
Porting of RTLinuxPro on ARM9 Platform

Rahul Desai
1
, Geeta Patil

2
, Vaishali Ingale

3

1. Asst. Prof, Army Institute of Technology, Pune

2. Asst. Prof, Army Institute of Technology, Pune,

3. Asst Prof, Army Institute of Technology, Pune,

Abstract

This paper describes the porting of RTLinuxPro

on ARM9 platform. RTLinuxPro is FSMLabs

RTCore POSIX PS51 robust "hard" real-time

kernel plus a full-embedded Linux development

system. EP9302 is a high-performance ARM9

System-On-Chip Embedded Processor on the

Glomation GESBC-9302 Embedded Single

Board Computer. This paper also discusses

designing real-time applications and executing

them on this platform

1. Introduction

RTLinuxPro is a hard realtime operating system

designed to support applications that have real,

serious, non-negotiable deadlines

The RTOS is called “RTCore” which is a highly

efficient, hard real-time implementation of

POSIX Standard threads [1]. The general

purpose operating system is “Linux” [2] –

sophisticated free software supported by the

world’s largest technology companies. Figure 1

shows the design of RTLinuxPro.

RTLinuxPro is a full POSIX 1003.13 [3]

complaint hard realtime operating system

(RTCore) that runs a general purpose operating

system (Linux) as fully preemptible

application.This provides the modularity.

Applications run either in RTCore as real-time

task or in Linux as user space applications. All

the features of Linux are available as well as

required hard real-time performance. RTCore is

designed to make real-time programming more

convenient and less mysterious. One way to

think of RTCore is as a small operating system

that runs a second operating system as its lowest

priority task. All the non-time-critical

applications can be put in the second operating

system. Three major attributes make RTCore

work: It disables all hardware interrupts in the

GPOS. It provides interrupts via interrupt

emulation. It runs full-featured non real-time

Linux (or BSD) as the lowest priority task. It is

the idle task of the RTOS, meaning that it is run

whenever the real-time system has nothing else

to execute.

RTLinuxPro is used for everything from satellite

controllers, telescopes, and jet engine test stands

to routers and computer graphics. RTLinuxPro

runs on a wide range of platforms from high-end

clusters of multiprocessor P4s/Athlons to low

power devices like the MPC860 and ARM7.

Figure 1: RTLinuxPro Design

The EP93xx is a high-performance system-on-

chip design that includes 200 MHz ARM9

processor and is ideal for a range of industrial

and consumer electronic applications. The

EP9302 features an advanced ARM920T

processor [4] design with MMU that supports

Linux, Windows CE and many other embedded

operating systems. The ARM920T's 32-bit

microcontroller architecture, with a five-stage

pipeline [5], delivers impressive performance at

very low power. The basic block diagram of EP-

9302 [6] is as shown in Figure 2.

Hardware

RTT2

RTCore Virtual Machine
layer

RT Linux Pro Scheduler

 System
Libraries Linux kernel

Device drivers

RTT1

USA1 USA2 USA3 USA4

Hardware interrupts I/O

Real time tasks

User space applications

I/O

Hardware interrupts

Direct
hardware

access

3153

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90372

Figure 2: EP9302 System-On-Chip Layout

The GESBC-9302 a low cost compact sized

single board computer based on Cirrus Logic

EP9302 processor. With a large peripheral set

targeted to a variety of applications, the GESBC-

9302 is well suited for industrial controls, digital

media servers, audio jukeboxes, thin clients, set-

top boxes, point-of-sale terminals, biometric

security systems, and GPS devices will benefit

from the EP9302's integrated architecture and

advanced features. The list below summarizes

the features of the GESBC- 9302.

· 200MHz Processor Core-ARM920T

· 32M SDRAM, 4~16M FLASH

· Ethernet Media Access Controller (EMAC)

· 5 channel 12-bit Analog-to-Digital Converter

(ADC

· Universal Asynchronous Receiver /

Transmitters (UARTs) with RS-485 Support

· 2 USB Host Port and Real-Time Clock

· Hardware Debug Interface

Figure 3: Glomation GESBC-9302 Embedded

Single Board Computer

The general flow of compiling and porting

RTLinuxPro is as shown in Figure 4.

Figure 4: Deployment Flow chart

2. GESBC-9302 Board Software

Linux with few test applications and network

utilities is shipped with the GESBC-9302 Board.

This software is programmed into the system

FLASH located on the board prior to shipment

[7].

Download Utility provides the user with a tool

for programming the flash memory on the

GESBC-9302 with a binary image.

RedBoot provides a simple interface for loading

operating systems and applications onto the

GESBC-9302 board. The board is shipped with

Redboot pre-installed.

2.1 Starting tftp server

Here basically two important terms are host

machine and target machine. Host Machine is the

development workstation on which all binaries

are compiled. Binaries and file systems are built

so that they will run on the target machine.

