IJERTV21S90372

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 2 Issue 9, September - 2013

Porting of RTLinuxPro on ARM9 Platform

Rahul Desai !, Geeta Patil 2, Vaishali Ingale ?

1. Asst. Prof, Army Institute of Technology, Pune
2. Asst. Prof, Army Institute of Technology, Pune,
3. Asst Prof, Army Institute of Technology, Pune,

Abstract

This paper describes the porting of RTLinuxPro
on ARM9 platform. RTLinuxPro is FSMLabs
RTCore POSIX PS51 robust "hard" real-time
kernel plus a full-embedded Linux development
system. EP9302 is a high-performance ARM9
System-On-Chip Embedded Processor on the
Glomation GESBC-9302 Embedded Single
Board Computer. This paper also discusses
designing real-time applications and executing
them on this platform

1. Introduction

RTLinuxPro is a hard realtime operating system
designed to support applications that have real,
serious, non-negotiable deadlines

The RTOS is called “RTCore” which is a highly
efficient, hard real-time implementation  of
POSIX Standard threads [1]. The general
purpose operating system is “Linux” [2] —
sophisticated free software supported by the
world’s largest technology companies. Figure 1
shows the design of RTLinuxPro.

RTLinuxPro is a full POSIX 1003.13 [3]
complaint hard realtime operating system
(RTCore) that runs a general purpose operating
system  (Linux) as  fully  preemptible
application.This  provides the  modularity.
Applications run either in RTCore as real-time
task or in Linux as user space applications. All
the features of Linux are available as well as
required hard real-time performance. RTCore is
designed to make real-time programming more
convenient and less mysterious. One way to
think of RTCore is as a small operating system
that runs a second operating system as its lowest
priority task. All the non-time-critical
applications can be put in the second operating
system. Three major attributes make RTCore
work: It disables all hardware interrupts in the
GPOS. It provides interrupts via interrupt
emulation. It runs full-featured non real-time

Linux (or BSD) as the lowest priority task. It is
the idle task of the RTOS, meaning that it is run
whenever the real-time system has nothing else
to execute.

RTLinuxPro is used for everything from satellite
controllers, telescopes, and jet engine test stands
to routers and computer graphics. RTLinuxPro
runs on a wide range of platforms from high-end
clusters of multiprocessor P4s/Athlons to low
power devices like the MPC860 and ARM?7.

ser space applications

td 01300 14

—

RTCore Virtual Machine

Real time tasks :

Direct
hardware
access

ol

Hardware interrupts

Hardware

Figure 1: RTLinuxPro Design

The EP93xx is a high-performance system-on-
chip design that includes 200 MHz ARM9
processor and is ideal for a range of industrial
and consumer electronic applications. The
EP9302 features an advanced ARM920T
processor [4] design with MMU that supports
Linux, Windows CE and many other embedded
operating systems. The ARM920T's 32-bit
microcontroller architecture, with a five-stage
pipeline [5], delivers impressive performance at
very low power. The basic block diagram of EP-
9302 [6] is as shown in Figure 2.

www.ijert.org

3153



IJERTV21S90372

" Sorhl
v adio =y ;
g Intorface | Patipheral fus ‘!_c‘rm} . e
@ I WaverickCrunch™ b m
8 ] u:n 12 Channsl DNA ARME20T s s
& termupts &
b e DCathe | |-Cache | w0 7
¥ ——— L | 3
3 fyuse = . 3
2 Hosts MU Bus Bridpe m
g e — Pracessor Bus 1 L 1
o I L] 1 I

Ethemet Boot SRAM & Unifisd

WA AOM Flath IF SORAM 1

MEMORY AND STORAGE

Figure 2: EP9302 System-On-Chip Layout

The GESBC-9302 a low cost compact sized
single board computer based on Cirrus Logic
EP9302 processor. With a large peripheral set
targeted to a variety of applications, the GESBC-
9302 is well suited for industrial controls, digital
media servers, audio jukeboxes, thin clients, set-
top boxes, point-of-sale terminals, biometric
security systems, and GPS devices will benefit
from the EP9302's integrated architecture and
advanced features. The list below summarizes
the features of the GESBC- 9302.
- 200MHz Processor Core-ARM920T
- 32M SDRAM, 4~16M FLASH
- Ethernet Media Access Controller (EMAC)
- 5 channel 12-bit Analog-to-Digital Converter
(ADC

