
Possibility of Amharic Query Processing in

Database using Natural Language Interface

Smegnew Asemie1,

1Mizan Tepi University,

School of computing and informatics,

Tepi, Ethiopia

Tefery kibebew2
2Jimma University,

School of Computing and Informatics,

 Jimma, Ethiopia

Getachew Mamo2,
2Jimma University,

School of Computing and Informatics,

Jimma, Ethiopia

Abstract— In the present computing world, computer based

information technologies have been extensively used to help

many organizations, private companies, academic and

education institutions to manage their processes and

information systems. A general information management

system that is capable of managing several kinds of data, stored

in the database is known as Database Management System

(DBMS). Database Management System is a collection of

interrelated data and set of programs to access those data. In

this paper, we have designed and developed Amharic Language

Interface for database, so that user can easily communicate

with database without the knowledge of database language like

SQL. So, in order to address this issue we have developed an

algorithm to efficiently map Amharic language into Structured

Query Language (SQL). We divided the algorithm into four

parts an algorithm to handle query selection, an algorithm to

handle conditional query, an algorithm to handle aggregation

and grouping and ordering queries. The algorithm has been

implemented in Java and tasted on Human Resource

Management (HRM) database containing Employee,

Department and Employee on education tables. The

experimental result shows that 91% overall accuracy.

However, the system shows better performance in single and

multiple conditional query, grouping and ordering query and

aggregation functions, it doesn’t work with Amharic temporal

queries. Further improvement will be done to include

temporal queries in ANLIDB.

Keywords— NLIDB, Amharic Language Interface to Database,

Natural Language Processing (NLP)

INTRODUCTION

Since a long time ago, information has been playing an

important role in our lives; most people try to get the

information they need before making a decision. One of the

major sources of information is database. Database contains

a collection of related data, stored in a systematic way to

model the part of the world. In order to extract information

from a database, one needs to formulate a query in such a

way that the computer will understand and produce the

desired output. However, not everybody is able to write such

queries, especially those who lack a computer background

[1].

A language is the primary means of communication used by

humans. Natural Language Processing (NLP) is a technique

which can make a computer to understand a natural language

and easily communicate with a human being. In the context

of Human Computer Interaction (HCI), there are many NLP

applications such as Information Retrieval Systems,

Information Extraction, Speech Recognition, Language

Translator, Question Answering, (QA) Natural Language

Interface to Database (NLIDB), and Dialog Systems [2].

NLIDB deals with representation of user request to database

in his/her native language. NLIDB then maps the user

request in standard SQL to retrieve desired results from the

target database. The purpose of this interface/system is

to facilitate access by the user through hiding

complexities of database query language syntax. Thus the

user writes his/her request similar to email message and

submit to NLIDB system. The system then understands the

request and translates it in accurate database query so that

the precise results can be retrieved.

Amharic is the official working language of the Federal

Democratic Republic of Ethiopia and thus has official status

nationwide and the official or working language of several

of the states/regions within the federal system, including

Afar, Amhara, Somali, Gambela, Benishangule Gumuz,

Oromia, Tigray, and the multi-ethnic Southern Nations,

Nationalities and Peoples region. The language is spoken as

a mother tongue by a large segment of the population in the

northern and central regions of Ethiopia and as a second

language by many others. It is the second most spoken

Semitic language in the world next to Arabic [3]. One of the

major differences between Amharic and Semitic languages

like Arabic and Hebrew is that Amharic is written from left

to right as of English [4].

So, to make database applications easy to use for these

people, we have present a model and an algorithm to convert

Amharic sentence into SQL and retrieve relevant text from

a Relational Database. It has been use HRM database with

Employee, Department, and Employee on education table as

a case study for developing a natural language query

processing from a database system. The query has been

asked in Amharic sentence for retrieving relevant

information from databases and display the results in the

same.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

467

I. Natural Language Interface to Database (NLIDB)

One may find it intricate and frustrating to interact with a

foreign person with no knowledge of English. Thus, a

translator will have to come into the picture to allow one to

communicate with the foreigner. Companies have related

this problem to extracting data from a Database

Management System (DBMS) such as MS Access, Oracle

and others. A person with no knowledge of Structured Query

Language (SQL) may find himself or herself handicapped to

correspond with the database.

Natural Language Interface to Database (NLIDB) is a

system that allows the user to access information stored in a

database by typing requests expressed in some natural

language. In the last few decades, many NLIDB systems

have been developed through which users can interact with

database in a more convenient and flexible way. Because of

this, this application of NLP is still very widely used today

[6]. Natural Language Interface has been a very interesting

area of research since the past. The aim of Natural language

Interface to Database is to provide an interface where a user

can interact with database more easily using his/her natural

language and access or retrieve his/her information [1].

