work of SQLIA

detection and prevention techniques is discussed in section 3.

Proposed technique is provided in section 4 and the results

are shown in section 5. Finally, conclusion is provided in

section 6.
II. TYPES OF ATTACKS

For a successful SQLIA, the attacker should append a

syntactically correct command to the original SQL query.

The several types of attacks are discussed as follows [9] [10]

[11]:

A. Tautology

This type of attack represents to the SQL manipulation

category in which attacker can inject malicious code into

more than one conditional query statement to be evaluated

always true. It is mostly used to bypass authentication. For

example, in this type the queries are of the form:

Select * FROM accounts where name ='sonakshi’ OR 1= 1- -

‘; which gives all the rows as output because ‘1=1’is always

true.

B. Illegal/Logically Incorrect queries

Here the intention of attacker is to gather information about

the type and structure of back end database that is being used

in web applications [12]. These database error messages often

contain useful information that allow attacker to find out the

vulnerable parameter in an application and the database

schema. This attack will return a default error webpage,

which reveals important data. Mainly syntax errors are used

to perform this attack. For Example: Select * FROM accounts

WHERE login=’AND pwd=’AND Pin = convert (int, (select

table_name from information_schema.tables where

xtype='u')). This is the mysql php syntax. Here, the attacker

tries to extract the user table (xtype='u') from metadata table

i.e. tables, after which the query is being converted to an

integer, for that the system will throw an error because of

illegal type conversion. The type of error message generated,

will tell the attacker about the type of SQL Server being used.

Also, the attacker comes to know about the value of string

which caused the type conversion to occur [13] [14] [15].

C. Union query

This type of attack is mainly used to extract data. The output

of this attack is that the database returns a dataset that is the

union of the results of the original query with the results of

the injected query [16]. Its format is; ‘UNION SELECT <

part of injected query>’, where the query after UNION

keyword is fully under control of the attacker so that he/she

can retrieve data from any table which is not intended by the

actual query [12]. For example: SELECT * FROM user

WHERE id= ‘1111’ UNION SELECT * FROM member

WHERE id=’admin’ –‘ AND Password= ‘1234’ ; Injected

query is concatenated with the original SQL query using the

keyword UNION in order to get information related to other

tables from the application.

D. Piggy-backed query

 Here, the additional query is injected into the original one.

As a result, database has to process multiple queries

simultaneously. Database treats this query as two different

queries which are separated using the delimiter (‘;’).

Normally the first query is legitimate query, whereas the

following query could be illegitimate. So, the attacker can

inject virtually any type of SQL command to the database

[17] [18] [19] [20]. For example, the attacker injects “O; drop

table user” into the pin input field instead of logical value.

Then the query will be produced as: SELECT * FROM users

WHERE id= ‘admin’ AND password = ‘1234’; DROP

TABLE user;--‘; Because of “;” character, database accepts

both queries and executes them. The second query is

illegitimate and can drop user table from the database.

E. Stored Procedure attacks

In this attack, the attacker tries to execute already present

stored procedures in the database. Through this, the attacker

identifies the current database being used, hence causing

harmful effects. For example, Consider a SQL query;

SELECT id FROM users WHERE login=' "+@Name+", and

pwd=' "+ @passwrd+” and pin=" + @pin+” ‘. To perform

this attack, the attacker injects ' '; SHUTDOWN; into either

Name or password, which would results in shut down of

database [21].

F. Inference attacks

Here, the attacker observes the response of the webpage after

injecting some malicious code into it. Usually this attack

takes place when attacker cannot use the error messages

generated by the database. "Timing Attacks" and "Blind

Injections" are the two kinds of inference attacks techniques.

With these types of attacks, intruders change the behavior of

a database or application [22]. These are as discussed as

follows:

1) Blind Injection

The developers hide error details from the attackers, so that

they won’t get any help from the database. In this case, the

attacker faces a generic page provided by developer, instead

of an error message. An attacker can still steal the data by

asking a series of True/False questions through SQL

statements [1] [18].

2) Timing Attacks

 A timing attack lets an attacker, gather information from a

database by observing timing delays in database responses.

This technique makes the use of “if-then” statement which

causes the SQL engine to execute a long running query or a

time delay statement depending upon the logic injected. In

time based attacks, attacker introduces a delay by injecting an

additional SLEEP(n) call into the query and then observing if

the webpage was actually delayed by n seconds [23].

‘WAITFOR’ is a keyword which causes the databases to

delay its response by a specified time [16], [19]. For example,

declare @varchar (8000) select @s= db_name() if

(ascii(substring(@s,1,1)) & (power(2,0)))>0 waitfor delay

‘0:0:5’

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060092
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 26

In the above query, database will pause for five seconds if the

first bit of the first byte of the name of current database is 1.

