Personalized Product Recommendation in Social Media using Kin and Kith Mining

N.Venkatesan
CSE, Sri Vidya College of Engg &Tech
SV CET,
Virudhunagar,India.

K. Arunadevi, S. Kamalapriya
CSE, Sri Vidya College of Engg &Tech
SV CET,
Virudhunagar,India.

Abstract— A recommender system learns from a customer and recommends products that we will find most valuable from among the available products. Many of the largest E-commerce Websites are already using recommender systems to help their customers find products to purchase. The products can be recommended based on the top sellers on a site, demographics of the customer and analysis of the past buying behavior of the customer. The proposed system will use “mined” knowledge learned from the behavior of consumers and its relevant people – to guide consumers through the often-overwhelming task of locating products they will like. Recommender systems enhance E-commerce sales in three ways: Browsers into buyers, Cross-sell and Loyalty. This paper proposed new mining approach to recommend the products which are interest with their family members and friends. The data set are collected from the social networking sites. The data set consists of basic information about the visitor, likes and groups, interests etc., more generally, data mining has two phases. In the learning phase, the data mining system analyses the data and builds a model of consumer behavior (e.g., association rules). This phase is often very time-consuming and may require the assistance of human analysts. After the model is built, the system enters a use phase where the model can be rapidly and easily applied to consumer situations. By applying kin and kith mining concepts to analysis the data set to predict not only the users interest also finds the interests of the customers’ friends and family members.

Keywords— Recommender systems, Kin and Kith mining, E-commerce, Social network, users interest

I. INTRODUCTION

Recommender systems are a powerful new technology for extracting additional value for a business from its customer databases. These systems help customers find products they want to buy from a business. Recommender systems benefit customers by enabling them to find products they like. Conversely, they help the business by generating more sales. Recommender systems are rapidly becoming a crucial tool in E-commerce on the Web. Recommender systems are being stressed by the huge volume of customer data in existing corporate databases, and will be stressed even more by the increasing volume of customer data available on the Web. New technologies are needed that can dramatically improve the scalability of recommender systems.

The largest E-commerce sites offer millions of products for sale. Choosing among so many options is challenging for consumers. Recommender systems have emerged in response to this problem. A recommender system for an E-commerce site recommends products that are likely to fit her needs. Today, recommender systems are deployed on hundreds of different sites, serving millions of consumers. One of the earliest and most successful recommender technologies is collaborative filtering [1, 2, 3, 7]. Collaborative filtering (CF) works by building a database of preferences for products by consumers. A new consumer, Neo, is matched against the database to discover neighbors, which are other consumers who have historically had similar taste to Neo.

Fig.1. Personalized Recommender System using social media

Products that the neighbors like are then recommended to Neo, as he will probably also like them. Collaborative filtering has been very successful in both research and practice. Recommender systems are systems that provide users with an ordered list of items and information that help them to decide which items to consider or look at based on the individual user preferences [4, 5].

A content-based recommendation (CBR) requires data on the behavior of users and features of items. Its performance depends on the data and how this data is used, i.e. represented and inferred. Representation of and reasoning about the behavior of users and features of items raised a number of challenging issues. Features of items and users’ behavior are subjective, vague and imprecise. These, in turn, induce uncertainty on representation of and reasoning about the items’ features, users’ behavior, and their relationship. Such uncertainty is non-stochastic or non-random and is induced from subjectivity, vagueness
and imprecision in the data, the domain knowledge and the task under consideration.

II. RELATED WORKS

Many works link social networks with recommendations system based on collaborative filtering. They are classified mainly into the Matrix Factorization (MF) based approaches, and the Neighborhood Based Social approaches [6]. Different methods are adopted to achieve this goal: Matrix Factorization is used in [8], while in [9] social spectral regularization was used, in [10] a social trust Ensemble (STE) was adopted, while in [11] a slight twist on social spectral regularization matrix (SoRec) is used.