Universal ~ Asynchronous  Receiver =~/
Transmitters (UARTS) with RS-485 Support
- 2 USB Host Port and Real-Time Clock
- Hardware Debug Interface

20 PGP0 Haader

~EV Supply
10/100 Ceh=met

SORAM
Twio Port USD 2.0

CP9302 ANMS
FProcessor

STRATA
£OM1 DBO

e
ESTTHTT
el

Opticnal ADC and DAC
20 PinJTAG nleiface

Figure 3: Glomation GESBC-9302 Embedded
Single Board Computer
The general flow of compiling and porting
RTLinuxPro is as shown in Figure 4.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 2 Issue 9, September - 2013

Develop Soflware
o Host 5 ystem

Compile and ik

Diornload 1o
Target System
¥

Debug onTarget
System

Transfer Zoftware
| to Flash

Run S oftware on
tar get Sy stem

Figure 4: Deployment Flow chart

2. GESBC-9302 Board Software

Linux with few test applications and network
utilities is shipped with the GESBC-9302 Board.
This software is programmed into the system
FLASH located on the board prior to shipment

[7].

Download Utility provides the user with a tool
for ‘programming the flash memory on the
GESBC-9302 with a binary image.

RedBoot provides a simple interface for loading
operating systems and applications onto the
GESBC-9302 board. The board is shipped with
Redboot pre-installed.

2.1 Starting tftp server

Here basically two important terms are host
machine and target machine. Host Machine is the
development workstation on which all binaries
are compiled. Binaries and file systems are built
so that they will run on the target machine.

Target Machine is the computer, which runs the
binaries and file system compiled by the host
machines. It could also be the host machine
itself. Host machine is our personal desktop
while our target is GESBC-9302. File transfer
service (tftp) should be executed on host
machine to transfer the file to target board.

www.ijert.org

3154



IJERTV21S90372

d /tftpservermt
eeeeee t1# ./tftpserver —v

iles: No

Client 192.168.10.2:7700 /home/zImage, 1925 Bloc
Client 192.168.10.2:7700 /home/zImage. 1925 Bloc
Client 192.16K.10.2:7700 /home/zImage, 1825 Bloc
ﬁlient 192.168.10.2:7700 /home/zImage, 1825 Bloc

erved
erved
erved
erved

FEAE

=]

[ FieBowser |
@ Amictions Actons B 0 i B8 & @ iz 10040 G

Figure 5: tftp server

2.2 About download utility

Download utility is used to program the image
"redboot.bin" into the flash of the board to be
used. It is also used to program the Ethernet
MAC address so that RedBoot can use the
Ethernet interface.

2.3 Boot Loader

RedBoot is the standard embedded system Boot
Loader from Red Hat. RedBoot provides a wide
set of tools for downloading and executing
programs on embedded target systems.

RedBoot uses a serial console for its input.and
output. The default serial port setting is
57600,8,N, 1.

It also supports the built-in Ethernet port and a
flash file system and general flash programming.

2.4 Designing root file system

The Linux kernel expects several important files
to exist in a root file system when it boots. In
embedded systems, these files are stored in
ramdisk. There are two limitations on the size of
a ramdisk. If the compressed ramdisk image is
stored in partition in on board Flash memory and
the compressed ramdisk.gz is bigger than this
partition, the boor loader will not program it to
on board flash. The compressed ramdisk image
is decompressed into RAM. The bigger your
uncompressed ramdisk is, the less RAM you
have remaining for the kernel and user programs.
This limitation depends on the amount of RAM
installed and the amount needed by the kernel
and your software to run. The basic file system
structure contains minimum set of directories
/dev, /bin, /etc, /lib, /sbin. Basic set of utilities sh,
Is, cp, mv, etc, Minimum set of config files: rc,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 2 Issue 9, September - 2013

inittab, fstab, etc., Devices /dev/hd*, /dev/tty*,
/dev/fd0, etc and Runtime library to provide
basic functions used by utilities.

