
PI Drone using Python

Prasant Chettri, Rajni Giri, Zerong Lepcha, Arvind Lal
Department of Computer Science and Technology

Centre for Computer and Communication Technology (CCCT), Chisopani, Sikkim, India

Abstract - The drone is commonly known as Unmanned Aerial

Vehicles (UAVs). In today’s world drone is extensively used in

every field, some of the common application of drone is now

being used for the Precision Agriculture, Search and Rescue,

Wildlife Monitoring, Entertainment and others fields. As the

whole world was facing a fatal pandemic situation, drone

surveillance becomes an accommodating technology for

mankind. The drone brings a technology revolution to the

global market. Drones are becoming profuse evolve technology

in today’s aeronautics, as like robotics. Every drone marketing

company is focusing on AI (Artificial Intelligent) or

autonomous flights system, but still, it requires human

interactions. It was mainly controlled by remotes sensing

technology, even with only hardware it is not possible to fly

(UAVs) drones, we must necessitate its software and

programming. The mathematical and physics law application

makes it possible for us to fly drones, but it is required much

accuracy for stabilized hovering. Here we are using different

platforms such as ROS, Linux, Gazebo (modelling or

simulating), Python, C++, to develop obstacle avoidance and

keyboard control features in UAVs.

Keywords- UAVs, Obstacle Avoidance, Lidar, SITL, EKF 2 ROS,

GPS

1. INTRODUCTION

UAVs is broadly appropriating in search and rescue

operations, military surveillance and civilian professions

because of their prominent advantages, such as flexibility,

light mass, stable mobility, and good concealment.

Nowadays, the growth and applications of UAV

technologies only not change the evolving area of many

industries but also brings market and economic benefits. The

autonomy level of UAVs varies according to the tasks at

hand or the degree to which the vehicle can make decisions

without being explicitly guided by a remote operator.

Usually, drones use various classification on-board sensors

that can manage situational consciousness and autonomous

decision-making at run-time. Obstacle avoidance leads to

the approach of moulding the robot’s pathway to overcome

unforeseen obstacles. The resulting movement depends on

the drones’ existent position and the sensor interpretations.

There is a level of algorithms for restriction avoidance from

basic re-planning to reactive rotation in the controller

strategy. Advanced techniques vary on the execution of

sensor data and on the motion control approaches to

overcome obstacles. The most generous difficulty of

autonomous drones is capable to react accurately and safely

to the circumstances during flight. Consequently, these

vehicles must be equipped with sensors proficient in

respondents very instantly and processing the system

intelligently interpreting all this data in real-time. This paper

comprised III sections Hardware integration, Software

integration and Modelling & Avoidance Analyses. The

hardware platform used in this work is Raspberry pi &

Navio2. In this, advanced environment ROS Gazebo is a

dynamic 3D simulated environment for autonomous

vehicles that are especially suitable for examination (OA)

systems. Gazebo used with Software in Loop(SIL) and

Hardware in Loop(HIL) design. These works are based on

real-time detection using an RP Lidar sensor and performing

modelled Lidar in a ROS gazebo simulation environment.

Section C involves several embedded applications to process

the detection sensor to command the navigation, adorned in

pragmatic conditions.

A. System Hardware Architecture

1) The Raspberry pi and Navio2 UAVs System

 An autonomous drone requires at least two levels of control

to operate Inner Loop and Outer Loop. The Inner Loop

stabilizes the vehicle at a desired angle or body motion. A

board that controls the Inner Loop is a flight controller

Navio2 that allows pilots to communicate the requested

vehicle state, and output should stabilize commands to a

motor to achieve that state. The Outer Loop generates an

angle or rate of instruction to get the drone from point A to

B. Raspberry Pi flight-controller is used to conducting all

other outer loop control and request vehicle state to the flight

controller. It is a decision making brain of a drone that

request, as performed by various on-board sensor data,

combines and specific task it was carrying out. GPS data

tells the flight computer where it is in space and about the

waypoint mission. The Navio2 eradicates several needs to

become various controllers on board as everything is

compressed within one (including the Raspberry Pi),

consequently enhancing the robustness of our project and

expediting the community. With the Navio2, we can control

our flying robots such as multirotor and planes. The Navio2

is adorned with a High-resolution barometer double IMU

and GNSS receiver with GPS, GLONASS, Beidou, Galileo

and SBAS satellites for exact positioning and adjustment.

