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Abstract - The drone is commonly known as Unmanned Aerial
Vehicles (UAVs). In today’s world drone is extensively used in
every field, some of the common application of drone is now
being used for the Precision Agriculture, Search and Rescue,
Wildlife Monitoring, Entertainment and others fields. As the
whole world was facing a fatal pandemic situation, drone
surveillance becomes an accommodating technology for
mankind. The drone brings a technology revolution to the
global market. Drones are becoming profuse evolve technology
in today’s aeronautics, as like robotics. Every drone marketing
company is focusing on AI (Artificial Intelligent) or
autonomous flights system, but still, it requires human
interactions. It was mainly controlled by remotes sensing
technology, even with only hardware it is not possible to fly
(UAVs) drones, we must necessitate its software and
programming. The mathematical and physics law application
makes it possible for us to fly drones, but it is required much
accuracy for stabilized hovering. Here we are using different
platforms such as ROS, Linux, Gazebo (modelling or
simulating), Python, C++, to develop obstacle avoidance and
keyboard control features in UAVs.

Keywords- UAVs, Obstacle Avoidance, Lidar, SITL, EKF 2 ROS,
GPS

1. INTRODUCTION
UAVs is broadly appropriating in search and rescue
operations, military surveillance and civilian professions
because of their prominent advantages, such as flexibility,
light mass, stable mobility, and good concealment.
Nowadays, the growth and applications of UAV
technologies only not change the evolving area of many
industries but also brings market and economic benefits. The
autonomy level of UAVs varies according to the tasks at
hand or the degree to which the vehicle can make decisions
without being explicitly guided by a remote operator.
Usually, drones use various classification on-board sensors
that can manage situational consciousness and autonomous
decision-making at run-time. Obstacle avoidance leads to
the approach of moulding the robot’s pathway to overcome
unforeseen obstacles. The resulting movement depends on
the drones’ existent position and the sensor interpretations.
There is a level of algorithms for restriction avoidance from
basic re-planning to reactive rotation in the controller
strategy. Advanced techniques vary on the execution of
sensor data and on the motion control approaches to
overcome obstacles. The most generous difficulty of
autonomous drones is capable to react accurately and safely
to the circumstances during flight. Consequently, these
vehicles must be equipped with sensors proficient in
respondents very instantly and processing the system
intelligently interpreting all this data in real-time. This paper
comprised III sections Hardware integration, Software
integration and Modelling & Avoidance Analyses. The
hardware platform used in this work is Raspberry pi &

Navio2. In this, advanced environment ROS Gazebo is a
dynamic 3D simulated environment for autonomous
vehicles that are especially suitable for examination (OA)
systems. Gazebo used with Software in Loop(SIL) and
Hardware in Loop(HIL) design. These works are based on
real-time detection using an RP Lidar sensor and performing
modelled Lidar in a ROS gazebo simulation environment.
Section C involves several embedded applications to process
the detection sensor to command the navigation, adorned in
pragmatic conditions.

A. System Hardware Architecture
1) The Raspberry pi and Navio2 UAVs System

An autonomous drone requires at least two levels of control
to operate Inner Loop and Outer Loop. The Inner Loop
stabilizes the vehicle at a desired angle or body motion. A
board that controls the Inner Loop is a flight controller
Navio2 that allows pilots to communicate the requested
vehicle state, and output should stabilize commands to a
motor to achieve that state. The Outer Loop generates an
angle or rate of instruction to get the drone from point A to
B. Raspberry Pi flight-controller is used to conducting all
other outer loop control and request vehicle state to the flight
controller. It is a decision making brain of a drone that
request, as performed by various on-board sensor data,
combines and specific task it was carrying out. GPS data
tells the flight computer where it is in space and about the
waypoint mission. The Navio2 eradicates several needs to
become various controllers on board as everything is
compressed within one (including the Raspberry Pi),
consequently enhancing the robustness of our project and
expediting the community. With the Navio2, we can control
our flying robots such as multirotor and planes. The Navio2
is adorned with a High-resolution barometer double IMU
and GNSS receiver with GPS, GLONASS, Beidou, Galileo
and SBAS satellites for exact positioning and adjustment.
The Navio2 is executing a data processing technique for
navigating to estimate the drone position and visual
estimation. The method we are using for path planning and
obstacle avoidance is SLAM (simultaneous localization and
mapping) is a procedure used for an autonomous drone that
allows us to build a map and localize our drone to map in a
real-time process. SLAM algorithm allowing the UAVs to
map out unrevealed environments. There exist different
SLAM methods but, we are working with the LIDAR SLAM
system. Usually, LIDAR SLAM is used with a laser sensor
to produce a 3D map of its environment. LiDAR (Light
Detection and Ranging) estimates the range of an object by
locating the nearby object using an active laser 'pulse’. It is
working with a swift and accurate classification. So, it can
work in a comprehensive range of environments and
conditions.
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Fig 1. Hardware integration

