
Porting & Implementation of features of μC/OS II RTOS on Arm7 

controller LPC 2148 with different IPC mechanisms  

 
Prof. Nilima R. Kolhare, 

Asst.Prof,.Government College of Engineering, 

Aurangabad, Maharashtra 
  

 

Mr. Nitin I.Bhopale, 

Lecturer, SRES College Of Engineering,  
Kopargaon, Maharashtra. 

 

 

Abstract- This paper describes an embedded system based on 

μC/OS II operating system using ARM7. It deals with the 

porting of MicroC/OS-II kernel in ARM powered 

microcontroller for the implementation of features like 

multitasking, time scheduling, mailbox and, mutex. Here a 

real time kernel is the software that manages the time of a 

micro controller to ensure that all time critical events are 

processed as efficiently as possible. Different interface 

modules of ARM7 microcontroller like UART, ADC and 

LCD are used. Data acquired from these interfaces is tested 

using μC/OS-II based real time operating system. It mainly 

emphasizes on the porting of μC/OS-II. It also shows how 

different applications are quite handy to use the RTOS 

features. With respect to the applications or tasks, this paper 

explains additional features of μC/OS-II like mutex, 

semaphore which are not inbuilt along with in built functions 

like multitasking, scheduling, mailbox. 

 

Index Terms- embedded system, μC/OS-II, ARM7, RTOS 
 

I. INTRODUCTION 

 In high end applications, sometimes devices may 

malfunction or totally fail due to long duration of usage or any 

technical problem which give fatal results. An embedded 

system is necessary for continuously collecting values from 

onsite and later analyzing that as well as taking proper 

measures to solve the problem. The systems that are in use 

today use non real time operating systems based on mono-task 

mechanism that hardly satisfies the current requirements. This 

paper will focus on porting of μC/OS-II in ARM7 controller 

that performs multitasking and time scheduling. The μC/OS II 

features and its porting to ARM7 are discussed. Finally it 

provides an overview for design of embedded system using 

μC/OS II and with respect to the response of the application, 

different features can be implemented. μC/OS II (pronounced 

"Micro C O S 2") stands for Microcontroller Operating System 

Version 2 and can be termed as μC/OS-II or uC/OS-II),. It is a 

very small real-time kernel with memory footprint is about 

20KB for a fully functional kernel and source code is about 

5,500 lines, mostly in ANSI C. Its source is open but not free 

for commercial usages. uC/OS-II is upward compatible with 

μC/OS V1.11 but provides many improvements, such as the 

addition of a fixed-sized memory manager; task deletion and 

deletion, task switch, Task Control Block(TCB) extensions 

support.  

II. UC/OS II  USING ARM 

 

μC/OS-II, The Real-Time Kernel is a highly portable, 

ROMable, scalable, pre emptive real-time, multitasking kernel 

(RTOS) for microprocessors and microcontrollers. μC/OS-II 

can manage up to 250 application tasks. μC/OS-II runs on a 

large number of processor architectures and ports. The vast 

number of ports should convince that μC/OS-II is truly very 

portable and thus will most likely be ported to new processors 

as they become available. μC/OS-II can be scaled to only 

contain the features you need for your application and thus 

provide a small footprint. Depending on the processor, on an 

ARM (Thumb mode) μC/OSII can be reduced to as little as 6K 

bytes of code space and 500 bytes of data space (excluding 

stacks). The execution time for most of the services provided 

by μC/OS-II is both constant and deterministic. This means 

that the execution times do not depend on the number of tasks 

running in the application. 

 

A. Choosing μC/OS II 

      μC/OS II is chosen for the following features: 

1. Portable 

Most of μC/OS-II is written in highly portable ANSI 

C, with target microprocessor specific code written in assembly 

language. Assembly language is kept to a minimum to take 

μC/OS-II easy to port to other processors. Micro C/OS-II can 

be ported to a large number of microprocessors as long as the 

microprocessors provides a stack pointer and the CPU register 

can be pushed onto and popped from the stack. μC/OS-II can 

run on most 8, 16, 32 or even 64 bit microprocessors or 

microcontrollers and DSPs. 

 

2. ROMable 

μC/OS-II was designed for embedded application. 

This means that if you have the proper tool chain (i.e. C 

compiler, assembler and linker/locater), you can embed Micro 

C/OS-II as part of a product. 

 

3. Scalable 

μC/OS-II is designed such a way so that only the services 

needed in the application can be used, means that a product can 

use just a few μC/OS-II services. This allows to reduce the 

amount of memory (both RAM and ROM) needed by μC/OS-II 

on a per product basis. Scalability is accomplished with the use 

of conditional complication. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org



 

4. Pre emptive 

μC/OS-II is a fully pre emptive real time kernel. This 

means that Micro μC/OS-II always runs the highest priority 

task that is ready. 