The Navio2 is executing a data processing technique for

navigating to estimate the drone position and visual

estimation. The method we are using for path planning and

obstacle avoidance is SLAM (simultaneous localization and

mapping) is a procedure used for an autonomous drone that

allows us to build a map and localize our drone to map in a

real-time process. SLAM algorithm allowing the UAVs to

map out unrevealed environments. There exist different

SLAM methods but, we are working with the LiDAR SLAM

system. Usually, LIDAR SLAM is used with a laser sensor

to produce a 3D map of its environment. LiDAR (Light

Detection and Ranging) estimates the range of an object by

locating the nearby object using an active laser 'pulse'. It is

working with a swift and accurate classification. So, it can

work in a comprehensive range of environments and

conditions.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

221

www.ijert.org
www.ijert.org
www.ijert.org

Fig 1. Hardware integration

(a) Attitude and Heading Reference System

AHRS works as a stabilization and motion control. It

computes a central processing unit (CPU) to the IMU, the

AHRS features state algorithms for a wide range of dynamic

motions of UAVs. It comprises IMU 3-axis gyroscopes,

accelerometers, and magnetometers that support wing,

heading, pitch and roll data, also providing high-frequency

real-time UAVs rotation data and open-ended gyroscope

fixings. These sensors are attached to an external GNSS

receiver to enhance its execution. It implants the Extended

Kalman Filter that produces position and heading

information.

(b) Inertial Navigation System (INS)

INS is a computer system that takes input from a global

navigation satellite system such as GPS or Inertial

Measurement Unit (IMU), which measures the Payload

Stabilization & Orientation of the UAVs. The IMU outputs

gyroscopes, accelerometers, and magnetometers raw data,

and the Inertial Navigation System (INS) additionally

implant a GNSS receiver for a clarified attitude in real-time.

The inertial navigation system is a self-esteem process

through which a system may track its attitude, orientation

and velocity (once provided initial values for these

parameters) without the necessity of such outer implications.

If the acceleration of an object is classified, it is probable to

use numerical integration to estimate the velocity.

(c) Extended Kalman Filter(EKF)

EFK is the nonlinear version of the Kalman filter that

linearizes the estimation of the current mean and covariance.

This algorithm evaluates vehicle position, velocity and

angular orientation based on rate accelerometer, gyroscope,

GPS, airspeed and barometric pressure estimations. This

nonlinear state-space model illustrates the relationship state

to sensors and the relationship states to state time

derivatives.

 Xki
= Fk(xki

, uk)+∈ → eq(1)

 Yki
= Hk(xki

, uk) + η → eq(2)

xki
 is a vector of a state that is estimated by the EKF, yk is

a vector of the measurement and uk is the vector of

predetermined inputs to EFK. η measurement noise vector

and ϵ state noise vector.

The variance of error state using covariance matrix is follow

as Mk as shown in eq(3).

 Mk = i [(xk − xki
)(xk − xki

)
T
] → eq(3)

xk represent state vector which is the output of EKF. xki
this

represents the expected relationship to the measurement

provided in equation (1) & equation (2), Mkis the

covariance matrix state in EKF method

(d) Measurement Update

The process of updating the measurement vector yk is called

measurement update. This can be performed using the

Kalman gain matrix. Here, t is a current update

Hkt
= Hk(xkt−1

, ukt
)

 Gkt
= Mkt−1

Hkt

T (Hkt
 Mkt−1

Hkt

T + Sk)
−1 → eq(4)

sk is the matrix of expected sensor noise of measurement

and the Hkis the matrix that maps the states and input of an

EKF to the measurement of the EKF methods, t-1 on tensor

indicate using a value from previous (KF) update of that

tensor. The KGM Gkt
 for this update is used to compute the

update state estimate xkt
and update Mkt

 as shown in

equations (5)&(6).

