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Abstract - In this paper, positive stationary solutions of a
cross-diffusive competition model with a protection zone for the
weak competitor are examined. The asymptotic behaviour of
positive stationary solutions is obtained for any birth rate as the
cross-diffusion coefficient tends to infinity.
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INTRODUCTION

Competition is one of the most essential mechanisms in
ecology, shaping the distribution and abundance of biological
species. When two species utilize similar resources, their
interaction may lead to coexistence, competitive exclusion, or
complex  spatial-temporal  dynamics depending on
environmental conditions and intrinsic population traits. To
analyze such processes rigorously, mathematical models,
especially those based on systems of partial differential
equations, have become indispensable tools.

The effects of environmental heterogeneity with large
cross-diffusion are studied. In the following, we consider
Lotka-Volterra cross-diffusive competition model with a

protection
zone
ut:A[(l+kp(x)v)u:|+u(k—u—nb(x)v), xeQ, t>0,
v, :AV+V(u—v—du), X eQ\ﬁl,t>0,
a—u:O, xeoQ, t>0,
on
N o, x €9(Q\Q,),t>0,
on
u(x,0)=u,(x) =0, x €Q,
V(X,O =v0(x)20, er\ﬁl,
(1

where Qc 0 N (NZ 1) is a bounded domain with
smooth boundary 0Q, Q, is a subdomain of Q with smooth

boundary 0Q, and Q, < ; n is the outward unit normal
vector on the boundary; positive constants A and p are the
intrinsic ~ growth rates of the

respective  species;

nb(x) and d > 0 are the interspecific competitive pressure on
u and v, p(x)and b(x) are

respectively; spatially
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heterogeneous, and satisfies p(x)=b(x)=0 in Q and
p(x) =1>0 and b(X) =b>0 in Q\Q,; t>0 is a constant;
A denotes the Laplacian operator on the space variable
X; u(x,t) and v(x,t) represent the population densities of
the respective competing species.

In the model, U lives in the larger habitat (3, and Q, is
its protection zone, where U can leave and enter the
protection zone freely, while v can only live outside Q,.
Thus we impose a no-flux boundary condition on 6Q, for v.
On 6Q, a no-flux boundary condition is also assumed for

both species, and no individuals cross the boundary oQ.
Throughout the paper, we write Q" = Q\Q,.

It should be noted that kA[p(x) Vu] is the cross-diffusion
term to model the habitat segregation phenomena between two
competing species. From the cross-diffusion term, u diffuses
to low density regions of vin their common living habitat
Q", and the coefficient k denotes the sensitivity of the

competitor u to the population pressure from the other
competitor v.

The corresponding stationary problem is

A[(l+kp(x)v)u}+u(X—u—nb(x)v):0, x €Q,
AV+V(u—V—du)=O, x e,
a—u=0, X €0Q, &)
On
N _y, x €0Q',
on

We denote by 1 (¢,U) and A} (¢,U) the first eigenvalue
of —A+¢ over the bounded domain U with Dirichlet and

Neumann boundary conditions, respectively. We usually omit
U in the notation if U =Q. If the potential function ¢ is

omitted, then we understand ¢ = 0. It is well-known that the
following properties hold:

(i) the mapping q > A (q,U): L” (U) = [ is continuous

with B=D or B=N;

(i) A (q,,U) >} (q,.U) if q, 2 q, and q, £, with
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B=D or B=N;
(iif) 2 (a,
A (0,U) =0.

U])Zk?(q,Uz) if U, cU,, and

The usual norm of the space L (U) for p &[l,0) is

defined by
I/p

de and ||u||oqU :m§x|u(x)|.

Jo, . = U

Properties of Stability and A Priori Estimates

In this section, we will show the stability of semi-trivial
solutions and a priori estimates for any positive solution of (2).

It is clear that the steady-state problem (2) admits two
semi-trivial solutions (1,0) and (O,p) in addition to the

trivial solution (O, O). The stabilities of such trivial and semi-

trivial solutions are shown in the following lemma.
2.1 Lemma

We have the following stability results:

(i) the trivial solution (0,0) is always unstable;

(i) the semi-trivial solution (A,0) is asymptotically
stable if p < dA, while it is unstable if p > dA;

(i) the semi-trivial solution (0,u) is asymptotically

stable if kN(unb( x)-% Q\\>O while it is unstable if
L1+ukp J
2N [ mb(x) 2 j<o.
1+|,Lkp( )
Proof:

The proof of (i) is clear. Therefore, we start proof of (ii).