Then the code is injected to generate a delay in response time

when the condition is true.

III. RELATED WORK

The researchers have proposed various methods to address

the SQL injection problem and there are many solutions

proposed in the literature. These are discussed below:

Indrani Balasundaram, E.Ramaraj [26] proposed an

authentication mechanism to prevent SQL injection attack

using Advance Encryption Standard (AES). In this method,

encrypted username and password are used to improve the

authentication process with minimum overhead. The method

has proposed three phases, in the first phase i.e. registration

phase, server sends a registration conformation. In the second

phase i.e. login phase, user can access the database from

server. The username and password is encrypted by using

Advance Encryption Standard (AES) algorithm by applying

user secrete key and the SQL query is generated using

encrypted username and password. Then the query will be

sent to server. In the third phase i.e. verification phase, server

gets the login query and verifies the corresponding users

secrete key. If they matches then the decrypted username and

password is checked from user account table. If it matches,

then user is accepted otherwise rejected.

Mayank Namdev, Fehreen Hasan, Gaurav Shrivastav [24]

have given a model to block SQL injections which is based

on verification information. They have combined two

approaches and created a new hybrid algorithm which works

by applying the hash code with encryption for more security.

In this approach, two extra columns are needed, one for

storing the hash values of username and another one for

storing the hash values of password. When the account of

users is created for the first time, the hash values are

calculated and stored in user table. The hash values are

calculated at runtime using stored procedure when user logs

into the database. The values which are calculated at runtime

are matched with stored hash values in database table. Thus,

if user tries to inject to the query, the proposed method will

automatically detect the injections as malicious content &

rejects the values. Therefore, it cannot bypass the

authentication process. Its advantage is that hackers do not

know about the hash value concept.

A similar approach to protect web applications against SQL

Injection attacks is proposed by Neha Mishra, Sunita Gond

[27] in which the authors has discussed some predefined

methods and also proposed an integrated approach of

encryption method with secure hashing. The technique works

by creating two columns by DBA for storing username and

password, in the same way as done in previous approach by

[24] The secure hash values are generated at runtime using

stored procedure if a user wants to login to the database.

These values are stored in login table when the user’s account

is created first time. If a user wants to login to the database,

his/her identity is verified via username, password and secure

hash values. The combined approach of secure hashing on

encryption is provided. The purpose of encrypting data is that

it helps to change the data into a form that is not readable

[28].

IV. PROPOSED METHOD

On studying the various SQL injection prevention techniques,

a new technique is proposed in this paper for preventing the

database against SQL injection attack. In the proposed

approach, the security is provided in three different phases,

such as:

1) Input Validation using query tokenization and log

maintenance at login phase

At the login phase, user is allowed to enter single word

instead of multi-words which is the basic cause of SQL

injection attacks. By the use of single word, possibility of

attack is reduced to minimum. In this way, malicious activity

is detected if a user enters username or passwords using

multi-words e.g. ‘OR 1=1- -‘. In this example, there is a

space after “OR” so, it is treated as multi-word input. Almost

all types of SQL injection attack types are prevented by

allowing single word input only. At the same time, the input

is tokenized, and list of various known malicious symbols or

tokens are maintained in a log file. The validation process at

login phase checks the entered input and matches it with

malicious known symbol list. If a match is found, then further

access is restricted and that user is considered as malicious

one. In the proposed scheme, the IP address of malicious

user’s system along with date, time and page of application

from which the entry is made is saved for future reference. It

will help to keep a check on malicious activity in future as

well. System will continuously observe user’s login detail

and compare it with saved database and looks for particular

IP address who has visited the page given number of times &

if found to be malicious is blocked for further access. The

input entered by users is stored in logs table as shown in fig.

1 below.

Fig.2. Log entries of users is stored in logs table of database

2) Use of Parameterized queries

Using dynamic SQL queries is the root cause of SQL

injection vulnerability. OWASP also recommends the use of

parameterized queries as the first choice of prevention

techniques for this vulnerability [29]. A dynamic query

directly uses user’s input into the query. While the SQL

Parameterized Query forces the user to implement the logic

of SQL query first and then inserting the user input values

into it. This forces the SQL query to be built before entering

any user input in it. The SQL query is sent as a query, and the

database knows exactly what this query will do, and only

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060092
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 27

then it will insert the username and passwords as values. This

means they cannot affect the query, because the database

already knows what the query will do. So in this case it

would look for a valid username and password not the

malicious values. It won’t allow direct insertion of user input

value at the query creation step because it doesn’t make use

of concatenation symbols like “+”, “.” etc., which are most

vulnerable to SQLIA. E.g. $sql = "select `id` from users

where username=? and password=?”;Another advantage of

using SQL parameterized query is that it forces the data type

of user input for a particular field in SQL query.