Moreover, the NLIDB is a system that converts the query in

native language into SQL.

Components of NLIDB

Computing scientists have divided the problem of natural

language access to a database into two sub-components [1]:

(a) Linguistic component and (b) Database Component. The

Linguistic Component translates the natural language input

to an expression of Intermediate Query Representation

(IQR), which is subsequently passed to Database

Component for generation of Structured Query Language

(SQL) statement. The resulting SQL statement is then

executed by relational database management system. The

Linguistic Component consists of morphological analysis,

query pre-processing & context resolution, lexical analysis,

syntactical analysis and semantic analysis. On the other

hand, Database Component consists of SQL query

generation and SQL query execution.

Techniques Used for Developing NLIDB

Pattern-Matching Systems: - Pattern matching system is the

earliest and the simplest techniques to implement natural

language interface to database (NLIDB). These patterns and

rules are fixed [7]. The rules states that if an input word or

sentence is matched with the given pattern, the action has

been taken. Those actions are also mention in the database

[8]. The main advantage of pattern matching approach is that

no elaborate parsing and modules of interpretation are

required and the systems are very easy to implement. Also,

pattern-matching systems often manage to come up with

some reasonable answer, even if the input is out of the range

of sentences the patterns were designed to handle [5].

Syntax-Based Systems: - In syntax based system user

questions are analyzed syntactically i.e. it is parsed and the

resulting syntactic tree is mapped to an expression in some

database query language [1]. Syntax-based systems use a

grammar that describes the possible syntactic structures of

the user’s questions. The main advantage of using syntax

based approaches is that they provide detailed information

about the structure of a sentence. A parse tree contains a lot

of information about the sentence structure; starting from a

single word and its part of speech, how words can be

grouped together to form a phrase, how phrases can be

grouped together to form more complex phrases, until a

complete sentence is built. As Neelu Nihalani [9] present the

problem of syntax based, unfortunately not all nodes should

be mapped, some nodes have to be left just as they are

without adding any semantic meanings. And it is not always

clear which nodes should be mapped and which should not.

The second problem is a sentence can have multiple correct

parse trees, and if all are translated, they may lead to

different query results. The last problem is that it is difficult

for a syntax based approach to directly map a parse tree into

some general database query language, such as SQL.

Semantic Grammar Systems: - In semantic grammar

systems, the requests and responses is still done by parsing

the input and mapping the parse tree to a database query. The

difference, in this case, is that the grammar’s categories do

not necessarily correspond to syntactic concepts. The basic

idea of a semantic grammar system is to simplify the parse

tree as much as possible, by removing unnecessary nodes or

combining some nodes together [9]. The main drawback of

semantic grammar approach is that it requires some prior-

knowledge of the elements in the domain, therefore making

it difficult to port to other domains. In addition, a parse tree

in a semantic grammar system has specific structures and

unique node labels, which could hardly be useful for other

applications.

Intermediate Representation Languages: - Due to the

difficulties of directly translating a sentence into a general

database query languages using a syntax based approach, the

intermediate representation systems were proposed. The

idea is to map a sentence into a logical query language first,

and then further translate this logical query language into a

general database query language, such as SQL [5]. In the

intermediate representation language approach, the system

can be divided into two parts. One part starts from a sentence

up to the generation of a logical query. The other part starts

from a logical query until the generation of a database query.

In the part one, the use of logic query languages makes it

possible to add reasoning capabilities to the system by

embedding the reasoning part inside a logic statement. In

addition, because the logic query languages are independent

from the database, it can be ported to different database

query languages as well as to other domains, such as expert

systems and operating systems [9].

II. OVERVIEW OF THE PROPOSED SYSTEM

We have analyzed the language structure of Amharic to

categorize column name for condition and column name for

selection. To do so, we have analyzed the index number of

the word place in a given NL requests without any additional

language modules like parser, POS etc.

To map natural language tokens into table name and column

name, we are prepared a dictionary. This dictionary contains

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

468

Amharic token words that express table name, column

name, and conditional words with appropriate meaning of

map words. Table: 1 shows sample token word and

appropriate map word.