The linearized parabolic system of (1) at (X,O)

1S

u, :Au+A[M<p(x)v]—ku—?\.nb(x)v, x € Qx(0,%),
v, =Av+(p—di)v, x € Q" x(0,%),
@:O, x €0Q x(0,),
on
ﬁ=(), x €0Q" x(0,),
on

thus, the corresponding spectral problem is
—A¢—A[kkp(x)\y]+M)+7mb(x)\u=0'¢, x €Q),

—Ay —(p—dr)y = o1y, x eQ)’,

@ =0, x €0Q, A3)

on

o _ 0, X €0Q)".

on
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If y=0, x eQ’, then ¢ #£0, x €, and ¢ satisfies
“Ab+Mp=ch, x €Q,
4
@:0, X € 0Qd. @
on

Then, it follows that o is an eigenvalue of (4), and
satisfies Rec > (A,Q)=A>0.So0, the eigenvalues with

associated eigenfunctions of the form ((1), O) possess positive

real parts.
On the other hand, if y #0, x €eQ", then o is an
eigenvalue of the following problem:
-Ay —(p-dr)y =oty, xeQ’,
5
N _y, x €00, ®
on

Then, if p<dA, we see that any eigenvalue o of (5)
satisfies TRec > A" (dk - M,Q*) =di—p>0.

Thus, the real parts of any eigenvalue o of (3) are
positive, (A,0) is asymptotically stable.

If p>dA, then & :(dk—u)/r <0 is an eigenvalue to

the second equation of (3) with a wunique positive

eigenfunction " =|Q" E normalized as "W*"m‘ =1. Then,

for ¢" denote by
0 =(-a+2.-0"), [a[kp(x)w ] Anb(x)y

we know that ' <0 is an eigenvalue of (3) with an
eigenfunction ((I)*,\V*), (1,0) is unstable.

The proof of (iii) is rather similar to that of [7].

2.2 Lemma

Assume spatial dimension N<3 and U= (1 +kp(x) V) u,
there exists a positive constant C independent of k such that
any positive solution (u,v) of (2) satisfies

0<[ul,, <[U] 0<[v, o <w and

wﬂ_ ooQ_

Iul.,<cC min U, V], o <C min v.

FXe)

Proof:

The proof of lemma is the same as in [6]. So, we omit it. o

3. Asymptotic Behavior of Positive Solutions as K 100

In this section, we study the asymptotic behavior of
positive solutions of (2) for any A,u >0 as k — oo, and show
the structure of the positive solution set of the limiting system.

For the asymptotic behavior, we have the following

theorem.
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3.1 Theorem

Assume spatial dimension N<3, and p=dA. Let
(ui,vi) be positive solutions of (2) with k =k; and k; — oo.
Then by passing to a subsequence if necessary, the following
conclusions hold.

i) If  limk v, . =¢€(0,0),

i—o

then

Vil =0,

(u,.k;v;) > (u,w) uniformly in QxQ", where (u,w) is a

positive solution of

A[(l+p(x)w)u]+u(k—u)=0, x €Q),
Aw+w(u—du):O, x e,

My, X €00, (6)
on

N _,, x €00,

on

(i) If limk, |[v,(, . =0, then

lim (u;,u;,v;) =(2,0,p) in C'(Q,)xC'(Q')xC'(Q").

f i 7
i

Proof:

Let {(ui,vi,ki)}ml be any sequence such that (ui,vi) isa

i=

positive solution of (2) with k =k; and k, — oo, we further set
U, = (1 +kp(x) Vi)ui.

Since ||Ui||w’Q and ||Vi||wﬁ are uniformly bounded by

virtue of Lemma 2.2, ||Ui||wz_p(ﬂ) and ||v,]| are also

wae ()
uniformly bounded for p >N, we deduce that there exists a
still denoted by {ki }w

i=1"

subsequence of {k,. }w such that

i=1"

lim(U,,v,)=(0,9) in C'(Q)xC' (@)

i—oo

for some nonnegative function (I_J,V) eC' (S_)) xC' (f_l* )
Set ¢, = [ki +p(x) Vi] u;, then

k. Ad, +ui(7u—ui —nb(x)vi) =0, xeQ,

%:0, X € 0Q.
on

By I estimates and the Sobolev embedding theorem, and

by the fact that ||ui ||w o> ||Vi ||w o are uniformly bounded, we
can show that subject to a subsequence, ¢, converges

uniformly to some nonnegative constant C,, then
p(x)u,v; > C, uniformly. As p(x)=0 in Q,,we know that
this constant C, must be zero, i.e., u;v; = 0 uniformly in
Q’. Furthermore, as i— ©,v, >V in C! (ﬁ), and VvV is a

nonnegative weak solution of

[JERTV 15l S010695

AV+V(p-v)=0, x e,

@=0, X €0Q)".

on

It follows that v=0 or v=p,ie,v, >0 orv,—pu
in Q.