3) Encryption of Confidential data values at back end

database using RC4 & blowfish algorithm

Encryption of confidential data helps to change the data into a

form that is not readable [28], hence it helps to prevent

database attacks. In the proposed method, the data is

encrypted using RC4 & blowfish algorithm instead of AES,

because these both have less time complexity as compared to

AES i.e. they takes less time to encrypt the same lines of

input if is done with AES algorithm. Another advantage is,

RC4 algorithm is also symmetric i.e. the same key is used for

encryption & decryption which takes less storage space to

store a single public key. The process works by encrypting

the user’s registration & login details using RC4 algorithm or

blowfish at backend. Whenever a new user registers his

account, a unique secret key is generated and stored. At the

time of login, the generated secret key is matched with the

stored one, if a user is valid only then his/her information is

decrypted otherwise it is present in encrypted form on

backend server so that attacker cannot understand the exact

data values.

Fig .3.Login form

In the above Fig. 1, the user has tried to login through

injection, so if user tries to read the password of any other

user through search page then he won’t get succeed because

the password is present in encrypted form at backend. The

same can be seen in figure 2.

Fig.4. Encrypted password values at backend

It provides advantages in two ways. Firstly, the confidential

data such as passwords and other personal information is also

stored in encrypted form which ensures data confidentiality

and integrity as in fig. 3. Secondly, if a user tries to enter

some malicious keywords like ‘OR 1=1- -‘ in password field,

it will be encrypted into some other form and hence user will

not be able to access by using these keywords as done in

tautology attack and an error message will be displayed such

as in fig. 4.

Fig 4: Error due to injected password field

V. IMPLEMENTATION AND RESULTS

As an instance, a text file of size 5 KB approximately, is read,

and its encryption and decryption time is noted corresponding

to AES encryption algorithm, RC4 and Blowfish algorithm

respectively in table 1 given below. Also, it can be seen in

graph 1 which shows blowfish has least time complexity

among all three encryption algorithms. So, it enhances

performance by encrypting the confidential information faster

than before.

TABLE I. Encryption, decryption and total time
Algorithm Enc. Time(sec.) Dec. time(sec.) Total time

(sec.)

AES 0.499 0.494 0.993

RC4 0.048 0.031 0.079

Blowfish 0.002 0.002 0.004

The graph 2 shows the total time taken by all the three

encryption algorithms given in table 1. Clearly, it can be seen

that AES takes the more time to encrypt and decrypt the input

fields than RC4 and blowfish algorithms.
GRAPH I.

Graph I. Representation of encryption and decryption time of Blowfish,

RC4 and AES encryption algorithm

GRAPH II.

0 0.5

AES

RC4

Blowfish

DecTim
e(sec)

EncTime
(sec)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060092
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 28

Graph II. Representation of total time in seconds

VI. CONCLUSION

The paper presented a novel and applicable technique for

protecting web applications from SQLIAs. The approach

consists of allowing single word user inputs only, that will

automatically eliminate all sources of attack vulnerabilities.

The next approach used is Rc4 and blowfish encryption

methods which will enhance performance due to their less

time complexity. AES is very complex encryption standard

while RC4 is very old and simple. Both RC4 and Blowfish

are faster in performance as compared to AES technique.

Since, the technique is developed at application level, it

requires no modifications in the existing runtime system and

imposes less execution overhead to reduce SQL injection

attacks almost in every way.

REFERENCES

[1] Chandrashekhar Sharma and Dr. S.C.Jain, "Analysis and Classification
of SQL injection vulnerabilities and Attacks on Web Applications," in

IEEE International Conference on Advances in Engineering and

Technology research(ICAETR), Kota, 2014.

[2] [Online]. http://www.w3.org/protocols

[3] (2013) The Open Web Applications Security Project,"OWASP TOP

Project". [Online]. http://www.owasp.org/SQL_Injection

[4] Venkatramulu Sunkari and Dr. C.V. Guru Rao, "Preventing Input type

Validation Vulnerabilities using network based Intrusion detection

System," in International Conference on Contemporary Computing and
Informatics(IC3I), Warangal, 2014, pp. 702-706.

[5] MeiJunjin, "Anon vulnerability detection approach for SQL inject,"

IEEE, pp. 1411-1414, 2009.

[6] N. Antunes and M. Vieira, "Defending against Web Appliaction

Vulnerabilities," vol. 45, no. 2, pp. 66-72, 2012.

[7] Bojken Shehu and Aleksander Xhuvani, "A Literature review and
Comparative Analyses on SQL Injection: Vunerabilities, Attacks and

their Prevention and Detection Techniques," International Journal of

Computer Science Issues(IJCSI), vol. 11, no. 4, pp. 28-37, July 2014.