Table 1: sample column handling table
Token word Mapped word

የመታወቂያ ቁጥር Id

ጾታ SEX

ያጠኑት የትምህርት አይነት|
|የተመረቁበት የትምህርት
አይነት

FILDE_OF_STUDY

የተቀጠሩበት ቀን| |ስራ
የጀመሩበት ቀን

EMPLOYMENT_DATE

ትምህርት ክፍል|
|ዲፓርትመንት

DEPARTMENT

ኮሌጅ COLLEG

ደመወዝ| |ወርሀዊ ክፍያ SALARY

ስም NAME

The algorithm used for identifying table name, column

name, or conditional words from the given natural language

input is listed below.

Step1.

 Accept the query in Amharic

Step2.

 Tokenize the sentence using white space and

Amharic punctuation like ?,። ፣ ፤ ፥

Step3.

 Map tokens in the table handling table

Step4.

 Map tokens in the column handling table

Step5.

 Map tokens in conditional word handling table

Step6.

 Save index number of column and table name

After all these common steps, in this finding, the first task is

identifying the index number of the word that expressed the

table name, column name and conditions from the given

input. Based on this index number we have developed 20

rules to convert a natural language query (Amharic) into

SQL. The developed rules are categorized the NL input into

three parts: table name, the column name that have the index

number less than the index number of table name, and the

column name that have the index number greater than the

index number of table name. From this category we have

concluded that the column name having less index number

than index number of table name is column name for

condition, and column name having greater index number is

column name for a selection. Moreover, researchers

analyzed conditional query by separating single conditional

query and multiple conditional query.

Example1: “[የሰራተኞችን] [ስም] [ዝርዝር] [አውጣልኝ]” and this

structured looks “[Employee’s] [Name] [List] [display]”

respectively. From this structure “ሰራተኞች/Employee” is a

Table Name, “ስም/ name” is a Column Name and the

remaining words are no contribution on generating the query

on this system. On this structure the column name ስም/ Name

is found next to table name የሰራተኞችን/ Employee’s. With this

structure our algorithm conclude that the column name is

column name for selection.

Example2: “[ጾታቸው] [ወንድ] [የሆኑ] [ሰራተኞችን] [ስም] [እና]

[የመታወቂያ ቁጥራቸውን] [አውጣልኝ]”. This structure looks “[their

sex] [male] [been] [employees] [name] [and] [identification

numbers] [display]”. From this sentence ሰራተኞች/employee

is a table name and the other ጾታ/sex, ስም/name, and

የመታወቂያ_ቁጥር/idnumber are column name. Indeed, ጾታ/sex

is a column name used for a condition to handle the retrieved

results. The index number of the column name “SEX” is less

than index number of the table name, and the remaining

column name index number is greater than index number of

table name (employee). In general, we have developed 20

rules for conversion, and from those let as show some of the

rules.

Rule #1.

If the input sentence tokens map with (contains)

only table name, the query is selection of the whole table.

“SELECT * FROM TABLE_NAME;”

Rule#2

If the input sentence contains both table name and

column names, and if the column name positioned next to

table name, the column name is used for selection.

SELECT (COLUMN_NAME), [COLUMN_NAME]

FROM TABLE_NAME;

Rule#3.

If the sentence contains both table name and

column names, and if the column name is positioned before

table name, the column name is used for the condition.

SELECT * FROM TABLE_NAME WHERE

COLUMN_NAME = COLUMN_VALUE;

The algorithm to handle the rule is presented below.

Algorithm to Handle Rules

A natural language input NL contains X tokens (K1, K2, …,

KX) and this tokens stored on Array A. In our database table

T there are N columns (C1, C2, …, CN) with M rows (R1, R2,

…, RM). A NL contains column name C, table name T, a

column value V, and conditional word W. Column name has

further divided into column name for condition Cc and

column name for selection Cs.

The Array separated into three groups A1, A2, and A3. Array

A1 holds from the beginning of the array called A[0] to the

array value that holds table name minus one A[T-1],

A2=A[T], and A3 contains from A[T+1] to the last. The

column names found on A1 are column name for condition

(Where) and it contains attribute, sign, and value (column

name, condition, and column value) i.e. WHERE Cc1 W1 V1

AND/OR Cc2 W2 V2 AND/OR … AND/OR CcN WN VN.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

469

Array A2 contains table name T specified next to FROM

keyword like FROM T. And finally, A3 contains column

names used for selection positioned next to SELECT

keyword, like SELECT Cs1, Cs2, …, CsN. A3 also contains

aggregate functions like SUM, AVG, MAX, MIN, and

COUNT queries. Additional quires like group by and

ordered by is included called Po. So the final output could

be the combination of A1, A2, A3 and Po and it looks

SELECT Cs1, Cs2, …, CsN FROM T WHERE Cc1 W1 V1

AND/OR Cc2 W2 V2 AND/OR … AND/OR CcN WN VN

Po;.