Concept recommendation means finding users’ profiles of concepts, then trying to recommend items or links that are related to these concepts to users, the advantage of these solutions is that they permit to find likeminded users, even if they don’t consume, or click on the same items. Not like other model-based recommendation solutions, such a solution saves lost of information as it is the case in clustering or matrix decomposition. Many works address the concept similarity in recommendation.

iSoNTRE offers a methodology to transform the general purpose social networks into a source of recommendation. In traditional social recommender systems surveyed in [12], after having information from the recommendation based social networks (opinions or flickers) different recommendation methods are proposed and evaluated. This operation results in having for every resource a list of concepts and their frequency in each resource. iSoNTRE collects all these information in a Resource Concept Matrix with extracted rating of each resource towards each concept. The neighborhood formation process is in fact the correlation or cosine similarity as a measure of proximity. The prediction is then an average across the clusters.

Recommendation engines come up with suggestions in various ways, including demographic filtering, collaborative and content-based recommendation. In demographic recommendation [13], users are classified based on their personal data like age, gender, etc. Each product is assigned to one or more classes with certain weights and the user is attracted to items from the class closest to their profile. Collaborative recommendation [15] recommends products based on the set of users, whose ratings have the strongest correlation with the current user. Content-based recommendation [14] analyzes the content similarity, such as textual titles or descriptions, between products to suggest appropriate products.

Most E-commerce recommendation engines use a combination of user query analysis [18] and user collaborative filtering [9], but overlook the importance of ever changing global trends which are essential to the Fashion industry as the clothing articles preferred vary according to seasons, media, and current trends which is adately captured in Match-BOT using Google Trends. The engine tracks the users outside the system to gather information and perform analytics which may be a user privacy concern [16]. Inside the system, they track similar user activity. Thenovely of Match-BOT is that it is a unique amalgamation of user preferences and the global trends. The combination of ratio specific i.e the system administrator can chooseup-to what degree the global trends will contribute to the suggestions returned. Also, the algorithm has a feedbackloop which makes it adaptive as the suggestions adapt to newer purchases and dynamic shifts in global fashion trends.

Match-BOT is truly novel in its system which has tremendous potential to integrate different factors affecting a customer’s decision to purchase a certain commodity on an E-Commerce website. It formulates a wonderful interface through which the businesses can customize the mechanism of product recommendation. Collaborative filtering (CF) suggests the most successful recommender system technology to date, and isused in many of the most successful recommender systems on the Web. CF systems recommend products to target customers based on the opinions of other customers. These systems employ statistical techniques to find a set of customers known as neighbors, that have a history of agreeing with the target user (i.e., they either rate different products similarly or they tend to buy similar sets of products). Once a neighborhood of users is formed, these systems use several algorithms to produce recommendations.

Most collaborative filtering based recommender systems build a neighborhood of likeminded customers. The Neighborhood formation scheme usually uses Pearson correlation or cosine similarity as a measure of proximity [13]. The Neighborhood formation process is in fact the model-building or learning process for a recommender algorithm. Clustering techniques work by identifying groups of users who appear to have similar preferences. Once the clusters are created, predictions for an individual can be made by averaging the opinions of the other users in that cluster. Some clustering techniques represent each user with partial participation in several clusters. The prediction is then an average across the clusters weighted by degree of participation. Clustering techniques usually produce less-personal recommendations than other methods and most often lead to worse accuracy than nearest neighbor algorithms.

The simplest method for identifying relevant users (i.e., users whom we want to target with advertisements) would be to manually construct rules detecting whether the given messages match particular patterns associated with the products or brands that will be advertised. However, this is a time-consuming approach which may require significant experience with the message and user patterns on Twitter. Therefore, in addition to using a subset of manual rules, call and extractors (for which the tradeoff is computational efficiency versus more detailed targeting...
rules), we develop a method that can construct probabilistic relevance models automatically based on product descriptions and then tune the models based on the observed performance. This presents two significant challenges. First, a single product catalog can contain numerous types of products. Second, the type of language used in product catalogs can be quite different from the language used in social media.

III. PROPOSED SYSTEM

The recommender system solution is a customer engagement application for social media. It interfaces electronically with various social media data providers, processes high volumes of raw unstructured social media messages, scores the brand-relevance of each message, and recommends topic-specific messages for engaging customers through social media. A web-based dashboard provides: 1) visibility to relevant social media messages, 2) the ability to filter recommendations by brand and hot topics (words deemed important in the product catalog), and 3) the capability to message potential customers and track customer responses.

Paragraphs must be justified. All paragraphs must be justified, i.e. both left-justified and right-justified.