Target Machine is the computer, which runs the

binaries and file system compiled by the host

machines. It could also be the host machine

itself. Host machine is our personal desktop

while our target is GESBC-9302. File transfer

service (tftp) should be executed on host

machine to transfer the file to target board.

3154

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90372

Figure 5: tftp server

2.2 About download utility

Download utility is used to program the image

"redboot.bin" into the flash of the board to be

used. It is also used to program the Ethernet

MAC address so that RedBoot can use the

Ethernet interface.

2.3 Boot Loader

RedBoot is the standard embedded system Boot

Loader from Red Hat. RedBoot provides a wide

set of tools for downloading and executing

programs on embedded target systems.

RedBoot uses a serial console for its input and

output. The default serial port setting is

57600,8,N, 1.
It also supports the built-in Ethernet port and a

flash file system and general flash programming.

2.4 Designing root file system

The Linux kernel expects several important files

to exist in a root file system when it boots. In

embedded systems, these files are stored in

ramdisk. There are two limitations on the size of

a ramdisk. If the compressed ramdisk image is

stored in partition in on board Flash memory and

the compressed ramdisk.gz is bigger than this

partition, the boor loader will not program it to

on board flash. The compressed ramdisk image

is decompressed into RAM. The bigger your

uncompressed ramdisk is, the less RAM you

have remaining for the kernel and user programs.

This limitation depends on the amount of RAM

installed and the amount needed by the kernel

and your software to run. The basic file system

structure contains minimum set of directories

/dev, /bin, /etc, /lib, /sbin. Basic set of utilities sh,

ls, cp, mv, etc, Minimum set of config files: rc,

inittab, fstab, etc., Devices /dev/hd*, /dev/tty*,

/dev/fd0, etc and Runtime library to provide

basic functions used by utilities.

Once RedBoot (with networking) is running on

the board, Linux can be loaded and run. The

images to be loaded by RedBoot must be placed

into the area used by the tftp server on your host

machine. The boot-loader loads the zImage and

the root file system from on-board Flash. The

default configuration of EP9302 is using part of

SDRAM as RAM disk for Linux root file

system. The ramdisk image must be stored in the

on-board FLASH memory and loaded by

Redboot for the Linux kernel. The image must

be loaded into dynamic memory before it can be

stored in the on board FLASH memory, by

entering the following commands at the terminal

console.

load –v –r –b 0x800000 –h 192.168.10.1

ramdisk.gz

Where -v: verbose, -r: binary format, -b: base

address in memory, -h: IP address of Host

Since the file system is in RAM, it is fast and can

be mounted rw (read/write) but the changes are

not preserved after a reboot. The compressed

image will remain unchanged and provide the

same environment each time the system starts.

3. Compiling RTLinuxPro

Before you compile your kernel, you need to

configure it. Configuration choice is kept in

/linux/.config file. Configuration is your

opportunity to control exactly what kernel

features are enabled (and disabled) in your new

kernel. You'll also be in control of what parts get

compiled into the kernel binary image (which

gets loaded at boot-time), and what parts get

compiled into load-on-demand kernel module

files. The old-fashioned way of configuring a

kernel is make config. New Way to configure is

to use make menuconfig or make xconfig.

If you type make menuconfig, you'll get a nice

text-based color menu system that you can use to

configure the kernel. make config runs the Bash

script Configure, which reads in the

arch/arm/config.in file, which is located in the

architecture directory and holds the definitions of

the kernel configuration options and default

assignments and interrogates it to see which

components are to be included in the kernel.

arch/arm/config.in resorts to the config.in files

contained in the directories of the individual

3155

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90372

subsystems of the kernel. During this process,

the two files linux/autoconfig.h and .config are

created. The .config file controls the sequencing

of the compilation run which linux/autoconfig.h

takes care of conditional compiling within the

kernel sources. The .config file is used if

configure is called again to determine the default

responses to individual questions. A fresh

configuration will thus return the last values as

the defaults.

The command make oldconfig ensures that the

default values are accepted without further

interrogation. This enables .config file to be

included in a new version of Linux so that the

kernel is compiled with the same configuration.

Figure 6: Compiling RTLinuxPro kernel

Once your kernel is configured, it's time to get it

compiled. Change the directories to the RTLinux

kernel directory on the host system. Use “make

zImage” to build the Linux boot image. After

several minutes, compilation will complete and

you'll find the zImage file in /arch/arm/boot.

Figure 7: Making RTLinuxPro Kernel Image

4. Installing RTLinuxpro

RTCore must be loaded in order for any real time

services to be available. Hence in order to run

any RTCore application we need to load RTCore

modules located in modules directory of

RTLinuxPro on the Board.

The next step is to load RTLinux kernel image

onto the onboard SDRAM, issue the following

command at the terminal console connected to

the GESBC-9302 board,

RedBoot> load –v –r –b 0x80000 zImage

–v = verbose, -r for remote, -b for base address.