To do so, the first task is identifying the index number (A2)

that hold table name.

Algorithm to handle A2

 Table_location = -1;

 User Input = Input;

 Put the input on ArrayList = input_list;

 For (intial= 0; intial <= input_list.size();intial ++) {

 IF (input_list.get(intial) contents equals

with(Token_word)) {

 Table_location = initial;

 Break;

 }

 }

This algorithm acquires the array location of the table name,

and based on this location we formulate column name for

condition and column name for selection.

Algorithm to handle A1

FOR (initial = 0; initial < Table_Location; initial ++) {

 IF (Array value of initial = column name) {

 IF (input_list.get (initial + 1)!=TableName OR

ColumnName OR Keywords) {

 The column name = input_list.get (initial);

 The column value = input_list.get (initial +1

TableName OR ColumnName OR Keyword exists); /*

initial value increased by one until table name or column

name or keyword exists*/

 } ELSE IF (input_list.get (initial + 1) =TableName

OR ColumnName OR Keywords) {

 The column name = input_list.get (initial);

 The column value= input_list.get (initial – 1 

TableName OR ColumnName OR Keyword exists OR

initial = -1);

 } ELSE {

 //

 }

 }

 }

This algorithm handle both single and multiple conditional

query.

Example3: give me all information of the employee whose

name is Abebe Abate Dessi and sex is male. [ስሙ] [አበበ]

[አባተ] [ደሴ] [የሚባል] [እና] [ጾታው] [ወንድ] [የሆነ] [ሰራተኛን] [ሙሉ]

[መረጃውን] [አውጣልኝ]. This structure looks: - [name] [Abebe]

[Abate] [Dessi] [called] [and] [sex] [male] [been]

[employee] [all] [information] [give me].

For this particular example the column name ‘Name’ is

found at the beginning of the index and next three indexes

are the column value of the first index. Based on the

algorithm, once we identify the index number of column

name, the column value found either the right side or the left

side of the column name. So, for this particular example the

index number of column value is index number of column

name plus one and index number has increase and append

the value on the column value until the index value is a

keyword.

Algorithm to handle A3

In the above algorithm, the column name found before the

table name is a column name for condition. However, the

column name fond next to the table name is a column name

for selection.

FOR (initial = Table_Location; initial <= input_list.size();

initial ++) {

 IF (Array value of initial = column name) {

 //The column used for selection

 The column name= input_list.get (initial);

 }

 }

This algorithm check the column name found after the table

name has exist.

Aggregate function

Aggregate function in Amharic language recognized as

ከፍተኛ, ዝቅተኛ, አማካኝ, ድምር, ብዛት which means MAXIMUM,

MINIMUM, AVERAGE, SUM, and COUNT respectively.

In other case ከፍተኛ/MAXIMUM can be expressed as ትልቅ

or የተሻለ, ዝቅተኛ/MINIMUM expressed as ትንሽ or አነስተኛ, and

ብዛት/COUNT also can expressed as ቁጥር.

For example: የ ኮምፒውተር ስይንስ ትምህርት ክፍል ሰራተኞችን ብዛት

አውጣልኝ። which means that “display the number of

employees found in computer since department. According

to A1, from the given example, the column name ትምህርት

ክፍል/department is used as conditional columns. The word

ብዛት/number recognized as an aggregate word called

COUNT. This particular aggregation word mainly found

immediately next to table name. So, the query is converted

like

Figure 1: Sample output for aggregate function

 SELECT COUNT (*) FROM Employee WHERE

Department = “ኮምፒውተር ስይንስ”;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

470

Groping and ordering Queries

In a natural language (Amharic) sentences grouping and

ordering queries are recognized by ቅደም ተከተል Ordered by

and መደብ/መድበህ Group by tokens.

For example: የ ኮምፒውተር ስይንስ ትምህርት ክፍል ሰራተኞችን ብዛት

በጾታቸው መድበህ አውጣልኝ። (display the number of employees

found in computer science department grouping by sex).

From this particular example the token መደብ recognized as

grouping queries and the column name used for grouping is

found immediately before the token መደብ. So this query

converted like

 SELECT COUNT (*) FROM Employee WHERE

Department = “ኮምፒውተር ስይንስ”

Group by Sex;

Figure 2: sample output for group by query

III. EXPERIMENT AND RESULT

The experiment are conducted by taking HRM database as a

case study. We have collected sample queries from the

novice users who have no an expert knowledge of database

to evaluate the developed prototype. This prototype

designed in such a way that to handle complexity of

Amharic language natures from different dimension.