(a) Attitude and Heading Reference System

AHRS works as a stabilization and motion control. It
computes a central processing unit (CPU) to the IMU, the
AHRS features state algorithms for a wide range of dynamic
motions of UAVs. It comprises IMU 3-axis gyroscopes,
accelerometers, and magnetometers that support wing,
heading, pitch and roll data, also providing high-frequency
real-time UAVs rotation data and open-ended gyroscope
fixings. These sensors are attached to an external GNSS
receiver to enhance its execution. It implants the Extended
Kalman Filter that produces position and heading
information.

(b) Inmertial Navigation System (INS)

INS is a computer system that takes input from a global
navigation satellite system such as GPS or Inertial
Measurement Unit (IMU), which measures the Payload
Stabilization & Orientation of the UAVs. The IMU outputs
gyroscopes, accelerometers, and magnetometers raw data,
and the Inertial Navigation System (INS) additionally
implant a GNSS receiver for a clarified attitude in real-time.
The inertial navigation system is a self-esteem process
through which a system may track its attitude, orientation
and velocity (once provided initial values for these
parameters) without the necessity of such outer implications.
If the acceleration of an object is classified, it is probable to
use numerical integration to estimate the velocity.

(c) Extended Kalman Filter(EKF)

EFK is the nonlinear version of the Kalman filter that
linearizes the estimation of the current mean and covariance.
This algorithm evaluates vehicle position, velocity and
angular orientation based on rate accelerometer, gyroscope,
GPS, airspeed and barometric pressure estimations. This
nonlinear state-space model illustrates the relationship state

to sensors and the relationship states to state time
derivatives.

in = Fk(in,uk)‘l'e d eq(l)

Yi, = Hi(xi u) +1 = eq(2)

Xy 1S a vector of a state that is estimated by the EKF, yy is
a vector of the measurement and uy is the vector of
predetermined inputs to EFK. n measurement noise vector
and e state noise vector.

The variance of error state using covariance matrix is follow
as My as shown in eq(3).

My =i [(Xk — in)(xk — in)T] - eq(3)

Xy represent state vector which is the output of EKF. xy, this
represents the expected relationship to the measurement
provided in equation (1) & equation (2), Myis the
covariance matrix state in EKF method

(d) Measurement Update

The process of updating the measurement vector yy is called
measurement update. This can be performed using the
Kalman gain matrix. Here, t is a current update

Hy, = Hi(Xy,_,» Uk,)
Gi, = My, Hg, (Hi, My Hi, +S07" = eq(4)

sk IS the matrix of expected sensor noise of measurement
and the Hyis the matrix that maps the states and input of an
EKF to the measurement of the EKF methods, t-1 on tensor
indicate using a value from previous (KF) update of that
tensor. The KGM Gy, for this update is used to compute the
update state estimate x.and update My, as shown in
equations (5)&(6).

SH
Xy = Xy T Gy [Yk - gixkt_l] - eq(5)
SH
My = (1= Gieg - OMi)My, = eq(6)
t

(e) Time Update

The state prediction update performed applying the
relationship in equation (1) estimated for the time update.
Equation (1) evaluating continuous, the time interval chosen
to balance the processor usage and estimator performance.
In several statuses of discrete or continuous inputs, the time
update is executed many times between each measurement
update. At each of those time updates, state estimation uses
to predicted from the measurement relationship.
Xy = Xy T %Fk(xt—lt u,  —eq(7)

The integration to estimate the state vector Xg, appear
multiple times to reduce errors due to integration errors from
nonlinearities in the state propagation. The variable N in
equation (7) is the total aggregate of redundancies T is the
time passed after the last measurement update. Essentially,
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there is position time between processor consumption and
execution of the time update.