 Xkt
= Xkt−1

+ Gkt
[yk −

δHk

δXk
xkt−1

] → eq(5)

Mkt
= (I − Gk

δHkt

δxkt

)Mkt
)Mkt−1

 → eq(6)

(e) Time Update

The state prediction update performed applying the

relationship in equation (1) estimated for the time update.

Equation (1) evaluating continuous, the time interval chosen

to balance the processor usage and estimator performance.

In several statuses of discrete or continuous inputs, the time

update is executed many times between each measurement

update. At each of those time updates, state estimation uses

to predicted from the measurement relationship.

xkt
= xkt−1

+
Ts

N
Fk(xt−1, ut → eq(7))

The integration to estimate the state vector xkt
 appear

multiple times to reduce errors due to integration errors from

nonlinearities in the state propagation. The variable N in

equation (7) is the total aggregate of redundancies Ts is the

time passed after the last measurement update. Essentially,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

222

www.ijert.org
www.ijert.org
www.ijert.org

there is position time between processor consumption and

execution of the time update.

 xkt
= Φkt,t−1

xkt−1
 → eq(8)

Φk(t,t−1)
=

δFk(xkt
,ukt)

δxk
Φk(t,t−1)

 → eq(9)

where Φk(t−1, t−1)
= I → eq(10)

Φk state transition matrix in state vectorxk maps t − 1 the

value of one state to the next state t in the time update.

Mkt
= Φk(t,t−1)

Mkt−1
Φk(t,t−1)

T + Qk → eq(11)

 Qk is the matrix that adjusts parameters that express the

predicted covariance of the state determined by equation (1)

Mkt

= Mk(t−1)
+

Ts

N
([

δFk(xkt
, ukt

)

δxk

]Mkt−1
[
δFk(xkt

, ukt

δxk

]

T

)

+ Qk → eq(12)

Equations (11) and (12) both are a form of updating

covariance matrix. Updating the covariance matrix can be

iterated to improve the estimation.

(f) Second Order Extended Kalman Filter (EKF2)

The measurement of inertial velocities to ‘smooth’ the GPS

measurements to resolve high-frequency estimates for the

states.

xk2 = [pnpevg x wnwe ψ]T → eq(13)

pnpe is the Inertial Earth position towards the North and East

origin at an initial position. vgThe velocity of the airframe to

ground, x is zero wind sideslip if yaw angle is in same course

angle. wnww is a component of wind velocity Vw in the

direction from the north and east. ψ is Yaw angle in degrees,

First Euler angle.

uk2 = [ϕ̂kθ̂kpLPFqLPFrLPFvLPF]
T
 → eq(14)

EKF2 use only the GPS measurement, shown in equation

(15).

 yk2 =

[

ypn,GPS

ype,GPS

yvg,GPS

yXgps

0
0]

 → eq(15)

Two Zero placed here corresponds to two 'pseudo

measurements' that this classification uses to represent the

measured wind in the north and east directions. The flight

path angle of the UAVs is zero that the wind has no vertical

component pseudo-measurements are associated parts of the

EKF(k) states x and truth inputs u as shown.

y5k2
= 0 = Va cosψ + wn − Vg cos x → eq(16)

y6k2
= 0 = Va sinψ + we − Vg sin x → eq(17)

The measurement to state relationship Hk2 in equation (2)

is written here as equation (18).

Hk2(xk2, uk2) =

[

pn

pe
vg

x
va cosψ +wn − vg cos x

va sinψ + wn − vg sin x]

 → eq(18)

Jacobin measurement update is in equation (19)

δHk2(xk2, uk2)

δxk2

=

[

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0

− cos x
− sin x

0
0
0
1

vg sin x
−vg cos x

0
0
0
0
1
0

0
0
0
0
0
1

0
0
0
0

−va,LPF sinψ

va,LPF cosψ]

→ eq(19)

a. flight path angle is zero in equation (20) & (21)

ṗn = vg cos x → eq(20)

ṗe = vg cos x → eq(21)

b. Relationship that wind and airspeed are constant

equation (22) & (23)

v̇g

=
(va cosψ + wn)(−vaψ̇ sinψ) + va sinψ + we)(vaψ̇ cosψ)

vg

→ eq(22)