 Language character recognition: - the user can type the

query without too much care of ambiguous and multiple

form characters such as “ሐ, ሀ, ኀ, ጸ, ፀ, አ, ዐ, ው, ዉ, ሰ, ሠ

…” since, the system can understand such characters in

various alternatives.

 Relaxation of grammar: - The system can also

understand queries of the user constructed in the form

of various expressions or structured in various

grammatical forms. For instance, the system can

recognize the following two sentence forms of single

query as “ከ ፬፮፶ ብር በላይ ደመወዝ ያላቸዉ or ደመወዛቸዉ ከ

፬፮፶ ብር በላይ የሆነ”.

 Language Understanding: - during the request the user

expected to include the column name on the query. For

instance in a certain query ‘ሴት’ express the sex is

female but for our system would not understand and the

user should reframe the query as “ጾታቸው ሴት የሆኑ”.

 Simplification: - The user can type the query without a

need for complexity of expression and without the

strong knowledge of SQL.

The accuracy of the system is measured in term of precision

percentage with two classes that identifies query response

as: Correct Queries and Incorrect Queries. To do so we have

calculated the overall accuracy of correct query through a

division of the total number of correct queries as generated

by the system, by the total number of imputed query.

Overall accuracy of Correct Query =

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑞𝑢𝑒𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑦

Henceforth, the results as shown on table 2 revealed that the

system we have developed has an overall accuracy of 91%

which implies that the systems validity and reliability is very

high, an indicator of its strong and success full feature use

and operation.

Table 2: Overall accuracy of the system.

Total query Correct

queries

Incorrect

queries

Accurac

y

Selection 30 30 0 100%

Single

condition
30 28 2 93.33%

Multiple

condition
30 25 5 83.33%

Aggregati

on,

grouping

&

ordering

30 26 4 86.67%

Total 120 109 11 91%

IV. CONCLUSION

Based on its aim and objective this study has tried to develop

an Amharic language interface to database system. The

system targeted users who have no knowledge or skill of a

database system, and who have no a good command of

English language. Based on this to intervene into and solve

difficulties of such database users, we have designed and

developed a user interface of a database system which

enable users to execute their query in a natural language,

Amharic in our case, to generate and retrieve data as per their

queries from the database.

To evaluate the system we have calculated the systems’

performance, using academic employee database, and have

analyzed their validity and reliability of NLIDB system we

have created. The accuracy of the system is measured by

precession in two values called correct and incorrect, and the

system registers 91% of overall accuracy. Even though, the

system shows a promising result, it doesn’t include temporal

query. Further researches will be needed to include temporal

queries in ANLIDB.

V. REFERENCE
[1] A. Kaur, “PUNJABI LANGUAGE INTERFACE TO

Database,” THAPAR UNIVERSITY, 2010.

[2] B. Manaris, “Natural Language Processing : A Human –

Computer Interaction Perspective,” vol. 47. Academic Press,

New York, pp. 1–55, 1998.

[3] Y. A. Alelgn Tefera, “Automatic Construction of Amharic

Semantic Networks From Unstructured Text Using Amharic

WordNet,” 2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

471

[4] A. K. T. TEGEGNIE, “HIERARCHICAL AMHARIC NEWS

TEXT CLASSIFICATION,” Addis Ababa UNIVERSITY,

2010.

[5] A. Kumar and K. S. Vaisla, “Natural Language Interface to

Databases: Development Techniques,” Elixir Comp. Sci.

Engg, no. November, 2015.

[6] Y. Chandra, “Natural Language Interfaces to Databases,”

UNIVERSITY OF NORTH TEXAS, 2006.

[7] J. Patel and J. Dave, “A Survey: Natural Language Interface

to Databases,” Int. J. Adv. Eng. Res. Dev., 2015.

[8] A. R. Sontakke and P. A. Pimpalkar, “A Review Paper on

Hindi Language Graphical User Interface to Relational

Database using NLP,” Int. J. Adv. Res. Comput. Eng.

Technol., vol. 3, no. 10, pp. 3393–3397, 2014.

[9] N. Nihalani, S. Silakari, and M. Motwani, “Natural language

Interface for Database: A Brief review,” IJCSI Int. J. Comput.

Sci. Issues, vol. 8, no. 2, pp. 600–608, 2011.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

472