X = q)kt,t—lxkt—l - eq(8)

_ SFk (i Uk
Pue-n = o Ckae-n  — €409)

where Preey, 1oy =1 - eq(10)
@, state transition matrix in state vectorx, mapst— 1 the
value of one state to the next state t in the time update.

— T
Mkt - (Dk(t,t—l)Mkt—lq)k(t,t—l) Qo - eq(ll)

Qy is the matrix that adjusts parameters that express the
predicted covariance of the state determined by equation (1)

My,

-M Ts SFk(th, ukt) M SFk(th, ukt T
"My PR [T e | MRt | T e,

5Xk
+Q —eq(12)

Equations (11) and (12) both are a form of updating
covariance matrix. Updating the covariance matrix can be
iterated to improve the estimation.

(f) Second Order Extended Kalman Filter (EKF2)

The measurement of inertial velocities to ‘smooth’ the GPS
measurements to resolve high-frequency estimates for the
states.

Xk2 = [pnpeVg X WpWe lIJ]T - eq(13)

PnDPe is the Inertial Earth position towards the North and East
origin at an initial position. v The velocity of the airframe to
ground, x is zero wind sideslip if yaw angle is in same course
angle. w,w,, is a component of wind velocity V,, in the
direction from the north and east. {s is Yaw angle in degrees,
First Euler angle.

—~ T
Uy, = [d)kekaPFQLPFrLPFVLPF] - eq(14)

EKF2 use only the GPS measurement, shown in equation
(15).

yPn,GPS
yPe,GPS

yvg GPS
= ' - eq(15
Yk2 YXgps q(15)

0
0

Two Zero placed here corresponds to two ‘pseudo
measurements' that this classification uses to represent the
measured wind in the north and east directions. The flight
path angle of the UAVs is zero that the wind has no vertical
component pseudo-measurements are associated parts of the
EKF (k) states x and truth inputs u as shown.

Vs, = 0 =Vzcos ¥ + wy, — Vs cosx - eq(16)

Yo, = 0= Vasiny + w, =V, sinx - eq(17)

The measurement to state relationship Hy, in equation (2)
is written here as equation (18).

Pn

Pe

Ve

Hio (Xiez) Ukz) = X
Va cos Y +wy, — Vg COS X

Vasiny + w, — vy sinx

— eq(18)

Jacobin measurement update is in equation (19)

10 0 0 o0 0

01 0 0 o0 0

8Hyo (Xiz) Ukz) _foo 1 0 (0 0
8% 00 O 1 00 0

00— cosx VgSINX 10—V rprSInY
00— sinx—Vg COSX(Q1 v, 1 pF COS
- eq(19)

a. flight path angle is zero in equation (20) & (21)
Pn = Vg cOsx — eq(20)
Pe = vgcosx —eq(21)

b. Relationship that wind and airspeed are constant
equation (22) & (23)
Vg
_ (vacos P+ wp)(=varsin ) + v, sin§r + we ) (Vo cos )

\Y%

g
- eq(22)
_ M cos ¢
lIJ =4 cos® cos®

c. UAVs coordinated turns

X = itancl)cos(x —y) —eq(23)
Vg

Taking matrix to relationship with equation (1), generated
equation will be shown in equation (24)

Fio (X2, Ukz) V. cosx
I g

Vg sSinx

(Varpr €OS Y + Wy) (=, LppW sin §) + (0, 1pe SINY + W) (Va1p

Vg

= Etancl)cos x—=1y)
Vg

S eq(24)

Some of more equation that we use while using EKF2
method.
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8vg _ _ WvaLpr(Wn COSY+We sin §)

e = v - eq(25)
8% _ —EtanPcos(x — ) - eq(26)

8vg Vg

X —Etandsinx—y) - eq(27)

8x Vg

8% _ g oo

5= tanp sin(x — ) - eq(28)

B. System Software Architecture
1) Ardupilot & DroneKit

ArduPilot facilitates the production and adoption of
advanced, autonomous UAVSs in real-time for passive
advantages communication between GCS, including GPS
positioning, battery status and other live erudition. It
provides control algorithms for vehicles with robust sensor
recompense algorithms, filtering and tuning inclinations.
Enabled command modes to implement in every standard
vehicle: Guided, Stabilize, RTL, Land, Flip, Poshold etc.
ArduPilot led to Advanced Configuration allows the
composition of more high-level innovations of the firmware
and hardware peripherals. It implements a comprehensive
suite of tools suitable for almost every medium of vehicle
and application. DroneKit-Python API enables us to build
courseware that runs on an onboard companion computer
and interface with the ArduPilot flight controller adopting a
low-latency interconnection. The API interacts with vehicles
over MAVLink protocol, API primarily intended for use in
onboard companion computers (to maintain high-level
performance predicaments including computer vision, path
planning, 3D modelling and more). It can similarly be
adopted for the GCS, interacting with vehicles over a
tremendous latency RF-link.

