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Abstract - In this paper, positive stationary solutions of a 

cross-diffusive competition model with a protection zone for the 

weak competitor are examined. The asymptotic behaviour of 

positive stationary solutions is obtained for any birth rate as the 

cross-diffusion coefficient tends to infinity.  
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INTRODUCTION 

Competition is one of the most essential mechanisms in 
ecology, shaping the distribution and abundance of biological 
species. When two species utilize similar resources, their 
interaction may lead to coexistence, competitive exclusion, or 
complex spatial-temporal dynamics depending on 
environmental conditions and intrinsic population traits. To 
analyze such processes rigorously, mathematical models, 
especially those based on systems of partial differential 
equations, have become indispensable tools. 

The effects of environmental heterogeneity with large 
cross-diffusion are studied. In the following, we consider 
Lotka-Volterra cross-diffusive competition model with a 
protection 
zone

( )( ) ( )( )

( )

( )

( ) ( )

( ) ( )

1

1

0

0 1

u 1 k x v u u u b x v , x , t 0,
t

v v v v du , x \ , t 0,
t

u
0, x , t 0,

n

v
0, x \ , t 0,

n

u x,0 u x 0, x ,

v x,0 v x 0, x \ ,

 =  +  +  − −     
 =  +  − −   



=   
 


=     




=   
=    

     (1) 

where ( )N
N 1   is a bounded domain with 

smooth boundary , 1 is a subdomain of  with smooth 

boundary 
1 and 

1 ;   n is the outward unit normal

vector on the boundary; positive constants and   are the 

intrinsic growth rates of the respective species; 

( )b x and d 0   are the interspecific competitive pressure on

u and v,  respectively; ( ) ( )x xand b  are spatially

heterogeneous, and satisfies ( ) ( )x b x 0   in 
1 and 

( )x 1 0   and ( )b x b 0  in 1\ ;   0   is a constant; 

 denotes the Laplacian operator on the space variable 

;x ( )u x, t and ( )v x, t represent the population densities of 

the respective competing species. 

In the model, u  lives in the larger habitat ,  and 
1 is 

its protection zone, where u  can leave and enter the 

protection zone freely, while v  can only live outside 
1.

Thus we impose a no-flux boundary condition on 
1 for v.

On ,  a no-flux boundary condition is also assumed for 

both species, and no individuals cross the boundary .  

Throughout the paper, we write 
1\ . =  

It should be noted that ( )k x vu    is the cross-diffusion

term to model the habitat segregation phenomena between two 
competing species. From the cross-diffusion term, u  diffuses 

to low density regions of v in their common living habitat 

, and the coefficient k denotes the sensitivity of the 

competitor u  to the population pressure from the other 

competitor v.

The corresponding stationary problem is 
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(2) 

We denote by ( )D

1 ,U  and ( )N

1 ,U  the first eigenvalue

of −+  over the bounded domain U  with Dirichlet and 

Neumann boundary conditions, respectively. We usually omit 
U  in the notation if U .=   If the potential function   is 

omitted, then we understand 0. =  It is well-known that the 

following properties hold: 

(i) the mapping ( ) ( )B

1 q,U Uq : L → is continuous  

 with B D=  or B N;=  

(ii) ( ) ( )B B

1 1 1 2q ,U q ,U   if 1 2q q and 1 2q q with   

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010695 Page 1

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



     B D=  or B N;=   

(iii) ( ) ( )D D

1 1 1 2q,U q,U    if 1 2U U ,  and  

       ( )N

1 0,U 0. =   

The usual norm of the space ( )  )pL U for p 1,   is     

defined by  

( ) ( )
1 p

p

p,U ,U U
U

u u x dx and u max u x .


 
= = 
 
  

2.   Properties of Stability and A Priori Estimates 

In this section, we will show the stability of semi-trivial 
solutions and a priori estimates for any positive solution of (2). 

It is clear that the steady-state problem (2) admits two 

semi-trivial solutions ( ),0  and ( )0,  in addition to the 

trivial solution ( )0,0 .  The stabilities of such trivial and semi-

trivial solutions are shown in the following lemma. 

2.1 Lemma 

We have the following stability results: 

(i) the trivial solution ( )0,0  is always unstable; 

(ii) the semi-trivial solution ( ),0  is asymptotically 

stable if d ,    while it is unstable if d ;    

(iii) the semi-trivial solution ( )0,  is asymptotically 

stable if 
( )

( )
N

1

b x
, 0,

1 k x

  −
   +   

 while it is unstable if 

( )
( )

N

1

b x
, 0.

