
Place And Route Algorithm Analysis For Field Programmable Gate Array

(FPGA) Using KL- Algorithm

Vaishali Udar

Department of Electronics and telecom. Engg

Priyadarshini college of Engineering

Nagpur, India

Sanjeev Sharma

Department of Electronics and telecom. Engg

Priyadarshini college of Engineering

Nagpur, India

 Abstract: Efficient placement and routing algorithms

play an important role in FPGA architecture research.

Together, the place-and-route algorithms are

responsible for producing a physical implementation

of an application circuit on the FPGA hardware. This

paper presents the KL- Algorithm along with the

reduction in the circuit as well as the implementation

of the algorithm using multiplier which further

reduces the cost and power and increases the

performances. In the fast growing communication

field, requirements of minimization are increasing to

reduce the cost and timing of the integrated circuit.

The KL partitioning algorithm has been implemented

and the result has been observed on the processor

based design.

Keywords: KL algorithm, Place and Route,

FPGA

I INTRODUCTION

The process of placing and routing for an FPGA is

generally not performed by a person, but uses a tool

provided by the FPGA Vendor or another software

manufacturer. The need for software tools is because

of the complexity of the circuitry within the FPGA,

and the function the designer wishes to perform.

Generally the FPGA design-flow map designs onto

an SRAM-based FPGA consist of three phases. The

first phase uses synthesizer which is used to

transform a circuit model coded in a hardware

description language into an RTL design. The second

phase uses a technology mapper which transforms

the RTL design into a gate-level model composed of

look-up tables (LUTs) and flip flops (FFs) and it

binds them to the FPGA‟s resources (producing the

technology-mapped design). During the third phase,

the place and route algorithm use the technology-

mapped design to implement on FPGA.

The routing and placing operations may require a

long time for execution in case of complex digital

systems, because complex operations are required to

determine and configure the required logical blocks

within the programmable logic device, to

interconnect them correctly, and to verify that the

performance requirements specified during the design

are ensured. The delay introduced by logic block and

the delay introduced by interconnection can be

analyzed by the use of efficient place and route

algorithm.

The placement algorithms use a set of fixed modules

and the netlist describing the connections between the

various modules as their input. The output of the

algorithms is the best possible position for each

module based on various cost functions. We can have

one or more cost functions depending on designs.

The cost functions include maximum total wire

length, wire routability, congestions, and

performance and I/O pads locations.

II PLACING AND ROUTING

These operations are performed when an FPGA

device is used for implementation. For designing,

Placing is the process of selecting particular modules

or logical blocks of the programmable logic device

which will be used for implementing the various

functions of the digital system. Routing consists in

interconnecting these logical blocks using the

available routing resources of the device.

2157

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

III PARTITIONING ALGORITHM (K-L

ALGORITHM)

Basic purpose of partitioning is to simplify the

overall design process. The circuit is decomposed

into several sub circuit to make the design process

manageable

A Partitioning Algorithms:

 Iterative partitioning algorithms

 Spectral based partitioning algorithms

 Net partitioning vs. module partitioning

 Multi-way partitioning

 Multi-level partitioning

B Iterative Partitioning Algorithms:-

1. Greedy iterative improvement method

 [Kernighan-Lin 1970]

 [Fiduccia-Mattheyses 1982]

 [krishnamurthy 1984]

2. Simulated Annealing

 [Kirkpartrick-Gelatt-Vecchi 1983]

IV KERNIGHAN-LIN (KL) ALGORITHM

The K-L (Kernighnan-Lin) algorithm was used for

bisecting graph in VLSI layout which was first

suggested in 1970 . The algorithm is an iterative

algorithm; which Starts from a load balanced initial

bisection, it will first calculate each vertex gain in

the reduction of edge-cut that may result if that vertex

is moved from one partition of the graph to the other.

For every inner iteration it moves the unlocked vertex

having the highest gain, from the partition with more

vertices to the partition which it requires which has

less in number. Then the vertex is locked and the

gains are updated.

The procedure is repeated until all of the vertices are

locked even if the highest gain may be negative. The

last few moves that had negative gains are then

undone and the bisection is reverted to the one with

the smallest edge-cut so far in this iteration. Here one

outer iteration of the K-L algorithm is completed and

the iterative procedure is restarted again. If an outer

iteration will results in no reduction in the edge cut or

load imbalance, then the algorithm is terminated.

If an outer iteration gives no reduction in the edge-cut

or load imbalance, the algorithm is terminated.

The K-L algorithm is a local optimization algorithm,

with a capability for getting moves with negative

gain.

A. How Kl Works

Let we have a graph G (V, E), and let V be the set of

nodes and the E set of edges.