 ψ = q
sin ϕ

cosθ
+ r

cosϕ

cosθ

̇

c. UAVs coordinated turns

ẋ =
g

vg
tanϕ cos(x − ψ) → eq(23)

Taking matrix to relationship with equation (1), generated

equation will be shown in equation (24)

Fk2(xk2, uk2)

=

[

vg cos x

vg sin x

(v̂a,LPF cosψ + wn)(−v̂a,LPFψ sinψ) + (v̂a,LPF sinψ + we)(v̂a,LPFψ̇cosψ)

vg

g

vg

tanϕcos (x − ψ)

0
0

q̂
sin ϕ̂

cos θ̂
+ r̂

cosϕ̂

cosθ̂]

→ eq(24)

Some of more equation that we use while using EKF2

method.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

223

www.ijert.org
www.ijert.org
www.ijert.org

δvg

δψ
= −

ψva,LPF(wn cosψ+we sin ψ)

vg
 → eq(25)

δẋ

δvg
= −

g

vg
2 tan ϕ̂ cos(x − ψ) → eq(26)

δẋ

δx
= −

g

vg
tan ϕ̂ sin(x − ψ) → eq(27)

δẋ

δψ
=

g

vg
tan ϕ̂ sin(x − ψ) → eq(28)

B. System Software Architecture

1) Ardupilot & DroneKit

ArduPilot facilitates the production and adoption of

advanced, autonomous UAVs in real-time for passive

advantages communication between GCS, including GPS

positioning, battery status and other live erudition. It

provides control algorithms for vehicles with robust sensor

recompense algorithms, filtering and tuning inclinations.

Enabled command modes to implement in every standard

vehicle: Guided, Stabilize, RTL, Land, Flip, Poshold etc.

ArduPilot led to Advanced Configuration allows the

composition of more high-level innovations of the firmware

and hardware peripherals. It implements a comprehensive

suite of tools suitable for almost every medium of vehicle

and application. DroneKit-Python API enables us to build

courseware that runs on an onboard companion computer

and interface with the ArduPilot flight controller adopting a

low-latency interconnection. The API interacts with vehicles

over MAVLink protocol, API primarily intended for use in

onboard companion computers (to maintain high-level

performance predicaments including computer vision, path

planning, 3D modelling and more). It can similarly be

adopted for the GCS, interacting with vehicles over a

tremendous latency RF-link.

Fig 2. Integrating heterogeneity platform with Ardupilot

2) MAVLink & Mavros

The Micro Air Vehicles Link(MAVLink) is the

communication protocol used to communicate between a

Ground Control Station (GCS) and an Autopilot. This

protocol mainly operates in ArduPilot Firmware and

provides robust innovations like controlling, monitoring,

integrating within the Internet. It provides systems for

recognizing packet drops and allotting packet

authentication. The Mavros ROS package facilitates

MAVLink to accommodate flexible connection between

companion computers with ROS and MAVLink enabled

autopilots and GCS. The UDP broadcast used the process

stage and switched to the GCS address. MAVROS supports

ROS topics that can send commands, publishes telemetry

and provides several services.

SET_POSITION_TARGET_LOCAL_NED

communication. Concedes frame target position/target

speed and target yaw/angular yaw velocity,

SET_ATTITUDE_TARGET communication. Concedes

frame the target attitude /angular velocity and throttle level,

SET_POSITION_TARGET_GLOBAL_INT. Concedes

frame the target attitude in global coordinates (latitude,

longitude, altitude) and flight speed.

3) ROS (Robot Operating System) & Ground

Control Station (GCS)

Robot Operating System (ROS) is the framework that

produces different packages, libraries and tools for us to

develop and reiterate code within robotics applications. It

provides conventional OS assistance like hardware

abstraction, device operators, libraries, ingenuity, execution

of commonly-used serviceability (communication within

processes), package management etc. It includes various

packages for computing trajectory, conduct SLAM

algorithms or implements remote control. It can interact

between Python and C++ nodes and build with a cross-

collaboration concept. The project-based on ROS (1) Linux

Noetic Ninjemys framework with heterogeneity Ubuntu

Focal (OS) for UAVs multiple abstraction level

development. The GCS software implements an

autonomous operation and high-level Flight Disposition

Compiler that assists the operator to compose complicated

missions in a simple strategy. It predominantly works on a

ground-based computer that is applied toward planning and

operating a mission. UAV ground control software will

provide a real-time image of the vehicle’s state and

providing the capability to improve our mission. The GCS

mission planners are building around a 2D or 3D mapping,

which in enrichment to altitude and topography may render

separate erudition such as no-fly zones and temporary

restraints. A telemetry player feature is possible that enables

administrators to replay the mission for moreover insights

and interpretation.