1 k x

  −
   +   

 

Proof: 

The proof of (i) is clear. Therefore, we start proof of (ii).  

The linearized parabolic system of (1) at ( ),0  

is

( ) ( ) ( )
( ) ( )

( )

( )

t

t

u u k x v u b x v, x 0, ,

v v d v, x 0, ,

u
0, x 0, ,

n

v
0, x 0, ,

n





 =  +     −  −    

 =  +  −    

 
 =  



=   



thus, the corresponding spectral problem is 

( ) ( )
( )

k x b x , x ,

d , x ,

0, x ,
n

0, x .
n





− −     +  +   =   


− −  −   =   

= 

 


=  
 

(3) 

If 0, x ,    then 0, x ,    and   satisfies 

 

, x ,

0, x .
n

−+  =   


 
=   

           (4) 

Then, it follows that   is an eigenvalue of (4), and 

satisfies ( )N

1Re , 0.     =   So, the eigenvalues with 

associated eigenfunctions of the form ( ),0  possess positive 

real parts. 

On the other hand, if 0, x ,    then   is an 

eigenvalue of the following problem: 

 

( )d , x ,

0, x .
n





− −  −   =  



=  
 

          (5) 

Then, if d ,    we see that any eigenvalue   of (5) 

satisfies ( )N

1Re d , d 0.     −  =  −   

Thus, the real parts of any eigenvalue   of (3) are 

positive, ( ),0  is asymptotically stable. 

If d ,    then ( )d 0 = −    is an eigenvalue to 

the second equation of (3) with a unique positive 

eigenfunction 
1

2
−

  =   normalized as 
2,

1.





 =  Then, 

for 
  denote by  

( ) ( ) ( )
1

k x b x ,
−

   


   = − +  −     −     

we know that 0   is an eigenvalue of (3) with an 

eigenfunction ( ) ( ), , ,0     is unstable. 

 The proof of (iii) is rather similar to that of [7].   

2.2 Lemma 

Assume spatial dimension N 3  and ( )( )U 1 k x v u,= +   

there exists a positive constant C  independent of k  such that 

any positive solution ( )u, v  of (2) satisfies 

 
, , ,

0 u U C, 0 v ,     
        and 

 
, ,

U C min U, v C min v.
    

   

Proof: 

The proof of lemma is the same as in [6]. So, we omit it.   

3. Asymptotic Behavior of Positive Solutions as k →∞  

In this section, we study the asymptotic behavior of 

positive solutions of (2) for any , 0    as k ,→ and show 

the structure of the positive solution set of the limiting system. 

For the asymptotic behavior, we have the following 
theorem. 
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3.1 Theorem  

Assume spatial dimension N 3,  and d .    Let 

( )i iu , v  be positive solutions of (2) with ik k=  and ik .→  

Then by passing to a subsequence if necessary, the following 
conclusions hold. 

(i) If ( )i i i, ,i
lim k v 0, , v 0,    →

=   →  then 

( ) ( )i i iu ,k v u,w→  uniformly in ,  where ( )u, w  is a 

positive solution of  

( )( ) ( )

( )

1 x w u u u 0, x ,

w w du 0, x ,

u
0, x ,

n

w
0, x .

n





  + +  − =   
 +  − =  


 = 



= 

 

             (6) 

(ii) If i i ,i
limk v , →

=   then 

( ) ( ) ( ) ( ) ( )1 1 1

i i i 0
i
lim u , u , v ,0, in C C C . 

→
=         

Proof: 

Let ( ) i i i i 1
u , v ,k



=
 be any sequence such that ( )i iu , v  is a 

positive solution of (2) with ik k= and ik ,→  we further set 

( )( )i i i iU 1 k x v u .= +   

Since i ,
U

 
 and i ,

v  
 are uniformly bounded by 

virtue of Lemma 2.2, 
( )2,pi W

U


 and 
( )2,pi W

v 
 are also 

uniformly bounded for p N,  we deduce that there exists a 

subsequence of  i i 1
k ,



=
 still denoted by  i i 1

k ,


=
 such that 

 ( ) ( ) ( ) ( )1 1

i i
i
lim U , v U, v in C C 

→
=     

for some nonnegative function ( ) ( ) ( )1 1U, v C C .     