The algorithm attempts to find a partition of V into

two disjoint subsets A and B of equal size, or unequal

such that the sum T of the weights of the edges

between nodes in A and B is minimized.

Let Ia be the internal cost of a, that is, the sum of the

costs of edges between a and other nodes in A, and

let Eabe be the external cost of a, that is, the sum of

the costs of edges between a and nodes in B.

Furthermore, let Da, Da = Ea – Ia be the difference

between the external and internal costs of a. If a and

b are interchanged, then the reduction in cost is

Told – Tnew = Da + Db – 2Ca,b

Where Ca,b is the cost of the possible edge between a

and b.

The algorithm will try attempts to find an optimal

series of interchange operations between elements of

A and B which maximizes Told – Tnew and then

executes the operations, producing a partition of the

graph to A and B[5].

We can try all possible bisections. Choose the best

one. If there are 2n vertices, then numbers of

possibilities are (2n)! / 2(n!)
2
 .For 4 vertices (A, B, C,

D), possibilities are three:

1. X = (A, B) and Y = (C, D)

2. X = (A, C) and Y = (B, D)

3. X = (A, D) and Y = (B, C)

B. KL Algorithm Implementation

Figure 1 Example 2-Bit Multiplier

Now the above application was converted to eight

nodes as mentioned above in the designing aspects

according to KL algorithm. The nodes are

2158

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Node 1 And gate having input A1B1

Node 2 Xor gate having S3 as output

Node 3 And gate having S2 output.

Node 4 Xor gate

Node 5 And gate having input A1B0

Node 6 And gate having input A0B1

Node 7 And gate

Node 8 And gate having input A0B0

 Figure 2 Cut size = 3,

C. Algorithm Steps

Step I: Initialization

Let the initial partition be a random division of

vertices into the partition A= {1, 2, 3, 4} and B= {5,

6, 7, 8}.Here let A
l
=A= {1, 2,5,8} and B

l
 = {3,4,6,7}

Step 2: Compute D - values.

D1 = E1-I1 = 1-1 = 0

D2 = E2-I2 = 0-1 = -1

D3 = E3-I3 =1-0 = 1

D4 = E4-I4 = 1-2 = -1

D5 = E5-I5 = 2-0 = 2

D6 = E6-I6 = 0-2 = -2

D7 = E7-I7 = 1-1 = 0

Step 3: compute gains

G23 = D2+D3-2C23 = -1+1-2(0) =0

G24 = D2+D4-2C24 =-1-1-2(0) =-2

G26 = D2+D6-2C26 = -1-2-2(0) = -3

G27 = D2+D7-2C27 =-1+0-2(0) = -1

G13 = D1+D3-2C13 = 0+1-2(1) = -1

G14 = D1+D4-2C14 = 0-1-2(0) = -1

G16 = D1+D6-2C16 = 0-2-2(0) = -2

G17 = D1+D7-2C17 = 0+0-2(0) = 0

G53 = D5+D3-2C53 = 2+1-2(0) = 3

G54 = D5+D4-2C54 = 2-1-2(1) = -1

G56 = D5+D6-2C56= 2-2-2(0) = 0

G57 = D5+D7-2C57= 2+0-2(1) = 0

Largest value of G is G53=3 here we consider (a1 b1)

= (5, 3) and A
l
 = A

l
 - 5= (1, 2) and B

l
 = B

l
 - 3 = (4, 6,

7).New A
l
 = (1,2,8) and B

l
 = (4,6,7). Both A

l
and B

l

are not empty, and then we update D values in next

step and repeat the procedure from step 3.

Step 4: Update D -values of nodes connected to (5,

3).

The vertices connected to (5, 3) are vertex (1) in set

A⃓ and vertices (4, 7) in set B⃓. The new D-values for

vertices of A⃓ and B⃓ are given by:

D1
l
= D1+2(C13)-2(C15) =2

D4
l
= D4+2(C43)-2(C45) = -1

D7
l
= D7+2(C75)-2(C73) =2

D2
l
= D2+2(C52)-2(C23) =-1

D6
l
= D6+2(C63)-2(C65) =-2

Repeat step 3

G24 = D2
l
 + D4

l
 -2C24 = -2

G26 = D2
l
 + D6

l
 -2C26 = -2

G27 = D7
l
 + D2

l
 -2C27 =1

G14= D1
l
 + D4

l
 -2C14= 1

G16= D1
l
 + D6

l
 -2C16= 0

G17= D1
l
 + D7

l
 -2C17= 4

Here the G value for G17 is large. Hence pair (a2, b2)

is (1, 7).