C. Integrated Software and Simulation

1) SITL (Software in The Loop) & ROS-Gazebo

SITL enables us to operate ArduPilot on our computers

directly, externally any exceptional hardware. ArduPilot

proceeding SITL gives us access to the extensive extent of

community tools available for desktop C++ development,

typically interactive debuggers, potential analyzers and

dynamic analysis tools. Here we are operating with a

heterogeneous interface of ArduPilot and Dronekit-Python.

The simulator model we are using is Gazebo, a 3D dynamic

simulator that has the extended capability to precisely and

efficiently simulate communities of robots in complex

indoor and outdoor conditions. To obtain ROS integration

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

224

www.ijert.org
www.ijert.org
www.ijert.org

among stand-alone Gazebo, an assortment of ROS packages

specified gazebo_ros_pkgs implements wrappers

approaching the stand-alone Gazebo. Gazebo plugins

provide URDF models with more comprehensive

functionality and join in ROS communications and

assistance requests for sensor output and motor input.

Building with Catkin workspace combines CMake macros

and Python scripts to implement some functionality on top

of CMake's workflow, decreases code redundancy with

Gazebo. The demonstration of heterogeneity SITL,

Simulator and GCS are shown in Figures (3) a & b.

Fig 3. a) ROS-Gazebo Simulation with Mission Planner

b) ROS-Gazebo Simulation with QGroundControl

2) The Obstacle Avoidance Repulsive Potential Field

Methods

The repulsive potential sustains UAVs away from the

obstacles, both those a priori apprehend or those recognized

by the UAV onboard sensors. The Repulsive Potential is

higher during the UAV is closer to interference and produces

a decreasing magnetism when the UAV is far distant. The

Linear nature from the repulsive potential sustains UAVs

away from the intricacy, the repulsive potential proceeds

from the sum of the Repulsive influence of all specific

obstacles is

Urep(X) = ∑ Urepi
(X)

i

→ eq(29)

An obstacle quite far from the UAV is not possible to

deflect. Furthermore, the magnitude of repulsive potential

should expand when the UAV approaches a nearer obstacle.

To estimate for this consequence and to the space

surrounded influence, a feasible repulsion potential

generated by an interference i is

Urepi
(X) = {

1

2
kobsti

0,
(

1

dobsti
(X, X0)

−
1

d0

)

2

,
if dobsti

(X, X0) ≤ d0,

if dobsti
(X, X0) > d0,

 → eq(30)

Where dobsti
(X, X0) is the insignificant distance from (X) to

obstacle i, Kobsti
 is the repulsive potential field constant. d0

is the influence range of the repulsive potential field.

3) LIDAR

Obstacle avoidance obtains by appealing LIDAR data to

implement a two-dimensional Cartesian map. The

proposition uses to create the map of the conditions

preceding the pathway intended based on the map to enable

the drone or robot to navigate in the petitioned obstacle-free

area.

Fig 4: Scanning method of RPLIDAR Sensor

2. CONCLUSION

The Lidar adopted measures 360 distance points all of the

raw laser points embodied in the polar coordinate system as

{(𝑑𝑖 , 𝜃𝑖); 0 ≤ 𝑖 ≤ 359}, anywhere 𝑑𝑖 is the distance

measured from the center of the observer UAV to the object

and 𝜃𝑖 the relative angle of the measurement. The acquired

Lidar erudition gathered in vector (𝑑𝑖 , 𝜃𝑖), the stored

information converting the infinity scan values that means

that there is no obstacle corresponding the ray to the

maximum extent power that could measure by the Lidar

(𝑑𝑚𝑎𝑥). An object located (𝑑𝑚𝑎𝑥) the observer UAV will be

ignored. In real-time, Lidar insistence instantly transmits the

max range value to object outside their operating range.