[8] Jeom-Goo Kim, "Injection Attack Detection using the Removal of SQL

Query Attribute Values," IEEE, 2011.

[9] Diallo Abdoulaye Kindy and Al-Shakib Khan Pathan, "A surevey on
SQL injection : Vulnerabilities, Attacks and Prevention Techniques," in

IEEE 15th International Symposium, 2011.

[10] Atefeh Tajpour, Suthaimi, and Maslin Masrom, "SQL injection
detection and prevention techniques," Inetrnational journal of

Advancements in Computing Technology, vol. 3, no. 7, August 2011.

[11] W.G. Halfond, J. Viegas, and A. Orso, "A classification of SQL
injection Attacks and countermeasures," in International Symposium on

Secure Software Engineering, 2016.

[12] Sruthy Manmadhan and Manesh T, "A method of detecting SQL

Injection attack to secure web applications," International Journal of

distributed and Parallel Systems(IJDPS), vol. 3, no. 6, November 2012.

[13] S. McDonald, "SQL Injection: Modes of attack, defense, and why it

matters," White paper, GovernmentSecurity.org, April 2012.

[14] Haeng Kon Kim, ""Frameworks for SQL Retrieval on Web Application
Security," in International Multiconference of Engineers and computer

scientist, 2010.

[15] K. Phalguna Rao, Dr. Ashish B.Sasankar, and Dr. Vinay Chavan,
"Analysis of Detection and Prevention Techniques Against SQL

Injection Vulnerabilities," IJCST, March 2013.

[16] V. Nithya, R. regan, and J. Vijayaraghavan, "A survey on SQL injection
attacks, their Detection and Prevention techniques," International

Journla of Engineering and Computer Science, vol. 2, no. 4, pp. 886-

905, April 2013.

[17] Aanal Bhanderi and Nency Rawal, "A Review n detection Mechanism

for SQL Injection Attacks," International Journal of Innovative

Research in Science, Engineering and Technology, vol. 4, no. 12, pp.
12446-12452, December 2015.

[18] Pupendra Kumar and R.K. Pateriya, "A Survey on SQL injection

attacks, detection and prevention techniques," IEEE ICCCNT, 2012.

[19] Atefeh Tajpour, Suhaimi Ibrahim, and Mohammad Sharifi, "Web

application Security by SQL Injection Detection Tools," International

Journal of Computer Science Issues(IJCSI), vol. 9, no. 2, pp. 332-339,
March 2012.

[20] Mahima Srivastava, "Algorithm to Prevent Back end database against

SQL Injection Attacks," IEEE, pp. 754-757, 2014.

[21] Pankajdeep Kaur and Kanwalpreet kaur, "SQL Injection: tTudy and

Augmentation," in International Conference on Signal Processing,

Computing and Control (2015 ISPCC), Jalandhar, 2015.

[22] Shubham Mukherjee, Sudeshna Bora, Pritam Sen, and Chittaranjan

Pradhan, "SQL Injection: A Sample Review," in 6th ICCCNT 2015,

Denton, U.S.A, 2015.

[23] Debrata Kar and Suvasini Panigrahi, "Prevention of SQL Injection

attack using query transformation and hashing," in 3rd IEEE

International Advance Computing Conference(IACC) , 2013, pp. 1317-
1323.

[24] Mayank Namdev, Fehreen Hasan, and Gaurav Shrivastav, "Review of

SQL Injection Attack and Proposed method for detection and
Prevention of SQLIA," International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 2, no. 7, pp. 24-28,

July 2012.

[25] NTAGWABIRA Lambert and KANG Song Lin, "Use of Query

Tokenization to detect and prevent SQL Injection Attacks," IEEE, pp.

438-440, 2010.

[26] Balasundaram Indrani and E. Ramaraj, "An Authentication Mechanism

to prevent SQL injection Attacks," International Journal of Computer

Applications, vol. 19, no. 1, pp. 30-33, April 2011.

[27] Neha Mishra and Sunita Gond, "Defenses to protect against SQL

Injection Attacks," International Journal of Advanced research in

Computer and Communication Engineering, vol. 2, no. 10, pp. 3829-
3833, October 2013.

[28] Priyanka and Vijay Kumar Bohat, "Detection of SQL Injection Attack

and Various prevention Stategies," International Journal of Engineering
and Advanced Technology, vol. 2, no. 4, April 2013.

[29] Infosec Institute. [Online].
http://resources.infosecinstitute.com/parameterized-sql-query-dynamic-

sql-query/

0

0.5

1

TotalTime(sec)

TotalTime(sec)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060092
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 29