 

5. Multitasking 

Multitasking is the process of scheduling and 

switching the CPU between several tasks. μC/OS-II can 

manage up to 64 tasks.  

 

6. Deterministic  

Execution time of all μC/OS-II functions and services 

are deterministic. This means that one can always know how 

much time μC/OS-II will take to execute a function or a 

service.  

 

7. Robust and Reliable 

               μC/OS-II is based on μC/OS which has been used in 

hundreds of commercial applications. μC/OS-II uses the same 

core and most of the same functions as μC/OS yet offers more 

features. 

 

B. Starting μC/OS-II 

 

              In any application μC/OS-II is started as shown in the 

figure 1.Initially the hardware and software are initialized. The 

hardware is the ARM core and software is the μC/OS-II. The 

resources are allocated for the tasks defined in the application. 

                 Then the scheduler is started and it alligns tasks in 

pre-emptive manner. All these are carried out using specified 

Functions defined in μC/OS-II. 

 
 

Figure 1: Starting μC/OS-II 

 

 
 

Figure 2: Initializing μC/OS-II 

 

C. Initializing  μC/OS II 

 

         μC/OS-II can be initialized as shown in the figure 2.As 

shown below the sample program to correlate steps shown 

above. 

 

void main (main) 

{ 

/* user initialization */ 

OSInit(); /* kernel initialization */ 

/* Install interrupt vectors */ 

/* Create at least 1 task (start task) */ 

/* Additional User code */ 

OSStart(); /* start multitasking */ 

} 

  

D. Task Creation in μC/OS II 

 

         To make it ready for multitasking, the kernel needs to 

have information about the task: its starting address, top-of-

stack (TOS), priority, arguments passed to the task. Create the 

task before start of  the multitasking  (at initialization time)  

 

OStaskCreate(void (*task) (void *parg), 

void *parg, 

OS_STK *pstk, 

INT8U prio); 

                                  

Mutual Exclusion 

 

         The easiest way for tasks to communicate with each other 

is through shared data structures. This is especially easy when 

all the tasks exist in a single address space. Tasks can thus 

reference global variables, pointers, buffers, linked lists, ring 

buffers, etc. While sharing data simplifies the exchange of 

information, by ensuring  that each task has exclusive access to 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

2www.ijert.org



the data to avoid contention and data corruption. The most 

common methods to obtain exclusive access to shared 

resources are: 

a) Disabling interrupts 

b) Test-And-Set 

c) Disabling scheduling 

d) Using semaphores 

 

 Mutual Exclusion, Disabling and enabling interrupts 

               The easiest and fastest way to gain exclusive access 

to a shared resource is by disabling and enabling interrupts as 

shown in the pseudo-code below 

 

Disable interrupts; 

Access the resource (read/write from/to variables); 

Reenable interrupts; 

 

     Mutual Exclusion, Disabling and enabling the scheduler 

If task is not sharing variables or data structures with an ISR 

then disable/enable scheduling, Locking and Unlocking the 

Scheduler) as shown in listing (using μC/OS-II as an example). 

In this case, two or more tasks can share data without the 

possibility of contention. While the scheduler is locked, 

interrupts are enabled and, if an interrupt occurs while in the 

critical section, the ISR will immediately be executed. At the 

end of the ISR, the kernel will always return to the interrupted 

task even if a higher priority task has been made ready-to-run 

by the ISR. The scheduler will be invoked when 

OSSchedUnlock() is called to see if a higher priority task has 

been made ready to run by the task or an ISR. A context switch 

will result if there is a higher priority task that is ready to run. 

Although this method works well, Mostly  it should be avoided 

to disable the scheduler because it defeats the purpose of 

having a kernel in the first place.  

 

Mutual Exclusion, Semaphores 

              The semaphore was invented by Edgser Dijkstra in the 

mid 1960s. A semaphore is a protocol mechanism offered by 

most multitasking kernels. Semaphores are used to: 

a) control access to a shared resource (mutual exclusion); 

b) signal the occurrence of an event; 

c) allow two tasks to synchronize their activities. 

               A semaphore is a key that selected code acquires in 

order to continue execution. If the semaphore is already in use, 

the requesting task is suspended until the semaphore is released 

by its current owner. In other words, the requesting task says: 

"Give me the key. If someone else is using it, I am willing to 

wait for it!" There are two types of semaphores: binary 

semaphores and counting semaphores. As its name implies, a 

binary semaphore can only take two values: 0 or 1. A counting 

semaphore allows values between 0 and 255, 65535 or 

4294967295, depending on whether the semaphore mechanism 

is implemented using 8, 16 or 32 bits, respectively. The actual 

size depends on the kernel used. Along with the semaphore's 

value, the kernel also needs to keep track of tasks waiting for 

the semaphore's availability. 

