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Abstract - The drone is commonly known as Unmanned Aerial 

Vehicles (UAVs). In today’s world drone is extensively used in 

every field, some of the common application of drone is now 

being used for the Precision Agriculture, Search and Rescue, 

Wildlife Monitoring, Entertainment and others fields. As the 

whole world was facing a fatal pandemic situation, drone 

surveillance becomes an accommodating technology for 

mankind. The drone brings a technology revolution to the 

global market. Drones are becoming profuse evolve technology 

in today’s aeronautics, as like robotics. Every drone marketing 

company is focusing on AI (Artificial Intelligent) or 

autonomous flights system, but still, it requires human 

interactions. It was mainly controlled by remotes sensing 

technology, even with only hardware it is not possible to fly 

(UAVs) drones, we must necessitate its software and 

programming. The mathematical and physics law application 

makes it possible for us to fly drones, but it is required much 

accuracy for stabilized hovering. Here we are using different 

platforms such as ROS, Linux, Gazebo (modelling or 

simulating), Python, C++, to develop obstacle avoidance and 

keyboard control features in UAVs. 

Keywords- UAVs, Obstacle Avoidance, Lidar, SITL, EKF 2 ROS, 

GPS 

 

1. INTRODUCTION 

UAVs is broadly appropriating in search and rescue 

operations, military surveillance and civilian professions 

because of their prominent advantages, such as flexibility, 

light mass, stable mobility, and good concealment. 

Nowadays, the growth and applications of UAV 

technologies only not change the evolving area of many 

industries but also brings market and economic benefits. The 

autonomy level of UAVs varies according to the tasks at 

hand or the degree to which the vehicle can make decisions 

without being explicitly guided by a remote operator. 

Usually, drones use various classification on-board sensors 

that can manage situational consciousness and autonomous 

decision-making at run-time. Obstacle avoidance leads to 

the approach of moulding the robot’s pathway to overcome 

unforeseen obstacles. The resulting movement depends on 

the drones’ existent position and the sensor interpretations. 

There is a level of algorithms for restriction avoidance from 

basic re-planning to reactive rotation in the controller 

strategy. Advanced techniques vary on the execution of 

sensor data and on the motion control approaches to 

overcome obstacles. The most generous difficulty of 

autonomous drones is capable to react accurately and safely 

to the circumstances during flight. Consequently, these 

vehicles must be equipped with sensors proficient in 

respondents very instantly and processing the system 

intelligently interpreting all this data in real-time. This paper 

comprised III sections Hardware integration, Software 

integration and Modelling & Avoidance Analyses. The 

hardware platform used in this work is Raspberry pi & 

Navio2. In this, advanced environment ROS Gazebo is a 

dynamic 3D simulated environment for autonomous 

vehicles that are especially suitable for examination (OA) 

systems. Gazebo used with Software in Loop(SIL) and 

Hardware in Loop(HIL) design. These works are based on 

real-time detection using an RP Lidar sensor and performing 

modelled Lidar in a ROS gazebo simulation environment. 

Section C involves several embedded applications to process 

the detection sensor to command the navigation, adorned in 

pragmatic conditions. 

A. System Hardware Architecture 

1) The Raspberry pi and Navio2 UAVs System 

 An autonomous drone requires at least two levels of control 

to operate Inner Loop and Outer Loop. The Inner Loop 

stabilizes the vehicle at a desired angle or body motion. A 

board that controls the Inner Loop is a flight controller 

Navio2 that allows pilots to communicate the requested 

vehicle state, and output should stabilize commands to a 

motor to achieve that state. The Outer Loop generates an 

angle or rate of instruction to get the drone from point A to 

B. Raspberry Pi flight-controller is used to conducting all 

other outer loop control and request vehicle state to the flight 

controller. It is a decision making brain of a drone that 

request, as performed by various on-board sensor data, 

combines and specific task it was carrying out. GPS data 

tells the flight computer where it is in space and about the 

waypoint mission. The Navio2 eradicates several needs to 

become various controllers on board as everything is 

compressed within one (including the Raspberry Pi), 

consequently enhancing the robustness of our project and 

expediting the community. With the Navio2, we can control 

our flying robots such as multirotor and planes. The Navio2 

is adorned with a High-resolution barometer double IMU 

and GNSS receiver with GPS, GLONASS, Beidou, Galileo 

and SBAS satellites for exact positioning and adjustment. 