GROUND CONTROL STATION (GCS)
UAI/ AP (MISSION PLANNER, QGROUNDCONTROL) DRONEKIT/ ROS NOETIC NINJEMYS
MAVLINK PROTOCOL

ARDUPILOT

COMMUNICATION LAYER

FLIGHT CODE |
Pathway Planner T
Pathway Manager
Pathway Following | LIBRARIES (SENSOR DATA, KALMAN EXTENDED FILTER EKF 2)
Autopilot ‘

UAVs FLIGHT CODE

| HARDWARE ABSTRACTION LAYER (HAL) |

OPERATING SYSTEM(OS)

LINUX [ LINUX l

HARDWARE NAVIO 2 ‘ ‘ RASPBERRY PI3 ‘

Fig 2. Integrating heterogeneity platform with Ardupilot

2) MAVLIink & Mavros

The Micro Air Vehicles Link(MAVLink) is the
communication protocol used to communicate between a
Ground Control Station (GCS) and an Autopilot. This
protocol mainly operates in ArduPilot Firmware and
provides robust innovations like controlling, monitoring,
integrating within the Internet. It provides systems for
recognizing packet drops and allotting packet
authentication. The Mavros ROS package facilitates

MAVLink to accommodate flexible connection between
companion computers with ROS and MAVLink enabled
autopilots and GCS. The UDP broadcast used the process
stage and switched to the GCS address. MAVROS supports
ROS topics that can send commands, publishes telemetry
and provides several services.
SET_POSITION_TARGET_LOCAL_NED
communication. Concedes frame target position/target
speed and target yaw/angular yaw  velocity,
SET_ATTITUDE_TARGET communication. Concedes
frame the target attitude /angular velocity and throttle level,
SET_POSITION_TARGET_GLOBAL_INT.  Concedes
frame the target attitude in global coordinates (latitude,
longitude, altitude) and flight speed.

3) ROS (Robot Operating System) & Ground
Control Station (GCS)

Robot Operating System (ROS) is the framework that
produces different packages, libraries and tools for us to
develop and reiterate code within robotics applications. It
provides conventional OS assistance like hardware
abstraction, device operators, libraries, ingenuity, execution
of commonly-used serviceability (communication within
processes), package management etc. It includes various
packages for computing trajectory, conduct SLAM
algorithms or implements remote control. It can interact
between Python and C++ nodes and build with a cross-
collaboration concept. The project-based on ROS (1) Linux
Noetic Ninjemys framework with heterogeneity Ubuntu
Focal (0OS) for UAVs multiple abstraction level
development. The GCS software implements an
autonomous operation and high-level Flight Disposition
Compiler that assists the operator to compose complicated
missions in a simple strategy. It predominantly works on a
ground-based computer that is applied toward planning and
operating a mission. UAV ground control software will
provide a real-time image of the vehicle’s state and
providing the capability to improve our mission. The GCS
mission planners are building around a 2D or 3D mapping,
which in enrichment to altitude and topography may render
separate erudition such as no-fly zones and temporary
restraints. A telemetry player feature is possible that enables
administrators to replay the mission for moreover insights
and interpretation.

