ISSN: 2278-0181

NSNMN-2015 Conference Proceedings

Preparation and processing of Al 336/ (0-10) wt. % SiC_p composites

¹ Harikrishnan. T, ¹ M. R. Sarathchandradas Department of Mechanical engineering S.C.T College of Engineering Thiruvananthapuram, India

Abstract— Aluminium alloy metal matrix reinforced with SiCp, composites have been increasingly used nowadays do to their high strength to weight ratio, good wear resistance, better temperature strength etc over unreinforced alloy. In the present study, Al 336 alloy, Al 336 -5 wt. % SiCp and Al 336- 10 wt. % SiCp composites were prepared. Preparation of Al 336 -5 wt. % SiCp and Al 336- 10 wt. % SiCp composites were done using Stir casting method. Micro structural analyses were performed on prepared Al 336/ (0-10) wt. % SiCp composites. The microstructure analysis of Al 336 alloy showed a- aluminium and eutectic silicon. But in the case of Al 336/5 wt. % SiCp and Al 336/10 wt. % SiCp composites, apart from α-aluminium and eutectic silicon, SiC particles were found to be uniformly distributed. Tests to determine the mechanical properties of Al 336/ (0-10) wt. % SiCp composites were performed before and after heat treatment operations. Mechanical properties like Ultimate tensile

Keywords- Al 336 alloy, Al-SiCp composites, Stir casting method, Microstructure

strength and hardness values of Al 336/ 10 wt. % SiCp

composites were found to be highest compared to Al 336/5 wt.

% SiCp and Al 336 alloy respectively.

I. INTRODUCTION

Metal matrix composites (MMC) in general consists of a metal matrix (generally an alloy) and a reinforcement. Particulate-reinforced metal-matrix composites attracted considerable attention over other MMC due to the Successful development of manufacturing process to produce MMC with reproducible microstructures, availability of a spectrum of reinforcements at a competitive cost, excessive manufacturing cost associated with high cost of continuous fiber reinforcement material etc. Aluminium matrix composites (AMC's) finds wide application in industrial, automobile, space related and military engineering fields [1].

Several metallic systems can be considered for use as a matrix material for metal matrix composites

²V. R. Rajeev Department of Mechanical engineering

College of Engineering Trivandrum Thiruvananthapuram, India

Such as Aluminum, Titanium, Magnesium, Copper, Bronze, Nickel, Lead, Silver etc. The most important have been the non-ferrous lightweight materials for structural use such as aluminum, titanium and magnesium because specific properties of these materials can be enhanced to replace heavier monolithic materials. Aluminum is the most attractive non-ferrous matrix material used particularly in the aerospace and transportation industries where weight of structural components is critical. Reinforcements used for the preperation of AMC's are generally ceramics. Typically ceramics are oxides, carbides, and nitrides which are used because of their excellent combinations of specific strength and stiffness at both ambient temperature and at elevated temperatures. Silicon carbide, aluminium oxide and boron carbide are the key particulate reinforcements that are used nowadays for the preparation of AMC's [2]. SiC reinforced aluminium alloy metal matrix composites have been increasingly used nowadays do to their high strength to weight ratio, good wear resistance, better temperature strength etc over unreinforced alloys.

Al 336 alloy is selected as the matrix material in this work. This is because, Al 336 alloy finds wide applications like automotive and diesel pistons, pulleys and other applications where high wear resistance, high-temperature strength, high thermal conductivity, low coefficient of thermal expansion etc are required. Here in this work SiC is selected as the reinforcement material and Al 336 alloy as the matrix material. Stir casting method was used for the preparation of Al 336/ SiCp composites. The main research challenge associated with Al-SiCp composite preparation was to get a uniform distribution of SiC in the aluminium matrix. Through various experimental findings, it was found that uniformity of SiC particles in the aluminium matrix were dependent on shear rate, shear period, cooling rate and volume fraction of the primary solid [3].