             There are generally only three operations that can be 

performed on a semaphore: INITIALIZE (also called 

CREATE), WAIT (also called PEND), and SIGNAL (also 

called POST).The initial value of the semaphore must be 

provided when the semaphore is initialized. The waiting list of 

tasks is always initially empty. A task desiring the semaphore 

will perform a WAIT operation. If the semaphore is available 

(the semaphore value is greater than 0), the semaphore value is 

decremented and the task continues execution. If the 

semaphore's value is 0, the task performing a WAIT on the 

semaphore is placed in a waiting list. Most kernels allow you 

to specify a timeout; if the semaphore is not available within a 

certain amount of time, the requesting task is made ready to 

run and an error code (indicating that a timeout has occurred) is 

returned to the caller. A task releases a semaphore by 

performing a SIGNAL operation. If no task is waiting for the 

semaphore, the semaphore value is simply incremented. If any 

task is waiting for the semaphore, however, one of the tasks is 

made ready to run and the semaphore value is not incremented; 

the key is given to one of the tasks waiting for it. Depending on 

the kernel, the task which will receive the semaphore is either: 

a) the highest priority task waiting for the semaphore, or 

b) the first task that requested the semaphore (First In First   

Out, or FIFO). 

                     Some kernels allows to choose either method 

through an option when the semaphore is initialized. μC/OS-II 

only supports the first method. If the readied task has a higher 

priority than the current task (the task releasing the 

semaphore), a context switch will occur (with a pre-emptive 

kernel) and the higher priority task will resume execution; the 

current task will be suspended until it again becomes the 

highest priority task ready-to-run. Figure 3 shows how you can 

share data using a semaphore (using μC/OS-II). Any task 

needing access to the same shared data will call OSSemPend() 

and when the task is done with the data, the task calls 

OSSemPost().Semaphore is an object that needs to be 

initialized before it’s used and for mutual exclusion, a 

semaphore is initialized to a value of 1. Using a semaphore to 

access shared data doesn’t affect interrupt latency and, if an 

ISR or the current task makes a higher priority task ready-to-

run while accessing the data then, this higher priority task will 

execute immediately. 

 

OS_EVENT *SharedDataSem; 

void Function (void) 

{ 

INT8U err; 

OSSemPend(SharedDataSem, 0, &err); 

. /* Access shared data here (interrupts are recognized) */ 

OSSemPost(SharedDataSem); 

} 

 

Accessing shared data by obtaining a semaphore. 

             Semaphores are especially useful when tasks are 

sharing I/O devices. If two tasks were allowed to send 

characters to a printer at the same time. The printer would 

contain interleaved data from each task, if task #1 tried to print 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

3www.ijert.org



“I am task #1!” and task #2 tried to print “I am task #2!” then 

the result will be:I Ia amm t tasask k#1 #!2! 

             In this case, semaphore can be used and initialize it to 

1 (i.e. a binary semaphore). The rule is simple: to access the 

printer each task must first obtain the resource's semaphore. 

Figure 3 shows the tasks competing for a semaphore to gain 

exclusive access to the printer. Note that the semaphore is 

represented symbolically by a key indicating that each task 

must obtain this key to use the printer. 

            This example implies that each task must know about 

the existence of the semaphore in order to access the 

resource. There are situations when it is better to encapsulate 

the semaphore. Each task would thus not know that it is 

actually acquiring a semaphore when accessing the resource. 

For example, an RS-232C port is used by multiple tasks to 

send commands and receive responses from a device connected 

at the other end of the RS-232C port. A flow diagram is shown 

in Figure 4. 

 

Figure 3: Semaphore for accessing printer 

 

 

Figure 4: Hiding a semaphore from task 

 

         The function CommSendCmd() is called with three 

arguments: the ASCII string containing the command, a pointer 

to the response string from the device, and finally, a timeout in 

case the device doesn't respond within a certain amount 

of time. The pseudo-code for this function is: 

 

INT8U CommSendCmd(char *cmd, char *response, INT16U 

timeout) 

{ 

Acquire port's semaphore; 

Send command to device; 

Wait for response (with timeout); 

if (timed out) { 

Release semaphore; 

return (error code); 

} else { 

Release semaphore; 

return (no error); 

} 

} 

                     Encapsulating a semaphore. 
Each task which needs to send a command to the device has to 

call this function. The semaphore is assumed to be initialized to 

1 (i.e., available) by the communication driver initialization 

routine. The first task that calls CommSendCmd() will acquire 

the semaphore and thus proceed to send the command and wait 

for a response. If another task attempts to send a command 

while the port is busy, this second task will be suspended until 

the semaphore is released. The second task appears to have 

simply made a call to a normal function that will not return 

until the function has performed its duty. When the semaphore 

is released by the first task, the second task will acquire the 

semaphore and will thus be allowed to use the RS-232C port. 