The Navio2 is executing a data processing technique for 

navigating to estimate the drone position and visual 

estimation. The method we are using for path planning and 

obstacle avoidance is SLAM (simultaneous localization and 

mapping) is a procedure used for an autonomous drone that 

allows us to build a map and localize our drone to map in a 

real-time process. SLAM algorithm allowing the UAVs to 

map out unrevealed environments. There exist different 

SLAM methods but, we are working with the LiDAR SLAM 

system. Usually, LIDAR SLAM is used with a laser sensor 

to produce a 3D map of its environment. LiDAR (Light 

Detection and Ranging) estimates the range of an object by 

locating the nearby object using an active laser 'pulse'. It is 

working with a swift and accurate classification. So, it can 

work in a comprehensive range of environments and 

conditions. 
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Fig 1. Hardware integration 

(a) Attitude and Heading Reference System 

AHRS works as a stabilization and motion control. It 

computes a central processing unit (CPU) to the IMU, the 

AHRS features state algorithms for a wide range of dynamic 

motions of UAVs. It comprises IMU 3-axis gyroscopes, 

accelerometers, and magnetometers that support wing, 

heading, pitch and roll data, also providing high-frequency 

real-time UAVs rotation data and open-ended gyroscope 

fixings. These sensors are attached to an external GNSS 

receiver to enhance its execution. It implants the Extended 

Kalman Filter that produces position and heading 

information. 

(b) Inertial Navigation System (INS) 

INS is a computer system that takes input from a global 

navigation satellite system such as GPS or Inertial 

Measurement Unit (IMU), which measures the Payload 

Stabilization & Orientation of the UAVs. The IMU outputs 

gyroscopes, accelerometers, and magnetometers raw data, 

and the Inertial Navigation System (INS) additionally 

implant a GNSS receiver for a clarified attitude in real-time. 

The inertial navigation system is a self-esteem process 

through which a system may track its attitude, orientation 

and velocity (once provided initial values for these 

parameters) without the necessity of such outer implications. 

If the acceleration of an object is classified, it is probable to 

use numerical integration to estimate the velocity. 

(c) Extended Kalman Filter(EKF)  

EFK is the nonlinear version of the Kalman filter that 

linearizes the estimation of the current mean and covariance. 

This algorithm evaluates vehicle position, velocity and 

angular orientation based on rate accelerometer, gyroscope, 

GPS, airspeed and barometric pressure estimations. This 

nonlinear state-space model illustrates the relationship state 

to sensors and the relationship states to state time 

derivatives.  

 Xki
= Fk(xki

, uk)+∈      →  eq(1) 

 Yki
= Hk(xki

, uk) + η   → eq(2) 

xki
 is  a vector of a state that is estimated by the EKF, yk is 

a vector of the measurement and uk is the vector of 

predetermined inputs to EFK. η measurement noise vector 

and ϵ state noise vector. 

The variance of error state using covariance matrix is follow 

as Mk as shown in eq(3). 

 Mk = i [(xk − xki
)(xk − xki

)
T
]     → eq(3)   

xk   represent state vector which is the output of EKF. xki 
this 

represents the expected relationship to the measurement 

provided in equation (1) & equation (2), Mkis the  

covariance matrix state in EKF method 

(d) Measurement Update 

The process of updating the measurement vector yk is called 

measurement update. This can be performed using the 

Kalman gain matrix. Here, t is a current update 

Hkt
= Hk(xkt−1

, ukt
) 

 Gkt
= Mkt−1

Hkt

T (Hkt
 Mkt−1

Hkt

T + Sk)
−1       → eq(4) 

sk is the matrix of expected sensor noise of measurement 

and the Hkis the matrix that maps the states and input of an 

EKF to the measurement of the EKF methods, t-1 on tensor 

indicate using a value from previous (KF) update of that 

tensor. The KGM Gkt
 for this update is used to compute the 

update state estimate xkt
and update Mkt

 as shown in 

equations (5)&(6). 

 Xkt
= Xkt−1

+ Gkt
[yk −

δHk

δXk
xkt−1

]  → eq(5) 

Mkt
= (I − Gk

δHkt

δxkt

)Mkt
)Mkt−1

    → eq(6)  

(e) Time Update 

The state prediction update performed applying the 

relationship in equation (1) estimated for the time update. 

Equation (1) evaluating continuous, the time interval chosen 

to balance the processor usage and estimator performance. 