II. MATERIAL PREPARATION

'Oil fired tilting furnace' was used for the preparation of Al 336 alloy. Initially the Oil fired tilting furnace will be fired, and their after the vessel is allowed to be heated until it becomes ready for charging. Their after the charge components will be inserted onto the furnace in right proportions. Charge components that are used for the preparation of Al 336 alloy are Al 6063 wrought alloy, Al -50 wt. % Si, Al -50 wt. % Cu and Al -10 wt. % Ni master alloy. Chemical composition of Al 336 alloy (in wt. %) is given in table 1

TABLE 1 Chemical composition of Al 336 alloy

Al	Mg	Si	Fe	Mn	Cu	Ni	Zn
82.7	0.7	12	0.65	0.22	1.5	2	0.14

A. Al 336/ (0-10) Wt. % SiCp composite preparation

Stir casting method was used for the preparation of Al 336/ (0-10) wt. % SiCp composites [6]. Al 336/ (0-10) Wt. % SiCp composite preparation unit consist of a Stir casting furnace, Thyristor temperature controller, Heating furnace, Stirrer motor unit along with stirrer blade attached stirrer shaft, Stirrer speed regulator, Reinforcement addition unit (SiCp Injecting gun) and Permanent mould. Initially the temperature of stir casting furnace was set to a temperature above 890 °C. The SiCp reinforcement was preheated to a temperature above 450 °C for 4-5 hours using heating furnace.

When the stir casting furnace reaches the set value of temperature, Al 336 alloy that was selected as the matrix alloy was charged onto the furnace. After a required period of time the temperature of stir casting furnace was lowered to 725 °C. When the molten Al 336 alloy reaches 725 °C, lumps of magnesium (1 Wt %) wrapped in aluminium foil were plunged into the melt. Lumps of magnesium were added on to molten Al 336 alloy inordrer to improve the fluidity and Wettability between the matrix and SiC reinforcement. Their after the stirrer rod was inserted inside the graphite crucible containing molten Al 336 alloy which was driven by a speed variable motor and their by creating a vortex in the melt. After the formation of vortex in the melt region, preheated SiC particles were added on to the vortex, precisely at a uniform rate using injecting gun. The stirring of composite slurry was performed at 450 rpm and

the mixture was stirred for 4-5 minutes. Upward and downward feed was given to stirrer rod for getting uniform mixing of SiC reinforcement in Al 336 alloy matrix. Molten Al 336/ SiCp composite mixture after thorough stirring in the crucible were taken out and poured onto a metallic mould. Thus by using this stir casting method Al 336/ 5 wt. % SiCp and Al 336/ 10 wt. % SiCp composites were prepared.

III. RESULTS

A. Microstructure

Microstructures of prepared Al 336 alloy, Al 336/5 wt. % SiC and Al 336/10 wt. % SiC composites were shown in Fig 1, Fig 2 and Fig 3. The microstructure analysis of Al 336 alloy showed α-aluminium, eutectic silicon and a few intermetallic compounds. But in the case of Al 336/5 wt. % SiCp and Al 336/10 wt. % SiCp composites, apart from α-aluminium and eutectic silicon, SiC particles were found to be distributed in a uniform manner.

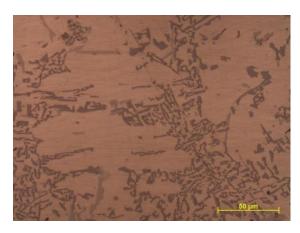


Fig. 1 Microstructure of Al 336 alloy at 500X Zoom

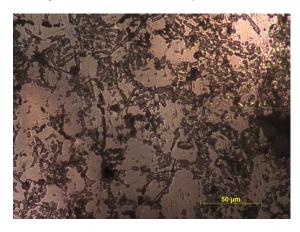


Fig 2. Microstructures of Al 336-5 wt. % SiCp composite at 500X Zoom

2

ISSN: 2278-0181

Fig 3. Microstructures of Al 336–10 wt. % SiCp composite at 500X Zoom

B. Mechanical properties

Densities of prepared Al 336 alloy, Al 336 -5 wt %SiC and Al 336 -10 wt % SiC composites were 2.64 g/cc, 2.49 g/cc and 2.32g/cc respectively. Measurement of hardness of Al 336/ (0-10) wt. % SiC composites was done using Brinell hardness tester. Fig. 4 shows the variation in hardness value of Al 336/ (0-10) wt. % SiCp composite with respect to weight % SiCp before and after heat treatment. It is clear from fig.4 that hardness value increases with increase in weight % SiCp and after heat treatment conditions. Al 336-10 wt. % SiCp composite processes the highest hardness and Al 336 alloy processes the lowest value of hardness. The Ultimate tensile strength of Al 336-10 wt. % SiCp composites (241 MPa) was found to be the highest compared to Al 336-5 wt. % SiCp (192 MPa) and Al 336 alloy (130 MPa) respectively.