Further the counting semaphore with buffer pool can be used  

            The heart of the system is a real-time kernel that uses 

preemptive scheduling to achieve multitasking on hardware 

platform. The previous sections dealt with μCOS_II porting to 

the application desired. This section deals with the  

implementation of hardware and software. 

 

 
 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

4www.ijert.org



Figure 5: Block diagram of hardware platform 

In Micro C/OS-II maximum number of tasks is 64. In the 

figure shown above the application has six tasks. Depending on 

the required application the number of tasks may vary. To 

perform a sample experiment to understand the porting of 

μC/OS-II we can perform simple tasks like Temperature sensor 

(i.e., ADC), Graphical LCD (i.e., degree to graphical 

Fahrenheit), UART (i.e., digital data displaying), LED toggle 

(ie., 8-bit data flow control) Buzzer (i.e., alarm device). The 

ARM runs the Real time operating system to collect 

information from the external world.Here RTOS is used to 

achieve real time data acquisitions. MicroC/OS-II kernel is 

ported in ARM powered microcontroller for the 

implementation of multitasking and time scheduling as 

shown in previous sections. 

           WinARM is used for implementation. WinARM is a 

windows operating system software program that runs on a PC 

to develop applications for ARM microcontroller and digital 

signal controller. It provides a single integrated environment to 

develop code for embedded microcontroller. 

    

  PROPOSED WORK 

 

           As shown in the figure 7 .Initialisation of the task1 and 

task2 is been done. Although supports for total 64 tasks all of 

them are not used at a time in application therefore with respect 

to demand the task must be created. These two tasks will 

acquire the values from the inbuilt ADC through channels 6 

and channel 7.As soon as  the values has been taken from ADC 

semaphore will be acquired by the tasks 1 and 2.The data to be 

sent to the hyper Terminal is to be converted firstly into the 

ASCII by Hex to ASCII conversion at the intermediated  stage. 

Once it is sent to the hyper terminal semaphores acquired by 

the tasks will be released and in order  to have the continuous 

check for all the above process the delay of 1 second is taken 

and all the will be repeated. In order to focus on the features of 

RTOS ,As shown in the figure task 3 is been reserved for the 

keypad application, similar to that the task 4 is been reserved 

with the LCD application. 

           As soon as the task 3 is activated at the same time task5 

will be triggered which will simply implement the mutex by 

semaphore. In the next task5 will communicate to task 4, Value 

receives through the task 3 it simply display it on to the LCD at 

the same time it is also checked that whether the pressed key is 

the key 6 or key 7 accordingly the current value related to it 

will be  transferred to the hyper terminal.  

           

  
Figure 6: Block diagram of proposed system initialisation 

platform for task 1 and task 2 

 

TASK 3
(KEY PRESS 

DETECTION)

TASK 4
(LCD ACCESS)

TASK 5

SEND DATA 
TO HYPER 
TERMINAL

MUTEX BY 
SEMAPHORE

MAILBOX
TASK 1/2

 

 

Figure 7: Block diagram of Mailbox, Mutex implementation   

by use of semaphore  

 

CONCLUSION 

 

            In this paper  the porting of  μC/OS-II in ARM 7 is 

presented. It mainly focus on designing an embedded system 

using ARM 7 and μC/OS-II. The steps involved in porting the 

RTOS and final implementation details are provided.  

            This paper provides a detailed overview for developing 

a embedded  system using ARM and μC/OS-II and provides  

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

5www.ijert.org



the details about  the features of  μC/OS-II like Mutex with 

reference to the Semaphore(which is not the inbuilt one)as well 

as the inbuilt features like multitasking, scheduling ,mailbox, 

semaphore. 

 

III. REFERENCES 

 

[1] Liu Zhongyuan, Cui Lili, Ding Hong, “Design of Monitors       

Based on ARM7and Micro C/OS-II”, College of Computer and 

Information, Shanghai Second Polytechnic University, 

Shanghai, China, IEEE 2010. 

[2] Tianmiao Wang The Design And Development of Em 

bedded System Based on ARM Micro System and IlC/OS-II 

Real-Time Operating System Tsinghua University Press. 

[3] Jean J Labrosse, MicroC/OS-II The Real-Time Kernel, 

Second Edition Beijing University of Aeronautics and 

Astronautics Press, 
 

 

 

 

   

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org