In the following, we  discuss the  cases

v, >0 and v, > pu in Q°, respectively.
i v,>0in C' (Ez*), in this case we first show that

k, "Vi”w,d 4 e(O,oo).
If k, ||Vi ||OC’Q. —> 0, set

[ )

V.

{}i: ] H ¢i: +p X {}iJui’
T T

then
k, ||Vi ||w’9* Ad; +u, (7»—ui —nb(x)vi) =0, xeQ,
o0,
i =0, X € 0Q
on
So, we see that ¢, converges uniformly to some
nonnegative constant C,, i.€., p(x) vu, = C,,thus vu, -0
uniformly in Q' Since -AV, =¥, (pu—v;—du),letting
i—oo, we see that v, >V and V is a nonnegative weak
solution of

—“AV=pv, x eQ’,
o

—=0, X €0Q)".
on
While "‘7"00,9* =1, it is clear that v>0 in Q, thus
p =0, itis a contradiction.
If kv, o0 we also set ¥ =L,
| vil..

o, = (1+kip(x) Vil o vi)ui, then

Ad, +ui(7u—ui —nb(x)vi)zo, x €Q,

% =0, X € 0Q.
on
Thus, the I estimates and the Sobolev embedding

theorem deduce that
¢, > ¢ in C'(Q).

Thus, u; also converges uniformly to ¢,and ¢ is a
nonnegative weak solution of the equation
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A¢+¢(k—¢):0, x €Q),
Xy

on

X € 0Q.

Hence, ¢ =0 or ¢ =A,ie,u;, — 0 or u; > A uniformly in
Q. If u;, >0, since J- v, (],t—vi —dui)dx =0, we see that for
o

sufficiently large i, p—v,—du, >0,we derive it is a

contradiction; if u, >A, then V,—>V, and vV is a

nonnegative weak solution of
AV+V(p—dr)=0, x eQ’,
g =0, X €0Q)".
By virtue of [[¥], . =1, we know that ¥>0and ¥#0

in Q",thus ¥>0in Q. So p=dA, itis a contradiction.

Therefore, we see that as v, >0, k; ||Vi ||qu, -/ e(O, oo)

by passing to a subsequence if necessary. Set w, =k, v,, then

Since ||wi||w’Q. — (>0,by Lemma 2.2 we can know that
I%m w, 2 C||wi||m, o 2 % >0 for large i. Furthermore, since

Iui (k -u, - nb(x) Vi)dX =0, some calculations deduce that
Q

Iui (7» —u,.)dx = bnj u,v, dx. Then,
o

Q

(?» —||ui||m’Q)jui dx < bn.[ u,v, dx
Q QF

<bn ||vi ||wvg* I u, dx < bn ||Vi "oo,g* Iui dx,
Q

o

which means that 7»—||ui||w,g—bn||vi||w,9‘SO. As

||Vi||w,9, —0, we see that for large i, ||ui||ooyQ >/2. For
o, =(1+p(x)w,)u,, we see that minu; >
||wi "wg is uniformly bounded, thus we know that

. . C
minu; 2 Cmin ¢, > Cmax ¢, = Cmaxu, > —.
Q Q Q Q 2

[JERTV 15l S010695

A[(l+p(x)wi)ui}i-ui [k—ui—%(x)wi] =0, x €Q,

Awi+wi(u—%—duiJ:O, x eQ)’,
Wi o, x €00,
on

%:0, X €0Q)°.
on
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Furthermore, since ||ui "w,g and ||wi||w!Q. are uniformly

bounded, the standard elliptic regularity deduces that
(u;,w;) —>(u,w), where (u,w) is a positive smooth solution
of (6).