A
l
 = A

l
-1 = (2, 8) and B

l
 = B

l
 – 7 = (4, 6).

The new D values are

D2
ll
= D2

l
 +2(C21)-2(C27) = 1

D4
ll
= D4

l
 +2(C47)-2(C41) = -1

D6
ll
= D6

l
 +2(C67)-2(C61) = 0

G24= D2
ll
 + D4

ll
 -2C24= 0

G26= D2
ll
 + D6

ll
 -2C26= 1

The last pair (a3, b3) is (1, 7) and the corresponding

gain is G17.

Step 5: determine the values of X and y

X = a1 = 1 and Y = b1=7

The new partition that will obtained from moving X

to B and Y to A is A={1,2,5,8} and B={3,4,6,7}.

The entire procedure is repeated again with this new

partition as the initial partition. Verify that the second

iteration of the algorithm is also the last, and that the

best solution obtained is A={1,2,5,8} and

B={3,4,6,7}.

The overall procedure is repeated with gain having

maximum value was taken and then the cut size was

calculated. There after the second pass was

implemented, here we had locked the nodes with the

maximum gain. This process is repeated for all the

2159

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

passes and combinations. At the end of the above

process we get the minimum cut size which in turns

reduces the wire delay and increases the

performance.

We observe from figure 1 that the cut size initially is

3 and thereafter finding the highest gain and

swapping the nodes we had got the final partition to

be as required.

V CONCLUSIONS AND FUTURE WORK

The quality of the place-and-route algorithms has a

direct bearing on the usefulness of the target FPGA

architecture. The benefits of including powerful new

features on an FPGA might be lost due to the

inability of the place-and-route algorithms to fully

exploit these features. Thus the advancement of

FPGA architectures relies heavily on the

development of efficient place-and-route algorithms.

KL Algorithms increase the performance by reducing

the wire delay. Further work is necessary in the use

of kl-feasible cuts for the optimization purpose.

Analysis of an efficient algorithm for Place and route

process would be done, in order to place the

components efficiently and create a proper routing

path between them on FPGAs. In this paper we have

presented a new methodology for Digital circuits here

example is considered as multiplier, which in turns

reduces the area and increases the performance of the

circuit type algorithms for the problem of

hardware/software partitioning.

REFERENCES

[1] Xilinx Inc., “Spartan-II 2.5 V FPGA Family: Introduction and

Ordering Information,” Xilinx Product Specification Datasheets,

2003.

[2] Luca Sterpone, Student Member, IEEE, and Massimo Violante,

Member, IEEE.” A New Reliability-Oriented Place and Route

Algorithm for SRAM-Based FPGAs”, IEEE TRANSACTIONS

ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006.

[3] Chenguang Guo, Yanlong Zhang, Lei Chen, Tao Zhou, Xuewu

Li, Min Wang, Zhiping WenDept. FPGA „A Novel Application of

FPGA-Based PartialDynamic Reconfiguration System with

CBSC” 2012 IEEE.

[4]Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete

DataSheet, Xilinx Corporation, DS083 (v4.7) Nov. 5, 2007.

[5] Osvaldo Martinello Jr, Felipe S. Marques, Renato P. Ribas,

André I. Reis “KL-Cuts:A New Approach for Logic Synthesis

Targeting Multiple Output Blocks”,777-782.

[6] Amr M. Fahim, “Low-Power High-Performance Arithmetic

Circuits and Architectures”, IEEE Journal of Solid-State Circuits,

Vol. 37, No. 1, pp. 90-94, January 2002.

[7] Patterson and Hennessy, Computer Organization and Design,

3rd Edition, Morgan Kaufman, 2005.

[8]John F. Wakerly “Digital Design Principles and Practices”.

[9]S. Brown, “FPGA Architecture Research: A Survey,” IEEE

Design and Test of Computers, pp. 9-15, Nov./Dec. 1996.

[10] J. Rose, A. El Gamal, and A. Sangiovanni-Vincetelli,

“Architecture of Field-Programmable Gate Arrays,” Proc. IEEE,

vol. 81, no. 7, pp. 1013-1029, July 1993.

[11] Amr M. Fahim, “Low-Power High-Performance Arithmetic

Circuits and Architectures”, IEEE Journal of Solid-State Circuits,

Vol. 37, No. 1, pp. 90-94, January 2002.

[12] Xilinx, “Achieving Higher System Performance with the

Virtex-5 Family of FPGAs”, White Paper, 2006.

http://www.xilinx.com.

[13] Altera, “Improving FPGA Performance and Area Using an

Adaptive Logic Module”, White Paper, 2004.

http://www.altera.com.

2160

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