Next, load Root File System on GESBC-9302

board

RedBoot> fis load ramdisk

Finally Execute

RedBoot> exec

This will load the minimal ramdisk image, the

RTLinux kernel, and then start it running. After a

few seconds, it will comes to # prompt by

executing /sbin/init specified in init/main.. The

following figure 8 shows a snapshot of GESBC-

9302 board Debug Information on Terminal

Program.

Figure 8: Once the board is ready….

5. Designing Real Time Application

A typical RTCore application consists of one or

more real time components that run under the

direct control of the real time kernel and a set of

non real time components that run as under space

programs. This is most simple example to create

a real time thread. A real-time application is

3156

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90372

usually composed of several “threads” of

execution.

#include<stdio.h>

#include<pthread.h>

void *thread_fun(void *arg)

{

rtl_printf("Inside \"thread_fun\" Thread\n");

}

int main()

{

 void *ptr;

 pthread_t thread;

 rtl_printf("Inside main Thread\n");

pthread_create(&thread,NULL,thread_fun,

NULL);

 pthread_cancel(thread);

 pthread_join(thread,&ptr);

 return 0;

}

The entire process to run the RTLinux

application on the target board is depicted as

below:

1) Compile desired program on host machine

using provided arm-linux-gcc toolchain.

[root@localhost examples]# arm-linux-

gcc –o sample sample.c

2) Transfer the compiled file without the c

extension to the /home directory on your host

machine. On the console of the development

board, create a directory in your ramdisk

"sample"

bash-3.00# mkdir /usr/sample

3) Once again, on the console of your

development board, invoke a TFTP session to

transfer your newly compiled program from the

HOST to your TARGET over Ethernet:

bash-3.00# tftp –g –r sample

192.168.10.1

4) As “Execute” permission is not enabled on

this file. We need to add this attribute. And

execute the program. +x stands for grant execute

permission. chmod stands for change file

permission mode.

bash-3.00# chmod +x sample

bash-3.00# ./sample.o

Running the example (./sample.o) forces the

RTCore OS to load the application and enter the

main () context. Here it prints a message out

through standard I/O for the user to see and exits.

A simple makefile is needed to build this, which

includes rtl.mk that will set up the build

environment - compilers, CFLAGS, and so on.

Including Rules.make will provide the build

rules needed to transform C source to an RTCore

application. rtl_printf() is fully capable and can

handle any format that a normal printf () can

handle.

pthread_create() is for creating a new thread.

The new thread created is of type pthread_t,

defined in the header pthread.h. This thread

executes the function thread_fun(). The attr

argument specifies thread attributes to be applied

to the new thread. If attr is NULL, default

attributes are used. So here, thread_fun () is

invoked with no argument. It has three

components − initialization, run-time and

termination. In RTLinux, all threads share the

Linux kernel address space. The advantage of

using threads is that switching between threads is

quite inexpensive when compared with context

switch. We can have complete control over the

execution of a thread by using different functions

present in RTLinux.

Once the message has been printed,

pthread_cancel() is invoked to cancel the

thread.

Figure 9: Running RTLinux application on

GESBC-9302

With RTLinuxPro 2.0, real-time applications are

very portable, and even recompilable as normal

Linux applications.

3157

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90372

6. Conclusion

This paper presents guidelines showing how to

port RTLinuxPro on ARM platforms. While

configuring the real-time kernel for ARM

platform, we need to select proper processor

type. i.e. EP9302 processor. And we also need to

enable “Network File System” and “Root File

System on NFS” options as a root file system for

target GESBC-9302 board. This paper also

describes the steps for running any real-time

applications on ARM platform.

7. Acknowledgements

We would like to thank Sakithvel, Madhava Rao

SS and Viswanathan S from FSM labs for their

continuous support and valuable guidance as and

when required.

8. References

[1] Where you can learn more about thread

programming: Newsgroup, Newsgroup, Sun:

Workshop Developer Products--Threads , IEEE

Parallel & Distributed Technology

[2] Using Linux for real time applications-

Marchesin. A; Volume 21 IEEE- Sep-Oct 2004.

[3] IEEE Std 1003.1b-1993 IEEE Standard for

Information Technology. Portable operating

system interface (POSIX) part 1: System

application programming interface, amendment

1: Realtime extensions. Technical report, IEEE,

New York, 1994.

[4] ARM System-on-chip Architecture 2
nd

Edition – Steve Furber

[5] ARM System Developer’s Guide by Andrew

Sloss, Dominic Symes, Chris Wright.

[6] GESBC-EP9302 User Manual

Website: www.cirrus.com

[7] FSM Labs Inc. RTCore/BSD Released, 2002.

http://www.fsmlabs.com.

[8] FSM Labs Inc.

FSMLabs RTLinux Development, 2002.

www.fsmlabs.com/developers.

www.fsmlabs.com/products/software.htm.

[9] Linux Journal. The Monthly Magazine of the

Linux Community, 2002.

http://www.linuxjournal.com.

3158

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90372