Once RedBoot (with networking) is running on
the board, Linux can be loaded and run. The
images to be loaded by RedBoot must be placed
into the area used by the tftp server on your host
machine. The boot-loader loads the zImage and
the root file system from on-board Flash. The
default configuration of EP9302 is using part of
SDRAM as RAM disk for Linux root file
system. The ramdisk image must be stored in the
on-board FLASH memory and loaded by
Redboot for the Linux kernel. The image must
be loaded into dynamic memory before it can be
stored in the on board FLASH memory, by
entering the following commands at the terminal
console.

load —v -r -b 0x800000 -h 192.168.10.1
ramdisk.gz

Where -v: verbose, -r: binary format, -b: base
address in memory, -h: IP address of Host

Since the file system is in RAM, it is fast and can
be mounted rw (read/write) but the changes are
not preserved after a reboot. The compressed
image will remain unchanged and provide the
same environment each time the system starts.

3. Compiling RTLinuxPro

Before you compile your kernel, you need to
configure it. Configuration choice is kept in
Nlinux/.config file. Configuration is your
opportunity to control exactly what kernel
features are enabled (and disabled) in your new
kernel. You'll also be in control of what parts get
compiled into the kernel binary image (which
gets loaded at boot-time), and what parts get
compiled into load-on-demand kernel module
files. The old-fashioned way of configuring a
kernel is make config. New Way to configure is
to use make menuconfig or make xconfig.

If you type make menuconfig, you'll get a nice
text-based color menu system that you can use to
configure the kernel. make config runs the Bash
script  Configure, which reads in the
arch/arm/config.in file, which is located in the
architecture directory and holds the definitions of
the kernel configuration options and default
assignments and interrogates it to see which
components are to be included in the kernel.
arch/arm/config.in resorts to the config.in files
contained in the directories of the individual

www.ijert.org

3155



IJERTV21S90372

subsystems of the kernel. During this process,
the two files linux/autoconfig.h and .config are
created. The .config file controls the sequencing
of the compilation run which linux/autoconfig.h
takes care of conditional compiling within the
kernel sources. The .config file is used if
configure is called again to determine the default
responses to individual questions. A fresh
configuration will thus return the last values as
the defaults.

The command make oldconfig ensures that the
default values are accepted without further
interrogation. This enables .config file to be
included in a new version of Linux so that the
kernel is compiled with the same configuration.

Arrow keys navigate the memu. <Enter» selects submenus —-—>. Highlighted
letters are hotkeys. Pressing <¥> includes, <> exeludes, &M modularizes
features. Pregs <Egc»<Esc> to exit, <7> for Help, </> for Search. Legend:
built-in [ ] excluded <M> module < > module capable

-—- Processor Type

[*] ‘uppart ARNO20T processor
--- Procecsor Fearures

[*] upport Thumb user binaries
[ ] isable T-Cache

[ 1 isable D-Cache

[ 1 orce write through D-cache

< Exit » < Help »

er] — [File Brouser] " (File Browser] ] (Data Acquisr] ] Presertation | 5 [root@locaiha] & (root@ localne [l root@ecainer] (I 100 |
@ Aoptcntions Actons BED & @ o2, 0204 D

Figure 6: Compiling RTLinuxPro kernel

Once your kernel is configured, it's time to get it
compiled. Change the directories to the RTLinux
kernel directory on the host system. Use “make
zlmage” to build the Linux boot image. After
several minutes, compilation will complete and
you'll find the zImage file in /arch/arm/boot.