In several statuses of discrete or continuous inputs, the time 

update is executed many times between each measurement 

update. At each of those time updates, state estimation uses 

to predicted from the measurement relationship. 

xkt
= xkt−1

+
Ts

N
Fk(xt−1, ut        → eq(7))  

The integration to estimate the state vector xkt
 appear 

multiple times to reduce errors due to integration errors from 

nonlinearities in the state propagation. The variable N in 

equation (7) is the total aggregate of redundancies Ts is the 

time passed after the last measurement update. Essentially, 
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there is position time between processor consumption and 

execution of the time update. 

 xkt
= Φkt,t−1

xkt−1
      → eq(8) 

Φk(t,t−1)
=

δFk(xkt
,ukt)

δxk
Φk(t,t−1)

   → eq(9)  

where Φk(t−1,   t−1)
= I         → eq(10)  

Φk state transition matrix in state vectorxk maps t − 1 the 

value of one state to the next state t in the time update. 

Mkt
= Φk(t,t−1)

Mkt−1
Φk(t,t−1)

T + Qk      → eq(11)  

 Qk is the matrix that adjusts parameters that express the 

predicted covariance of the state determined by equation (1) 

Mkt

= Mk(t−1)
+

Ts

N
([

δFk(xkt
, ukt

)

δxk

]Mkt−1
[
δFk(xkt

, ukt

δxk

]

T

)

+ Qk    → eq(12) 

Equations (11) and (12) both are a form of updating 

covariance matrix. Updating the covariance matrix can be 

iterated to improve the estimation.  

(f) Second Order Extended Kalman Filter (EKF2) 

The measurement of inertial velocities to ‘smooth’ the GPS 

measurements to resolve high-frequency estimates for the 

states.  

xk2 = [pnpevg x wnwe ψ]T → eq(13)  

pnpe is the Inertial Earth position towards the North and East 

origin at an initial position. vgThe velocity of the airframe to 

ground, x is zero wind sideslip if yaw angle is in same course 

angle. wnww is a component of wind velocity Vw in the 

direction from the north and east. ψ is Yaw angle in degrees, 

First Euler angle. 

uk2 = [ϕ̂kθ̂kpLPFqLPFrLPFvLPF]
T
  → eq(14)  

EKF2 use only the GPS measurement, shown in equation 

(15). 

 yk2 =

[
 
 
 
 
 
ypn,GPS

ype,GPS

yvg,GPS

yXgps

0
0 ]

 
 
 
 
 

   → eq(15) 

Two Zero placed here corresponds to two 'pseudo 

measurements' that this classification uses to represent the 

measured wind in the north and east directions. The flight 

path angle of the UAVs is zero that the wind has no vertical 

component pseudo-measurements are associated parts of the 

EKF(k) states x and truth inputs u as shown. 

y5k2
= 0 = Va cosψ + wn − Vg cos x → eq(16)   

y6k2
= 0 = Va sinψ + we − Vg sin x     → eq(17)  

The measurement to state relationship Hk2  in equation (2) 

is written here as equation (18). 

Hk2(xk2, uk2) =

[
 
 
 
 
 

pn

pe
vg

x
va cosψ +wn − vg cos x

va sinψ + wn − vg sin x]
 
 
 
 
 

  → eq(18)  

Jacobin measurement update is in equation (19) 

δHk2(xk2, uk2)

δxk2

=

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0

− cos x
− sin x

0
0
0
1

vg sin x
−vg cos x

0
0
0
0
1
0

0
0
0
0
0
1

0
0
0
0

−va,LPF sinψ

va,LPF cosψ ]
 
 
 
 
 

 

→ eq(19) 

a.  flight path angle is zero in equation (20) & (21) 

ṗn = vg cos x   → eq(20)  

ṗe = vg cos x   → eq(21)  

b. Relationship that wind and airspeed are constant 

equation (22) & (23) 

v̇g

=
(va cosψ + wn)(−vaψ̇ sinψ) + va sinψ + we)(vaψ̇ cosψ)

vg

→ eq(22) 

 ψ = q
sin ϕ

cosθ
+ r

cosϕ

cosθ

̇
 

c. UAVs coordinated turns 

ẋ =
g

vg
tanϕ cos(x − ψ)   → eq(23)   

Taking matrix to relationship with equation (1), generated 

equation will be shown in equation (24) 

Fk2(xk2, uk2)

=

[
 
 
 
 
 
 
 
 
 
 

vg cos x

vg sin x

(v̂a,LPF cosψ + wn)(−v̂a,LPFψ sinψ) + (v̂a,LPF sinψ + we)(v̂a,LPFψ̇cosψ)

vg

g

vg

tanϕcos (x − ψ)

0
0

q̂
sin ϕ̂

cos θ̂
+ r̂

cosϕ̂

cosθ̂ ]
 
 
 
 
 
 
 
 
 
 

→ eq(24) 

Some of more equation that we use while using EKF2 

method.  
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δvg

δψ
= −

ψva,LPF(wn cosψ+we sin ψ)

vg
   → eq(25)  