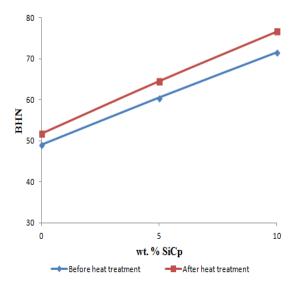


Fig. 4. Variation of BHN with wt. % SiCp

IV. CONCLUSION

- By using Stir casting method Al 336/ (0-10) wt. %
 SiCp composites were successfully prepared.
- Microstructure features of Al 336 alloy showed α-aluminium and eutectic silicon. Apart from α-aluminium and eutectic silicon, SiC particles were found to be uniformly distributed in Al 336 -5 wt.
 % SiCp and Al 336 -10 wt. % SiCp composites.
- Hardness values of Al 336 -10 wt. % SiCp composites was found to be the highest compared to Al 336 -5 wt. % SiCp composite and Al 336 alloy. Similarly Al 336 -5 wt. % SiCp composite have higher value of hardness than Al 336 alloy.
- Ultimate tensile strength of Al 336 -10 wt. % SiCp composites (241 MPa) was found to be the highest compared to Al 336 5 wt. % SiCp (192 MPa) and Al 336 alloy (130 MPa) respectively.
- Mechanical properties of Al 336/ (0-10) wt. % SiCp composites were found to be increased after heat treatment operations.

V. REFERENCES

- M.K.Surappa, "Aluminium matrix composites: challenges and opportunities", Sadhana, 2003-VOL 28, PP. 319-334.
- [2] T.S Srivatsan, "Processing techniques for particulate-reinforced metal aluminium matrix composites", Journal of material science-VOL 26(1991), PP. 5965-5978
- [3] S.Naher, D.Brabazon, L.Looney, "Development and assessment of a new quick quench stir caster design for the production of metal matrix composites", Journal of materials processing technology,166(2004),PP.430-439.
- [4] V.R. Rajeev, D.K.Dwivedi, S.C. Jain, "Dry reciprocating wear of Al-Si-SiCp composites: A statistical analysis", Tribology International 43 (2010), pp. 1532–1541
- [5] R.K. Uyyuru, M.K.Surappa, S.Brusethaug, "Tribological behaviour of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions", Tribology international 40 (2007), pp. 365-373.
- [6] Amol.D.Sable, S.D. Deshmukh, "Preparation of metal matrix composites by stir casting methods". International journal of mechanical engineering and technology (IJMET) -VOL 3 (2012), PP. 404-41
- 404-41
 [7] S.Naher, D.Brabazon, L.Looney, "Simulation of stir casting process",
 Journal of materials processing technology 143-144 (2003), PP. 567-571.
- [8] Tamer Ozben, Erol Kilickap, Orhan Cakır, "Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC", Journal of materials processing technology 198 (2008), pp. 220–225
- [9] "Heat Treating", ASM Handbook-VOL 4, ASM International. (1991)
- [10] Florence Paray, "Heat treatment and mechanical properties of aluminum-silicon modified alloys", Vol 1, pp. 63-92
- [11] S. Balasivanandha prabu, L. karunamoorthy, S. Kathiresan, B. Mohan, "Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite", Journal of materials processing technology 171 (2006), pp. 268-273
- [12] N Aniban, R.M. pillai, B.C. Pai, "An analysis of impeller parameters for aluminium metal matrix composites synthesis", Materials and design 23(2002), pp. 553-556
- [13] Robert J Mcdonough, Van Nostrand Reinhold, "Mixing for the process industries", (1992).
- [14] Matgorzata Warmuzek, "Aluminum-Silicon Casting Alloys Atlas of Microfractographs", ASM International, Material information society (May 2004)
- [15] P.Shanmughasundaram, R. Subramanian, "Influence of Magnesium and Stirrer model in production of Al- fly ash Composites- A Taguchi approach", Journal of applied sciences and research (2012), pp. 1646 – 1653.
- [16] "Properties and selection: Nonferrous alloys and special purpose materials", ASM Handbook Vol. 2, ASM International.