Eie Ede View Temina Tam telp
[root@localhost rtlinux kernel 2_6]# make zImage =
CHE include/limux/version.h
make[1]: ‘arch/arm/kernel/asn-offsets.s' is up to date.
make[1]: include/asm-arm/mach-types.h' is up to date.
CHK include/limnc/compile.h
CHE uer/initramfs list
Xernel: arch/arm/boot/Image is ready
Kernel: arch/arm/boot/zImage is rea
[root@localhost rtlinux kernel 2 6]# cp arch/arm/boot/zInage /home/zImage
cp: overwrite °/home/zImage'? y
[root@localhost rtlinux kernel 2 61# ll

[E]:[E s Brumer ot [B B

@ Applcsions Actons B R B &

PO [m Lo C =

@ Fisnz210mM Q

Figure 7: Making RTLinuxPro Kernel Image

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 2 Issue 9, September - 2013

4. Installing RTLinuxpro

RTCore must be loaded in order for any real time
services to be available. Hence in order to run
any RTCore application we need to load RTCore
modules located in modules directory of
RTLinuxPro on the Board.

The next step is to load RTLinux kernel image
onto the onboard SDRAM, issue the following
command at the terminal console connected to
the GESBC-9302 board,

RedBoot> load —v —r —b 0x80000 zImage
—v = verbose, -r for remote, -b for base address.

Next, load Root File System on GESBC-9302
board

RedBoot> fis load ramdisk

Finally Execute
RedBoot> exec

This will load the minimal ramdisk image, the
RTLinux kernel, and then start it running. After a
few seconds, it will comes to # prompt by
executing /shin/init specified in init/main.. The
following figure 8 shows a snapshot of GESBC-
9302 board Debug Information on Terminal
Program.

El i @
Fie Edt Yiw Icminal Tem Hel
physmap flash device: 1000000 at 60000000 B
Initializing USB Mass Storage driver...
usbcore: Tegistered mew driver ush-storage
USB Mass Storage support registered.
mice: PS/2 mouse device commonm for all mice
NET: Registered protocol family 2
IP route cache hash table entries: 512 (order: -1, 2048 bytes)
TCP established hash table entries: 2048 (order: 2, 16384 bytes)
TCP bind hash table entries: 2048 (order: 1, 8192 bytes)
TCP: Hash tables configured (established 2048 bind 2048)
TCP reno registered
TCP bic registered
NET: Registered protecol family 1
NET: Registered protocol family 17
eth0: link up, 100Mbps, full-duplex, lpa OxBIEL
IP-Config: Guessing netmask 255.255.255.0
IP-Config: Complete:
device=eth0, addr=192.168.10.2, mask=255.255.255.0, gW=255.255.255.255,
host=192.168.10.2, domain=, nis-domain=(none),
bootserver=102.168.10.1, rootserver=192.168.10.1, rootpath=
Looking up port of RPC 100003/2 on 192.168.10.1
Looking up port of RPC 100005/1 on 102.168.10.1
VFS: Mounted root (nfs filesystem).
Freeing init memory: 88K
INIT: camnot execute */rcs™
Enterin .bash-3.00#
ba:

il ooioealhasi= | oot ocalvost o] k@ ocahostios] o ]

@ Fri Jun 2. 102704 @

Figure 8: Once the board is ready....

5. Designing Real Time Application

A typical RTCore application consists of one or
more real time components that run under the
direct control of the real time kernel and a set of
non real time components that run as under space
programs. This is most simple example to create
a real time thread. A real-time application is

www.ijert.org

3156



IJERTV21S90372

usually composed of several “threads” of
execution.