δẋ

δvg
= −

g

vg
2 tan ϕ̂ cos(x − ψ)   → eq(26)  

 
δẋ

δx
= −

g

vg
tan ϕ̂ sin(x − ψ)   → eq(27)   

δẋ

δψ
=

g

vg
tan ϕ̂ sin(x − ψ)   → eq(28)  

B. System Software Architecture 

1) Ardupilot & DroneKit 

ArduPilot facilitates the production and adoption of 

advanced, autonomous UAVs in real-time for passive 

advantages communication between GCS, including GPS 

positioning, battery status and other live erudition. It 

provides control algorithms for vehicles with robust sensor 

recompense algorithms, filtering and tuning inclinations. 

Enabled command modes to implement in every standard 

vehicle: Guided, Stabilize, RTL, Land, Flip, Poshold etc. 

ArduPilot led to Advanced Configuration allows the 

composition of more high-level innovations of the firmware 

and hardware peripherals. It implements a comprehensive 

suite of tools suitable for almost every medium of vehicle 

and application. DroneKit-Python API enables us to build 

courseware that runs on an onboard companion computer 

and interface with the ArduPilot flight controller adopting a 

low-latency interconnection. The API interacts with vehicles 

over MAVLink protocol, API primarily intended for use in 

onboard companion computers (to maintain high-level 

performance predicaments including computer vision, path 

planning, 3D modelling and more). It can similarly be 

adopted for the GCS, interacting with vehicles over a 

tremendous latency RF-link. 

 

Fig 2. Integrating heterogeneity platform with Ardupilot 

2) MAVLink & Mavros 

The Micro Air Vehicles Link(MAVLink) is the 

communication protocol used to communicate between a 

Ground Control Station (GCS) and an Autopilot. This 

protocol mainly operates in ArduPilot Firmware and 

provides robust innovations like controlling, monitoring, 

integrating within the Internet. It provides systems for 

recognizing packet drops and allotting packet 

authentication. The Mavros ROS package facilitates 

MAVLink to accommodate flexible connection between 

companion computers with ROS and MAVLink enabled 

autopilots and GCS. The UDP broadcast used the process 

stage and switched to the GCS address. MAVROS supports 

ROS topics that can send commands, publishes telemetry 

and provides several services. 

SET_POSITION_TARGET_LOCAL_NED 

communication. Concedes frame target position/target 

speed and target yaw/angular yaw velocity, 

SET_ATTITUDE_TARGET communication. Concedes 

frame the target attitude /angular velocity and throttle level, 

SET_POSITION_TARGET_GLOBAL_INT. Concedes 

frame the target attitude in global coordinates (latitude, 

longitude, altitude) and flight speed. 

3) ROS (Robot Operating System) & Ground 

Control Station (GCS) 

Robot Operating System (ROS) is the framework that 

produces different packages, libraries and tools for us to 

develop and reiterate code within robotics applications. It 

provides conventional OS assistance like hardware 

abstraction, device operators, libraries, ingenuity, execution 

of commonly-used serviceability (communication within 

processes), package management etc. It includes various 

packages for computing trajectory, conduct SLAM 

algorithms or implements remote control. It can interact 

between Python and C++ nodes and build with a cross-

collaboration concept. The project-based on ROS (1) Linux 

Noetic Ninjemys framework with heterogeneity Ubuntu 

Focal (OS) for UAVs multiple abstraction level 

development. The GCS software implements an 

autonomous operation and high-level Flight Disposition 

Compiler that assists the operator to compose complicated 

missions in a simple strategy. It predominantly works on a 

ground-based computer that is applied toward planning and 

operating a mission. UAV ground control software will 

provide a real-time image of the vehicle’s state and 

providing the capability to improve our mission. The GCS 

mission planners are building around a 2D or 3D mapping, 

which in enrichment to altitude and topography may render 

separate erudition such as no-fly zones and temporary 

restraints. A telemetry player feature is possible that enables 

administrators to replay the mission for moreover insights 

and interpretation. 

C. Integrated Software and Simulation 

 

1) SITL (Software in The Loop) & ROS-Gazebo 

SITL enables us to operate ArduPilot on our computers 

directly, externally any exceptional hardware. ArduPilot 

proceeding SITL gives us access to the extensive extent of 

community tools available for desktop C++ development, 

typically interactive debuggers, potential analyzers and 

dynamic analysis tools. Here we are operating with a 

heterogeneous interface of ArduPilot and Dronekit-Python. 