Our proposed Recommender systems will use “mined” knowledge learned from the behavior of consumers and its relevant people – to guide consumers through the often overwhelming task of locating products they will like. Recommender systems enhance E-commerce sales in three ways: Browsers into buyers, Cross-sell and Loyalty.

This paper proposes a new mining approach to recommend the products which are of interest with their family members and friends. The data set is collected from the social networking sites. The data set consists of basic information about the visitor, likes and dislikes, groups, interests etc. By applying kin and kith mining concepts to analysis the data set to predict not only the users interest also finds the interests of the customers’ friends and family members.

This system recommends the product using social media pages likes. Using access permission collects the pages likes and recommend product for application users. It recommends products in ecommerce platform based on individual user behavior, bought products, best seller products, featured products and related products. The system uses Facebook API to get information from the user and about the user in the social media. The information retrieved includes the details about the users, their friends and preferences, which group they all belong and interests. Based on the information gathered using the application the product recommendation process being carried out.

The system introduces another form of recommendation approach in E-commerce sites. It not only recommends a product by social media information, also from the usual commercial sites recommendation methodologies. This includes similar things brought together, most popular and related items to the product being purchase. The user interests are predicted by applying mining process over the information collected from the users’ Facebook profile. The table 1 below will shows the recommended products for a particular user.

TABLE I. USER RECOMMENDATION TABLE

<table>
<thead>
<tr>
<th>Users</th>
<th>USER RECOMMENDATION TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>User A</td>
<td>black solid cotton shirt</td>
</tr>
<tr>
<td></td>
<td>black solid linen shirt</td>
</tr>
<tr>
<td></td>
<td>red checked shirt</td>
</tr>
<tr>
<td></td>
<td>red solid cotton shirt</td>
</tr>
<tr>
<td>User B</td>
<td>red solid linen shirt</td>
</tr>
<tr>
<td></td>
<td>orange striped cotton shirt</td>
</tr>
<tr>
<td></td>
<td>black slim fit denim jeans</td>
</tr>
<tr>
<td></td>
<td>black slim fit denim jeans</td>
</tr>
<tr>
<td>User C</td>
<td>red cotton regular fit jeans</td>
</tr>
<tr>
<td></td>
<td>red linen regular fit jeans</td>
</tr>
<tr>
<td></td>
<td>black linen regular fit jeans</td>
</tr>
<tr>
<td></td>
<td>black denim slim fit jeans</td>
</tr>
<tr>
<td>User D</td>
<td>green checked cotton shirt</td>
</tr>
<tr>
<td></td>
<td>green checked linen shirt</td>
</tr>
<tr>
<td></td>
<td>white checked cotton shirt</td>
</tr>
<tr>
<td></td>
<td>red striped linen shirt</td>
</tr>
<tr>
<td></td>
<td>red striped cotton shirt</td>
</tr>
<tr>
<td></td>
<td>red cotton regular fit jeans</td>
</tr>
</tbody>
</table>

The featured recommendation displays products which are recommended as best products. It’s a great way to bring your customers’ attention to products that are on sale, in season, back in stock, or just worthy of extra attention. The featured recommendation offers more flexibility than other product recommendations. The recommended products for every person are predicted and stored in individual tables. In the above table the User A’s recommended products are displayed, based on the interests of user A’s the advertisements are being generated. Once the advertisement is generated these advertisement will be displayed in users’ profiles as well their friends’ wall in social media. This will lead to tremendous change in sales of the E-Commerce sites.
IV. CONCLUSION

In this project, various recommendation approaches are proposed to achieve maximum accuracy in user interests. By using kin and kith mining concepts we can recommend a product not only the particular user their family and friends too. The data for the project are got from the facebook using the developers’ work place. By using the Facebook API the users likes are predicted and stored in a respective format. Using this like and other information the products for the particular user are suggested. E-commerce integration helps to make some other recommendations to improve the buying nature of the user. The recommendation in the E-commerce site based on featured, related items, best seller and other recommendations to improve the buying nature of the firm. Finally our project increases the user interest accuracy and their buying nature.

ACKNOWLEDGMENT

My deepest gratitude is to my guide, Mr. N. Venkatesan M.Tech., I have been amazingly fortunate to have guide who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. He taught me how to question thoughts and express ideas. Their patience and support helped me overcome many crisis situations and finish this dissertation.

REFERENCES