C. Integrated Software and Simulation

1) SITL (Software in The Loop) & ROS-Gazebo

SITL enables us to operate ArduPilot on our computers
directly, externally any exceptional hardware. ArduPilot
proceeding SITL gives us access to the extensive extent of
community tools available for desktop C++ development,
typically interactive debuggers, potential analyzers and
dynamic analysis tools. Here we are operating with a
heterogeneous interface of ArduPilot and Dronekit-Python.
The simulator model we are using is Gazebo, a 3D dynamic
simulator that has the extended capability to precisely and
efficiently simulate communities of robots in complex
indoor and outdoor conditions. To obtain ROS integration
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among stand-alone Gazebo, an assortment of ROS packages
specified  gazebo_ros_pkgs  implements  wrappers
approaching the stand-alone Gazebo. Gazebo plugins
provide URDF models with more comprehensive
functionality and join in ROS communications and
assistance requests for sensor output and motor input.
Building with Catkin workspace combines CMake macros
and Python scripts to implement some functionality on top
of CMake's workflow, decreases code redundancy with
Gazebo. The demonstration of heterogeneity SITL,
Simulator and GCS are shown in Figures (3) a & b.

X+COHS -~ - (OB x%Z|n

b) ROS-Gazebo Simulation with QGroundControl

2) The Obstacle Avoidance Repulsive Potential Field
Methods

The repulsive potential sustains UAVs away from the
obstacles, both those a priori apprehend or those recognized
by the UAV onboard sensors. The Repulsive Potential is
higher during the UAV is closer to interference and produces
a decreasing magnetism when the UAV is far distant. The
Linear nature from the repulsive potential sustains UAVs
away from the intricacy, the repulsive potential proceeds
from the sum of the Repulsive influence of all specific
obstacles is

Urep X) = Z Urepi (X) - eq(29)

An obstacle quite far from the UAV is not possible to
deflect. Furthermore, the magnitude of repulsive potential
should expand when the UAV approaches a nearer obstacle.
To estimate for this consequence and to the space
surrounded influence, a feasible repulsion potential
generated by an interference i is

1 K 1

U (X) = E obst; <—
repj [ 0’ dObSti (X, Xo)

1 )2 if dost, (X, Xo) < do,

- ,. - eq(30
dO if dobsti(Xt XO) > do, q( )

Where dpst; (X, Xo) is the insignificant distance from (X) to
obstacle i, Kopst, is the repulsive potential field constant. d,
is the influence range of the repulsive potential field.

Fig 4. a) Roll & Pitch without obstacle avoidance Methods b) Roll & Pitch with obstacle avoidance Methods

Fig 5. a) Attitude Yaw, Pitch. Roll of drone while using OA method b) EFK 2 status report of dronc 1n different variance

3) LIDAR

Obstacle avoidance obtains by appealing LIDAR data to
implement a two-dimensional Cartesian map. The
proposition uses to create the map of the conditions
preceding the pathway intended based on the map to enable
the drone or robot to navigate in the petitioned obstacle-free
area.

Fig 4: Scanning method of RPLIDAR Sensor

2. CONCLUSION

The Lidar adopted measures 360 distance points all of the
raw laser points embodied in the polar coordinate system as
{(d;,6,);0 <i <359}, anywhere d; is the distance
measured from the center of the observer UAV to the object
and 9; the relative angle of the measurement. The acquired
Lidar erudition gathered in vector (d;, 6;), the stored
information converting the infinity scan values that means
that there is no obstacle corresponding the ray to the
maximum extent power that could measure by the Lidar
(dmax)- An object located (d,,,q,) the observer UAV will be
ignored. In real-time, Lidar insistence instantly transmits the
max range value to object outside their operating range.
Furthermore, it is also conceivable to utilize the standards
filtering to eliminate noise from the Lidar data.
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Fig 5. Lidar obstacle avoidance view in ROS-Gazebo Simulator

This paper presents a Platform including (Raspberry pi &
Navio 2) procedure to experiment with the genuine
simulated conditions for UAVs autonomous navigation to
establish approaching data enactment and classification of
the algorithm satisfied to hold the benefit of convenient
reference. Therefore, the work is extended to improve the
autopilot system using a distinct heterogeneity combination
of Software and Hardware. Simulation is implementing
using the ROS Noetic Gazebo (3D visualization and physic
modelling) plugins with various sensors combinations of
URDF files. Working with AHRS EKF 2 derivation,
combine DroneKit-python and Ardupilot SITL for UAV
attitude and orientation. The obstacle Avoidance or an
Autonomous flight is obtain using LiDAR, where the
algorithm is build using the Repulsive Potential Field
Method. Mission Planner & QGroundControl GCS has been
applied here for achieving real-time navigation and
trajectory planning in this phase. We have additionally
implemented python-TK for commanding UAVs using
keyboard direction arrows.
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