Set ( )i i i

i

1
x v u ,

k

 
 = +  

 then  

 

( )( )i i i i i

i

k u u b x v 0, x ,

0, x .
n

  +  − −  = 



= 


 

By pL  estimates and the Sobolev embedding theorem, and 

by the fact that i i, ,
u , v    

 are uniformly bounded, we 

can show that subject to a subsequence, i  converges 

uniformly to some nonnegative constant 1C ,  then 

( ) i i 1x u v C →  uniformly. As  ( )x 0 =  in 0 , we know that 

this constant 1C  must be zero, i.e., i iu v 0→  uniformly in 

.  Furthermore, as ii , v v→ →  in ( )1C ,  and v  is a 

nonnegative weak solution of  

 

( )v v v 0, x ,

v
0, x .

n





  +  − = 



= 


 

It follows that iv 0 or v , i.e., v 0   →  ior v →  

in .  

In the following, we discuss the cases 

i iv 0 and v in ,→ →  respectively. 

(i) ( )1

iv 0 in C ,→   in this case we first show that 

( )i i ,
k v 0, . 

→    

If i i ,
k v , 

→  set  

( )i

i i i i

i i i, ,

v 1
v , x v u ,

v k v    

 
=  = + 

 
  

then 

 

( )( )i i i i i i,

i

k v u u b x v 0, x ,

0, x .
n

 
  +  − −  = 



= 


 

So, we see that i  converges uniformly to some 

nonnegative constant 2C , i.e., ( ) i i 2x v u C , → thus i iv u 0→  

uniformly in .  Since ( )i i i iv v v du ,− = − − letting 

i ,→  we see that iv v→  and v  is a nonnegative weak 

solution of  

 

v v, x ,

v
0, x .

n





 − =  



= 




  

While 
,

v 1, 
=  it is clear that v 0 in ,   thus 

0, =  it is a contradiction. 

If i i ,
k v 0, 

→  we also set i

i

i ,

v
v ,

v  

=  

( )( )i i i i i,
1 k x v v u , 

 = +    then 

 

( )( )i i i i

i

u u b x v 0, x ,

0, x .
n

  +  − −  = 



= 


 

Thus, the pL  estimates and the Sobolev embedding 
theorem deduce that  

 ( )1

i in C . →    

Thus, iu  also converges uniformly to , and   is a 

nonnegative weak solution of the equation 
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( ) 0, x ,

0, x .
n

  +   −  = 



= 


 

Hence, i i0 or ,i.e.,u 0 or u     → →  uniformly in 

.  If iu 0,→  since ( )i i iv v du dx 0,


 − − = we see that for 

sufficiently large i, i iv du 0,− −  we derive it is a 

contradiction; if iu ,→   then iv v,→  and v  is a 

nonnegative weak solution of  

( )v v d 0, x ,

v
0, x .

n





  +  −  = 



= 




  

By virtue of 
,

v 1, 
=  we know that v 0 and v 0  

in , thus v 0 in .  So d , =   it is a contradiction. 

Therefore, we see that as ( )i i i ,
v 0, k v 0, 
→ →    

by passing to a subsequence if necessary. Set i i iw k v ,= then 

( )( )
( )

i i i i i

i

i

i i i

i

i

i

b x
1 x w u u u w 0, x ,

k

w
w w du 0, x ,

k

u
0, x ,

n

w
0, x .

n





   
  + +  − − =      

  
  +  − − =    
 

= 



= 


Since i ,
w 0, 

→  by Lemma 2.2 we can know that 

i i ,

C
min w C w 0

2


  
  


 for large i.  Furthermore, since 

( )( )i i iu u b x v dx 0,


 − −  =  some calculations deduce that 

( )i i i iu u dx b u v dx.
 

 − =    Then, 

( )i i i i,
u u dx b u v dx



 

 

 −     

  i i i i, ,
b v u dx b v u dx, 



   



      

which means that i i, ,
u b v 0.   

 − −    As 

i ,
v 0, 

→  we see that for large i,  i ,
u 2.

 
   For 

( )( )i i i1 x w u , = +  we see that 
i

i

i

min
min u ,

1 max w











+
 and 

i ,
w  

 is uniformly bounded, thus we know that  

i i i i

C
min u C min C max C max u .

2   


       

Furthermore, since i ,
u

 
 and i ,

w  
are uniformly 

bounded, the standard elliptic regularity deduces that 

( ) ( )i iu ,w u,w ,→  where ( )u, w  is a positive smooth solution 

of (6). 

(ii) If i i ,
k v , 

→  we must have iv in ,→    then   

( )1i

i

i i

U
u 0 in C .

1 k v

= → 
+

 

From a similar argument to that of [11], we can deduce 
that  

 ( ) ( )
0 0

U dx 0, and U U dx 0,
 

 −   − =   

Thus ( ) ( ) ( )
0 0 0

2

U dx U dx U U dx 0.
  