The simulator model we are using is Gazebo, a 3D dynamic 

simulator that has the extended capability to precisely and 

efficiently simulate communities of robots in complex 

indoor and outdoor conditions. To obtain ROS integration 
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among stand-alone Gazebo, an assortment of ROS packages 

specified gazebo_ros_pkgs implements wrappers 

approaching the stand-alone Gazebo. Gazebo plugins 

provide URDF models with more comprehensive 

functionality and join in ROS communications and 

assistance requests for sensor output and motor input. 

Building with Catkin workspace combines CMake macros 

and Python scripts to implement some functionality on top 

of CMake's workflow, decreases code redundancy with 

Gazebo. The demonstration of heterogeneity SITL, 

Simulator and GCS are shown in Figures (3) a & b.  

 

Fig 3. a) ROS-Gazebo Simulation with Mission Planner 

 

b) ROS-Gazebo Simulation with QGroundControl 

2) The Obstacle Avoidance Repulsive Potential Field 

Methods 

The repulsive potential sustains UAVs away from the 

obstacles, both those a priori apprehend or those recognized 

by the UAV onboard sensors. The Repulsive Potential is 

higher during the UAV is closer to interference and produces 

a decreasing magnetism when the UAV is far distant. The 

Linear nature from the repulsive potential sustains UAVs 

away from the intricacy, the repulsive potential proceeds 

from the sum of the Repulsive influence of all specific 

obstacles is 

Urep(X) = ∑ Urepi
(X)

i

→ eq(29) 

An obstacle quite far from the UAV is not possible to 

deflect. Furthermore, the magnitude of repulsive potential 

should expand when the UAV approaches a nearer obstacle. 

To estimate for this consequence and to the space 

surrounded influence, a feasible repulsion potential 

generated by an interference i is 

Urepi
(X) = {        

1

2
kobsti

0,
(

1

dobsti
(X, X0)

−
1

d0

)

2 

,
if dobsti

(X, X0) ≤ d0,

if dobsti
(X, X0) > d0,

 → eq(30) 

Where dobsti
(X, X0) is the insignificant distance from (X) to  

obstacle i, Kobsti
 is the repulsive potential field constant. d0 

is the influence range of the repulsive potential field. 

 

 

3) LIDAR 

Obstacle avoidance obtains by appealing LIDAR data to 

implement a two-dimensional Cartesian map. The 

proposition uses to create the map of the conditions 

preceding the pathway intended based on the map to enable 

the drone or robot to navigate in the petitioned obstacle-free 

area. 

  

Fig 4: Scanning method of RPLIDAR Sensor 

2. CONCLUSION 

The Lidar adopted measures 360 distance points all of the 

raw laser points embodied in the polar coordinate system as 

{(𝑑𝑖 , 𝜃𝑖); 0 ≤ 𝑖 ≤ 359}, anywhere 𝑑𝑖 is the distance 

measured from the center of the observer UAV to the object 

and 𝜃𝑖 the relative angle of the measurement. The acquired 

Lidar erudition gathered in vector (𝑑𝑖 , 𝜃𝑖), the stored 

information converting the infinity scan values that means 

that there is no obstacle corresponding the ray to the 

maximum extent power that could measure by the Lidar 

(𝑑𝑚𝑎𝑥). An object located (𝑑𝑚𝑎𝑥) the observer UAV will be 

ignored. In real-time, Lidar insistence instantly transmits the 

max range value to object outside their operating range. 

Furthermore, it is also conceivable to utilize the standards 

filtering to eliminate noise from the Lidar data.  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

225

www.ijert.org
www.ijert.org
www.ijert.org


 
 

 

Fig 5. Lidar obstacle avoidance view in ROS-Gazebo Simulator 

 This paper presents a Platform including (Raspberry pi & 

Navio 2) procedure to experiment with the genuine 

simulated conditions for UAVs autonomous navigation to 

establish approaching data enactment and classification of 

the algorithm satisfied to hold the benefit of convenient 

reference. Therefore, the work is extended to improve the 

autopilot system using a distinct heterogeneity combination 

of Software and Hardware. Simulation is implementing 

using the ROS Noetic Gazebo (3D visualization and physic 

modelling) plugins with various sensors combinations of 

URDF files. Working with AHRS EKF 2 derivation, 

combine DroneKit-python and Ardupilot SITL for UAV 

attitude and orientation. The obstacle Avoidance or an 

Autonomous flight is obtain using LiDAR, where the 

algorithm is build using the Repulsive Potential Field 

Method. Mission Planner & QGroundControl GCS has been 

applied here for achieving real-time navigation and 

trajectory planning in this phase. We have additionally 

implemented python-TK for commanding UAVs using 

keyboard direction arrows. 
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