Furthermore, it is also conceivable to utilize the standards

filtering to eliminate noise from the Lidar data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

225

www.ijert.org
www.ijert.org
www.ijert.org

Fig 5. Lidar obstacle avoidance view in ROS-Gazebo Simulator

 This paper presents a Platform including (Raspberry pi &

Navio 2) procedure to experiment with the genuine

simulated conditions for UAVs autonomous navigation to

establish approaching data enactment and classification of

the algorithm satisfied to hold the benefit of convenient

reference. Therefore, the work is extended to improve the

autopilot system using a distinct heterogeneity combination

of Software and Hardware. Simulation is implementing

using the ROS Noetic Gazebo (3D visualization and physic

modelling) plugins with various sensors combinations of

URDF files. Working with AHRS EKF 2 derivation,

combine DroneKit-python and Ardupilot SITL for UAV

attitude and orientation. The obstacle Avoidance or an

Autonomous flight is obtain using LiDAR, where the

algorithm is build using the Repulsive Potential Field

Method. Mission Planner & QGroundControl GCS has been

applied here for achieving real-time navigation and

trajectory planning in this phase. We have additionally

implemented python-TK for commanding UAVs using

keyboard direction arrows.

3. REFERENCES
[1] Arning, Richard & Langmeier, Andreas & Stenzel, Erwin. (2007).

UAV/UCAV NAVIGATION SYSTEMS - PRESENT AND
POTENTIAL FUTURE.

[2] Ribeiro, Maria Isabel. "Obstacle avoidance." Instituto de Sistemas

e Robótica, Instituto Superio Técnico (2005): 1.
[3] García, Jesús, and Jose M. Molina. "Simulation in real conditions

of navigation and obstacle avoidance with PX4/Gazebo platform."

Personal and Ubiquitous Computing (2020): 1-21.
[4] Meyer, Johannes & Sendobry, Alexander & Kohlbrecher, Stefan &

Klingauf, Uwe & Von Stryk, Oskar. (2012). Comprehensive

Simulation of Quadrotor UAVs Using ROS and Gazebo. 7628.
400-411. 10.1007/978-3-642-34327-8_36.

[5] Yang, Shishan & Baum, Marcus. (2016). Second-Order Extended

Kalman Filter for Extended Object and Group Tracking.
[6] Kallapur, Abhijit & Salman, Shaaban & Anavatti, S.G. (2007).

Application of Extended Kalman Filter Towards UAV

Identification. 10.1007/978-3-540-73424-6_23.
[7] Valiev, Mukhammad, and Husan Kosimov. "International Journal

of Recent Technology and Engineering (IJRTE) ISSN: 2277-

3878." Locomotive Diesel Engine Excess Air Ratio Control Device
8.

[8] Ravankar, Ankit A., Abhijeet Ravankar, Yukinori Kobayashi, and

Takanori Emaru. "Autonomous mapping and exploration with
unmanned aerial vehicles using low cost sensors." In

Multidisciplinary Digital Publishing Institute Proceedings, vol. 4,

no. 1, p. 44. 2018.

[9] Khan, Zubair Ahmed. "Obstacle Avoidance Methods in UAVs."

PhD diss., 2019.

[10] Chen, Shengyang, Han Chen, Weifeng Zhou, C-Y. Wen, and
Boyang Li. "End-to-end UAV simulation for visual SLAM and

navigation." arXiv preprint arXiv:2012.00298 (2020).

[11] Alborzi, Y., B. Safari Jalal, and E. Najafi. "ROS-based SLAM and
Navigation for a Gazebo-Simulated Autonomous Quadrotor." In

2020 21st International Conference on Research and Education in

Mechatronics (REM), pp. 1-5. IEEE, 2020.
[12] Park, Jongho, and Namhoon Cho. "Collision avoidance of

hexacopter UAV based on LiDAR data in dynamic environment."

Remote Sensing 12, no. 6 (2020): 975.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

226

www.ijert.org
www.ijert.org
www.ijert.org