 − =   − −  −     

Then ( )1

0 i 0U in ,u in C .   →   The proof of the 

theorem completes.  

Finally, we give the positive solution set of the limiting 

system (6). Set ( )( )U 1 x w u,= +  then (6) is equivalent to 

the following system 

( ) ( )
U U

U 0, x ,
1 x w 1 x w

dU
w w 0, x ,

1 w

U
0, x ,

n

w
0, x .

n





 
 +  − =   + +  


   +  − =    + 


=  

 
 

=   

        (7) 

By virtue of the local bifurcation theory and regarding   

as the bifurcation parameter, we give the following local 
bifurcation result. 

3.2 Lemma 

Positive solutions of (7) bifurcate from 

( ) ,0, X : 0       if and only if d . =  =   To be 

precise, all positive solutions of (7) near ( ),0,d X     

can be parameterized as  

( ) ( )( ) ( )( ) ( )( ) U, w, s sU s ,s 1 sw s ,d s s :  =  =  +  + +  + 

 

  ( )s 0,   

for some 0   and ( ) ( )
1 2I x .
−

 
 = − +     Furthermore, 

( ) ( ) ( )( )U s , w s , s  is smooth with respect to s  and 

( )w s dx 0.


=  
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3.3 Theorem 

Assume spatial dimension N 3,  regarding   as the 

bifurcation parameter, an unbounded branch p  of positive 

solutions of (7) bifurcates from the semi-trivial solution curve 

( ) ,0, X : 0       at d . =   Moreover, 

( ) ( )  ( )p0,d : U, w, 0,C                 (8) 

for a large positive number C  independent of ,  

 
( ) pU ,w ,

max U
 


  

 is bounded, and 
,

w
  

→  

as 0.→  

Proof: 

Let p E     be the maximal connected set of the local 

bifurcation branch   stated in Lemma 3.2 satisfying 

( ) ( ) ( ) p U, w, E \ ,0,d :          

     ( ) U, w satisfies (7)  with ( ) ( )1 1

n nE C C ,=      

( ) ( )1 1

n

u
C u C : 0, x .

n

 
 =   =  

 
 

Define ( ) 1

nP u C : u 0, x , =      then we can 

show that p P P . 
      

Since P P P ,  
     if not, there exists a sequence 

( )  ( )i i i pU , w , P P  
     such that  

( ) ( )i i iU ,w , U ,w , in E ,   →    where   

( ) ( )( )pU ,w , P P     
      with U 0 or     

w 0.   As 
( ) ( )

i i

i i

U U
dx 0,

1 x w 1 x w


 
 − = + + 

 if U 0,   

then for large i,
( )

i

i

U
0,

1 x w
 − 

+
 thus  

( ) ( )
i i

i i

U U
dx 0,

1 x w 1 x w


 
 −  + + 

  it is a contradiction. If 

w 0,   then 

( )U U U 0, x ,

U
0, x .

n

  



  +  − = 



= 


 

Since U 0,   we see that U . =   While ( ),0,d   is the 

only bifurcation point of positive solutions of (7) bifurcates 

from ( ),0  with bifurcation parameter ,  we know that 

d , =   it is a contradiction. Thus, p  is contained in the set 

of positive solutions of (7). By a similar argument to that of 

[6], we can further know that p  is unbounded in E .   

Furthermore, as the first equation of (7) is the same in [6], 

we can deduce that 

1

2

1

0

max U C


 
  

 
for a large number 

1C  independent of .  

So, from the second equation of (7), we see that  

( )N N

1 1 ,

dU
, d U , C,

1 w

 

 

 
 =        +

thus 0 C,    

which shows that   is bounded. 

Since 
,

U  
 is bounded, the elliptic regularity theory 

and the Sobolev embedding theorem deduce that 
( )1C

U 
 is 

bounded. Thus, we see that 
( )1C

w
 

 must be unbounded. 

Then, max w
 


 is unbounded. Therefore, there exists a 

sequence  i 0,C →   such that 
i ,

w .


 
→  

Setting i

i

i ,

w
W ,

w







 

=  then 

 

i

i i

i

i

dU
W W 0, x ,

1 w

W
0, x .

n

 

 



 

  
 +  − =   

+  



= 


 

So, we know that 
i

W W,W 0, x 

 →    and satisfies 

 

W W 0, x ,

W
0, x .

n







  +  = 



= 


 

It follows that 0, =  together with the local bifurcation 

result, we know that (8) holds, and the proof of the theorem 
completes.   
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