(i) If k, ||Vi ||w o —> % wemust have v, — p in Q’, then

w=—9 0 in C'(€').
1+k,v,

From a similar argument to that of [11], we can deduce
that

[(r-0)dx <0, and [ T(2-U)dx =0,
Q, Q,
Thus [ (A~0) dx=2 [ (-0)dx~ [ O(h-U)dx<o0.
Q Q, Q)

Then U=X in Q,u; > in C'(Q,). The proof of the
theorem completes. 0

Finally, we give the positive solution set of the limiting
system (6). Set U:(1+p(x) w)u, then (6) is equivalent to
the following system

( 3
AU + u A— y =0, xeQ,
1+p(x)wk 1+p(X)WJ
Aw+w[u—d—U)—0, x e,
+w (7)
a_U:(), X €0Q),
on
WM _y, x €00,
on

By virtue of the local bifurcation theory and regarding p

as the bifurcation parameter, we give the following local
bifurcation result.

3.2 Lemma

Positive solutions of (7) bifurcate from

{(X,O,u) eXxl :u>0} if and only if u=p, =d\. To be
precise, all positive solutions of (7) near (%,0,dA) eXx[

can be parameterized as

I's= {(U,w,u) = (k + s(d)* + SU(S)),S(1+ SW(S)),d?\. +su(s)) :

S 6(0,5)}

for some &>0 and ¢*:(—A+M); A’p(x). Furthermore,
(I_J(s),v_v(s),u(s)) is smooth with respect to s and

[v‘v(s)dx = 0.
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3.3 Theorem

Assume spatial dimension N <3, regarding p as the

bifurcation parameter, an unbounded branch I', of positive
solutions of (7) bifurcates from the semi-trivial solution curve

{(X,O,u) eXxl :p>0} at u=dA. Moreover,
(0.d%) = {u:(U,w.p) €T, } =(0,C) (8)

for a large positive number C

{mgle } is
@ . (wau’“)ern

as u—0.

independent of p,
bounded, and "WH"Q*’OC—)OO
Proof:

Let I , CEx [ be the maximal connected set of the local

bifurcation branch I'; stated in Lemma 3.2 satisfying

Iy, c {(U,w,u) e(Ex[I )\{(K,O,dk)} :

(U,w) satisfies (7)} with E=C} (Q_)) xC}, (S_)*),

c (@)= {u ' (@):

Define P, ={u eC, (Q):u>0, X eﬁ}, then we can
show that I') < P, xP_. x[0.

22

=0, x E@Q}.

Since Py <P, xP_. x[I, if not, there exists a sequence

{(Ui,wi,pi)} el, ﬂ(PQ xP_. ><U) such that

(Ui,wi,ui)e(Uw,wm,uw) in Ex[J, where
(Uw,ww,uw) el, ﬂ(@(PQ XPQ*)XD ) with U, =0 or
w,=0. As | Us (x f )dx 0,if U, =0
Q1+p(x)wi 1+p
then for large i, A — >0, thus
1+p(x)w,
I Y, {7» Y, de >0, it is a contradiction. If
al+p(x)w, 1+p(x)
w_ =0, then

AU, +U,(A-U,)=0, x €Q,
ou,
on

=0, X € 0Q.

Since U, # 0, we see that U, = A. While (2,0,dA) is the
only bifurcation point of positive solutions of (7) bifurcates
from (,0) with bifurcation parameter p, we know that
u, =dA, itis a contradiction. Thus, I, is contained in the set

of positive solutions of (7). By a similar argument to that of
[6], we can further know that T" | is unbounded in E x[].
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Furthermore, as the first equation of (7) is the same in [6],
1

(o]

we can deduce that max U, < Clku J for a large number

C, independent of p.

So, from the second equation of (7), we see that

dU .
w=r (o] <o (aul,.

which shows that p is bounded.

Q*)sc,thus 0<u<C,
Since "U“” o is bounded, the elliptic regularity theory
and the Sobolev embedding theorem deduce that "Uu "cl @) is

bounded. Thus, we see that "wu”C, @) must be unbounded.

Then, maxw, is unbounded. Therefore, there exists a
e
sequence [, —> e[O,C] such that ”wH‘ "mQ — o0,
. W -
Setting W, = ——, then
[l o
( du, )
AW, +W, Lu_l-i-w J 0, xeQ',
oW,
b=, X € 0Q".
on

So, we know that W, — W, W >0, x e’ and satisfies

AW +p W=0, xeQ',

8W_0 X e0Q)".
on

It follows that p_ =0, together with the local bifurcation

result, we know that (8) holds, and the proof of the theorem
completes. O
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