#include<stdio.h>
#include<pthread.h>

void *thread_fun(void *arg)

{
rtl_printf("Inside \"thread_fun\" Thread\n");
}

int main()
{
void *ptr;
pthread_t thread;
rtl_printf("Inside main Thread\n");

pthread_create(&thread,NULL thread_fun,
NULL);
pthread_cancel(thread);
pthread_join(thread,&ptr);
return O;
}
The entire process to run the RTLinux
application on the target board is depicted as
below:

1) Compile desired program on host machine
using provided arm-linux-gcc toolchain.
[root@localhost examples]# arm-linux-
gcc —o sample sample.c

2) Transfer the compiled file without the ¢
extension to the /home directory on your host
machine. On the console of the development
board, create a directory in your ramdisk
"sample"
bash-3.00# mkdir /usr/sample

3) Once again, on the console of your
development board, invoke a TFTP session to
transfer your newly compiled program from the
HOST to your TARGET over Ethernet:
bash-3.00# tftp —-g -r
192.168.10.1

sample

4) As “Execute” permission is not enabled on
this file. We need to add this attribute. And
execute the program. +x stands for grant execute
permission. chmod stands for change file
permission mode.

bash-3.00#
bash-3.00#

chmod +x sample
Jsample.o

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 2 Issue 9, September - 2013

Running the example (./sample.o) forces the
RTCore OS to load the application and enter the
main () context. Here it prints a message out
through standard 1/O for the user to see and exits.
A simple makefile is needed to build this, which
includes rtl.mk that will set up the build
environment - compilers, CFLAGS, and so on.
Including Rules.make will provide the build
rules needed to transform C source to an RTCore
application. rtl_printf() is fully capable and can
handle any format that a normal printf () can
handle.

pthread_create() is for creating a new thread.
The new thread created is of type pthread_t,
defined in the header pthread.h. This thread
executes the function thread_fun(). The attr
argument specifies thread attributes to be applied
to the new thread. If attr is NULL, default
attributes are used. So here, thread_fun () is
invoked with no argument. It has three
components — initialization, run-time and
termination. In RTLinux, all threads share the
Linux kernel address space. The advantage of
using threads is that switching between threads is
quite inexpensive when compared with context
switch. We can have complete control over the
execution of a thread by using different functions
present in RTLinux.

Once the

message has been printed,

pthread _cancel() is invoked to cancel the
thread.

Figure 9: Running RTLinux application on
GESBC-9302

With RTLinuxPro 2.0, real-time applications are
very portable, and even recompilable as normal
Linux applications.

www.ijert.org

S o
coons 8 3 S B @ s 7. aan

3157



IJERTV21S90372

6. Conclusion

This paper presents guidelines showing how to
port RTLinuxPro on ARM platforms. While
configuring the real-time kernel for ARM
platform, we need to select proper processor
type. i.e. EP9302 processor. And we also need to
enable “Network File System” and “Root File
System on NFS” options as a root file system for
target GESBC-9302 board. This paper also
describes the steps for running any real-time
applications on ARM platform.

7. Acknowledgements

We would like to thank Sakithvel, Madhava Rao
SS and Viswanathan S from FSM labs for their
continuous support and valuable guidance as and
when required.

8. References

[1] Where you can learn more about thread
programming: Newsgroup, Newsgroup, Sun:
Workshop Developer Products--Threads , IEEE
Parallel & Distributed Technology

[2] Using Linux for real time applications-
Marchesin. A; Volume 21 IEEE- Sep-Oct 2004.

[3] IEEE Std 1003.1b-1993 IEEE Standard for
Information Technology. Portable operating
system interface (POSIX) part 1: System
application programming interface, amendment
1: Realtime extensions. Technical report, IEEE,
New York, 1994,

[4] ARM System-on-chip Architecture 2"
Edition — Steve Furber

[5] ARM System Developer’s Guide by Andrew
Sloss, Dominic Symes, Chris Wright.

[6] GESBC-EP9302 User Manual
Website: www.cirrus.com

[7] FSM Labs Inc. RTCore/BSD Released, 2002.
http://www.fsmlabs.com.

[8] FSM Labs Inc.

FSMLabs RTLinux Development, 2002.
www.fsmlabs.com/developers.
www.fsmlabs.com/products/software.htm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

[9] Linux Journal. The Monthly Magazine of the
Linux Community, 2002.
http://www.linuxjournal.com.

www.ijert.org 3158



